mirror of
https://github.com/postgres/postgres.git
synced 2025-04-20 00:42:27 +03:00
Instead of doing a lot of list_nth() accesses to es_range_table, create a flattened pointer array during executor startup and index into that to get at individual RangeTblEntrys. This eliminates one source of O(N^2) behavior with lots of partitions. (I'm not exactly convinced that it's the most important source, but it's an easy one to fix.) Amit Langote and David Rowley Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
1112 lines
30 KiB
C
1112 lines
30 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* execUtils.c
|
|
* miscellaneous executor utility routines
|
|
*
|
|
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/executor/execUtils.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
/*
|
|
* INTERFACE ROUTINES
|
|
* CreateExecutorState Create/delete executor working state
|
|
* FreeExecutorState
|
|
* CreateExprContext
|
|
* CreateStandaloneExprContext
|
|
* FreeExprContext
|
|
* ReScanExprContext
|
|
*
|
|
* ExecAssignExprContext Common code for plan node init routines.
|
|
* etc
|
|
*
|
|
* ExecOpenScanRelation Common code for scan node init routines.
|
|
*
|
|
* ExecInitRangeTable Set up executor's range-table-related data.
|
|
*
|
|
* ExecGetRangeTableRelation Fetch Relation for a rangetable entry.
|
|
*
|
|
* executor_errposition Report syntactic position of an error.
|
|
*
|
|
* RegisterExprContextCallback Register function shutdown callback
|
|
* UnregisterExprContextCallback Deregister function shutdown callback
|
|
*
|
|
* GetAttributeByName Runtime extraction of columns from tuples.
|
|
* GetAttributeByNum
|
|
*
|
|
* NOTES
|
|
* This file has traditionally been the place to stick misc.
|
|
* executor support stuff that doesn't really go anyplace else.
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/parallel.h"
|
|
#include "access/relscan.h"
|
|
#include "access/transam.h"
|
|
#include "executor/executor.h"
|
|
#include "jit/jit.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "parser/parsetree.h"
|
|
#include "storage/lmgr.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/rel.h"
|
|
#include "utils/typcache.h"
|
|
|
|
|
|
static bool tlist_matches_tupdesc(PlanState *ps, List *tlist, Index varno, TupleDesc tupdesc);
|
|
static void ShutdownExprContext(ExprContext *econtext, bool isCommit);
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* Executor state and memory management functions
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
/* ----------------
|
|
* CreateExecutorState
|
|
*
|
|
* Create and initialize an EState node, which is the root of
|
|
* working storage for an entire Executor invocation.
|
|
*
|
|
* Principally, this creates the per-query memory context that will be
|
|
* used to hold all working data that lives till the end of the query.
|
|
* Note that the per-query context will become a child of the caller's
|
|
* CurrentMemoryContext.
|
|
* ----------------
|
|
*/
|
|
EState *
|
|
CreateExecutorState(void)
|
|
{
|
|
EState *estate;
|
|
MemoryContext qcontext;
|
|
MemoryContext oldcontext;
|
|
|
|
/*
|
|
* Create the per-query context for this Executor run.
|
|
*/
|
|
qcontext = AllocSetContextCreate(CurrentMemoryContext,
|
|
"ExecutorState",
|
|
ALLOCSET_DEFAULT_SIZES);
|
|
|
|
/*
|
|
* Make the EState node within the per-query context. This way, we don't
|
|
* need a separate pfree() operation for it at shutdown.
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(qcontext);
|
|
|
|
estate = makeNode(EState);
|
|
|
|
/*
|
|
* Initialize all fields of the Executor State structure
|
|
*/
|
|
estate->es_direction = ForwardScanDirection;
|
|
estate->es_snapshot = InvalidSnapshot; /* caller must initialize this */
|
|
estate->es_crosscheck_snapshot = InvalidSnapshot; /* no crosscheck */
|
|
estate->es_range_table = NIL;
|
|
estate->es_range_table_array = NULL;
|
|
estate->es_range_table_size = 0;
|
|
estate->es_relations = NULL;
|
|
estate->es_plannedstmt = NULL;
|
|
|
|
estate->es_junkFilter = NULL;
|
|
|
|
estate->es_output_cid = (CommandId) 0;
|
|
|
|
estate->es_result_relations = NULL;
|
|
estate->es_num_result_relations = 0;
|
|
estate->es_result_relation_info = NULL;
|
|
|
|
estate->es_root_result_relations = NULL;
|
|
estate->es_num_root_result_relations = 0;
|
|
|
|
estate->es_tuple_routing_result_relations = NIL;
|
|
|
|
estate->es_trig_target_relations = NIL;
|
|
estate->es_trig_tuple_slot = NULL;
|
|
estate->es_trig_oldtup_slot = NULL;
|
|
estate->es_trig_newtup_slot = NULL;
|
|
|
|
estate->es_param_list_info = NULL;
|
|
estate->es_param_exec_vals = NULL;
|
|
|
|
estate->es_queryEnv = NULL;
|
|
|
|
estate->es_query_cxt = qcontext;
|
|
|
|
estate->es_tupleTable = NIL;
|
|
|
|
estate->es_rowMarks = NIL;
|
|
|
|
estate->es_processed = 0;
|
|
estate->es_lastoid = InvalidOid;
|
|
|
|
estate->es_top_eflags = 0;
|
|
estate->es_instrument = 0;
|
|
estate->es_finished = false;
|
|
|
|
estate->es_exprcontexts = NIL;
|
|
|
|
estate->es_subplanstates = NIL;
|
|
|
|
estate->es_auxmodifytables = NIL;
|
|
|
|
estate->es_per_tuple_exprcontext = NULL;
|
|
|
|
estate->es_epqTuple = NULL;
|
|
estate->es_epqTupleSet = NULL;
|
|
estate->es_epqScanDone = NULL;
|
|
estate->es_sourceText = NULL;
|
|
|
|
estate->es_use_parallel_mode = false;
|
|
|
|
estate->es_jit_flags = 0;
|
|
estate->es_jit = NULL;
|
|
|
|
/*
|
|
* Return the executor state structure
|
|
*/
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
return estate;
|
|
}
|
|
|
|
/* ----------------
|
|
* FreeExecutorState
|
|
*
|
|
* Release an EState along with all remaining working storage.
|
|
*
|
|
* Note: this is not responsible for releasing non-memory resources, such as
|
|
* open relations or buffer pins. But it will shut down any still-active
|
|
* ExprContexts within the EState and deallocate associated JITed expressions.
|
|
* That is sufficient cleanup for situations where the EState has only been
|
|
* used for expression evaluation, and not to run a complete Plan.
|
|
*
|
|
* This can be called in any memory context ... so long as it's not one
|
|
* of the ones to be freed.
|
|
* ----------------
|
|
*/
|
|
void
|
|
FreeExecutorState(EState *estate)
|
|
{
|
|
/*
|
|
* Shut down and free any remaining ExprContexts. We do this explicitly
|
|
* to ensure that any remaining shutdown callbacks get called (since they
|
|
* might need to release resources that aren't simply memory within the
|
|
* per-query memory context).
|
|
*/
|
|
while (estate->es_exprcontexts)
|
|
{
|
|
/*
|
|
* XXX: seems there ought to be a faster way to implement this than
|
|
* repeated list_delete(), no?
|
|
*/
|
|
FreeExprContext((ExprContext *) linitial(estate->es_exprcontexts),
|
|
true);
|
|
/* FreeExprContext removed the list link for us */
|
|
}
|
|
|
|
/* release JIT context, if allocated */
|
|
if (estate->es_jit)
|
|
{
|
|
jit_release_context(estate->es_jit);
|
|
estate->es_jit = NULL;
|
|
}
|
|
|
|
/*
|
|
* Free the per-query memory context, thereby releasing all working
|
|
* memory, including the EState node itself.
|
|
*/
|
|
MemoryContextDelete(estate->es_query_cxt);
|
|
}
|
|
|
|
/* ----------------
|
|
* CreateExprContext
|
|
*
|
|
* Create a context for expression evaluation within an EState.
|
|
*
|
|
* An executor run may require multiple ExprContexts (we usually make one
|
|
* for each Plan node, and a separate one for per-output-tuple processing
|
|
* such as constraint checking). Each ExprContext has its own "per-tuple"
|
|
* memory context.
|
|
*
|
|
* Note we make no assumption about the caller's memory context.
|
|
* ----------------
|
|
*/
|
|
ExprContext *
|
|
CreateExprContext(EState *estate)
|
|
{
|
|
ExprContext *econtext;
|
|
MemoryContext oldcontext;
|
|
|
|
/* Create the ExprContext node within the per-query memory context */
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
econtext = makeNode(ExprContext);
|
|
|
|
/* Initialize fields of ExprContext */
|
|
econtext->ecxt_scantuple = NULL;
|
|
econtext->ecxt_innertuple = NULL;
|
|
econtext->ecxt_outertuple = NULL;
|
|
|
|
econtext->ecxt_per_query_memory = estate->es_query_cxt;
|
|
|
|
/*
|
|
* Create working memory for expression evaluation in this context.
|
|
*/
|
|
econtext->ecxt_per_tuple_memory =
|
|
AllocSetContextCreate(estate->es_query_cxt,
|
|
"ExprContext",
|
|
ALLOCSET_DEFAULT_SIZES);
|
|
|
|
econtext->ecxt_param_exec_vals = estate->es_param_exec_vals;
|
|
econtext->ecxt_param_list_info = estate->es_param_list_info;
|
|
|
|
econtext->ecxt_aggvalues = NULL;
|
|
econtext->ecxt_aggnulls = NULL;
|
|
|
|
econtext->caseValue_datum = (Datum) 0;
|
|
econtext->caseValue_isNull = true;
|
|
|
|
econtext->domainValue_datum = (Datum) 0;
|
|
econtext->domainValue_isNull = true;
|
|
|
|
econtext->ecxt_estate = estate;
|
|
|
|
econtext->ecxt_callbacks = NULL;
|
|
|
|
/*
|
|
* Link the ExprContext into the EState to ensure it is shut down when the
|
|
* EState is freed. Because we use lcons(), shutdowns will occur in
|
|
* reverse order of creation, which may not be essential but can't hurt.
|
|
*/
|
|
estate->es_exprcontexts = lcons(econtext, estate->es_exprcontexts);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
return econtext;
|
|
}
|
|
|
|
/* ----------------
|
|
* CreateStandaloneExprContext
|
|
*
|
|
* Create a context for standalone expression evaluation.
|
|
*
|
|
* An ExprContext made this way can be used for evaluation of expressions
|
|
* that contain no Params, subplans, or Var references (it might work to
|
|
* put tuple references into the scantuple field, but it seems unwise).
|
|
*
|
|
* The ExprContext struct is allocated in the caller's current memory
|
|
* context, which also becomes its "per query" context.
|
|
*
|
|
* It is caller's responsibility to free the ExprContext when done,
|
|
* or at least ensure that any shutdown callbacks have been called
|
|
* (ReScanExprContext() is suitable). Otherwise, non-memory resources
|
|
* might be leaked.
|
|
* ----------------
|
|
*/
|
|
ExprContext *
|
|
CreateStandaloneExprContext(void)
|
|
{
|
|
ExprContext *econtext;
|
|
|
|
/* Create the ExprContext node within the caller's memory context */
|
|
econtext = makeNode(ExprContext);
|
|
|
|
/* Initialize fields of ExprContext */
|
|
econtext->ecxt_scantuple = NULL;
|
|
econtext->ecxt_innertuple = NULL;
|
|
econtext->ecxt_outertuple = NULL;
|
|
|
|
econtext->ecxt_per_query_memory = CurrentMemoryContext;
|
|
|
|
/*
|
|
* Create working memory for expression evaluation in this context.
|
|
*/
|
|
econtext->ecxt_per_tuple_memory =
|
|
AllocSetContextCreate(CurrentMemoryContext,
|
|
"ExprContext",
|
|
ALLOCSET_DEFAULT_SIZES);
|
|
|
|
econtext->ecxt_param_exec_vals = NULL;
|
|
econtext->ecxt_param_list_info = NULL;
|
|
|
|
econtext->ecxt_aggvalues = NULL;
|
|
econtext->ecxt_aggnulls = NULL;
|
|
|
|
econtext->caseValue_datum = (Datum) 0;
|
|
econtext->caseValue_isNull = true;
|
|
|
|
econtext->domainValue_datum = (Datum) 0;
|
|
econtext->domainValue_isNull = true;
|
|
|
|
econtext->ecxt_estate = NULL;
|
|
|
|
econtext->ecxt_callbacks = NULL;
|
|
|
|
return econtext;
|
|
}
|
|
|
|
/* ----------------
|
|
* FreeExprContext
|
|
*
|
|
* Free an expression context, including calling any remaining
|
|
* shutdown callbacks.
|
|
*
|
|
* Since we free the temporary context used for expression evaluation,
|
|
* any previously computed pass-by-reference expression result will go away!
|
|
*
|
|
* If isCommit is false, we are being called in error cleanup, and should
|
|
* not call callbacks but only release memory. (It might be better to call
|
|
* the callbacks and pass the isCommit flag to them, but that would require
|
|
* more invasive code changes than currently seems justified.)
|
|
*
|
|
* Note we make no assumption about the caller's memory context.
|
|
* ----------------
|
|
*/
|
|
void
|
|
FreeExprContext(ExprContext *econtext, bool isCommit)
|
|
{
|
|
EState *estate;
|
|
|
|
/* Call any registered callbacks */
|
|
ShutdownExprContext(econtext, isCommit);
|
|
/* And clean up the memory used */
|
|
MemoryContextDelete(econtext->ecxt_per_tuple_memory);
|
|
/* Unlink self from owning EState, if any */
|
|
estate = econtext->ecxt_estate;
|
|
if (estate)
|
|
estate->es_exprcontexts = list_delete_ptr(estate->es_exprcontexts,
|
|
econtext);
|
|
/* And delete the ExprContext node */
|
|
pfree(econtext);
|
|
}
|
|
|
|
/*
|
|
* ReScanExprContext
|
|
*
|
|
* Reset an expression context in preparation for a rescan of its
|
|
* plan node. This requires calling any registered shutdown callbacks,
|
|
* since any partially complete set-returning-functions must be canceled.
|
|
*
|
|
* Note we make no assumption about the caller's memory context.
|
|
*/
|
|
void
|
|
ReScanExprContext(ExprContext *econtext)
|
|
{
|
|
/* Call any registered callbacks */
|
|
ShutdownExprContext(econtext, true);
|
|
/* And clean up the memory used */
|
|
MemoryContextReset(econtext->ecxt_per_tuple_memory);
|
|
}
|
|
|
|
/*
|
|
* Build a per-output-tuple ExprContext for an EState.
|
|
*
|
|
* This is normally invoked via GetPerTupleExprContext() macro,
|
|
* not directly.
|
|
*/
|
|
ExprContext *
|
|
MakePerTupleExprContext(EState *estate)
|
|
{
|
|
if (estate->es_per_tuple_exprcontext == NULL)
|
|
estate->es_per_tuple_exprcontext = CreateExprContext(estate);
|
|
|
|
return estate->es_per_tuple_exprcontext;
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* miscellaneous node-init support functions
|
|
*
|
|
* Note: all of these are expected to be called with CurrentMemoryContext
|
|
* equal to the per-query memory context.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
/* ----------------
|
|
* ExecAssignExprContext
|
|
*
|
|
* This initializes the ps_ExprContext field. It is only necessary
|
|
* to do this for nodes which use ExecQual or ExecProject
|
|
* because those routines require an econtext. Other nodes that
|
|
* don't have to evaluate expressions don't need to do this.
|
|
* ----------------
|
|
*/
|
|
void
|
|
ExecAssignExprContext(EState *estate, PlanState *planstate)
|
|
{
|
|
planstate->ps_ExprContext = CreateExprContext(estate);
|
|
}
|
|
|
|
/* ----------------
|
|
* ExecGetResultType
|
|
* ----------------
|
|
*/
|
|
TupleDesc
|
|
ExecGetResultType(PlanState *planstate)
|
|
{
|
|
TupleTableSlot *slot = planstate->ps_ResultTupleSlot;
|
|
|
|
return slot->tts_tupleDescriptor;
|
|
}
|
|
|
|
|
|
/* ----------------
|
|
* ExecAssignProjectionInfo
|
|
*
|
|
* forms the projection information from the node's targetlist
|
|
*
|
|
* Notes for inputDesc are same as for ExecBuildProjectionInfo: supply it
|
|
* for a relation-scan node, can pass NULL for upper-level nodes
|
|
* ----------------
|
|
*/
|
|
void
|
|
ExecAssignProjectionInfo(PlanState *planstate,
|
|
TupleDesc inputDesc)
|
|
{
|
|
planstate->ps_ProjInfo =
|
|
ExecBuildProjectionInfo(planstate->plan->targetlist,
|
|
planstate->ps_ExprContext,
|
|
planstate->ps_ResultTupleSlot,
|
|
planstate,
|
|
inputDesc);
|
|
}
|
|
|
|
|
|
/* ----------------
|
|
* ExecConditionalAssignProjectionInfo
|
|
*
|
|
* as ExecAssignProjectionInfo, but store NULL rather than building projection
|
|
* info if no projection is required
|
|
* ----------------
|
|
*/
|
|
void
|
|
ExecConditionalAssignProjectionInfo(PlanState *planstate, TupleDesc inputDesc,
|
|
Index varno)
|
|
{
|
|
if (tlist_matches_tupdesc(planstate,
|
|
planstate->plan->targetlist,
|
|
varno,
|
|
inputDesc))
|
|
planstate->ps_ProjInfo = NULL;
|
|
else
|
|
ExecAssignProjectionInfo(planstate, inputDesc);
|
|
}
|
|
|
|
static bool
|
|
tlist_matches_tupdesc(PlanState *ps, List *tlist, Index varno, TupleDesc tupdesc)
|
|
{
|
|
int numattrs = tupdesc->natts;
|
|
int attrno;
|
|
bool hasoid;
|
|
ListCell *tlist_item = list_head(tlist);
|
|
|
|
/* Check the tlist attributes */
|
|
for (attrno = 1; attrno <= numattrs; attrno++)
|
|
{
|
|
Form_pg_attribute att_tup = TupleDescAttr(tupdesc, attrno - 1);
|
|
Var *var;
|
|
|
|
if (tlist_item == NULL)
|
|
return false; /* tlist too short */
|
|
var = (Var *) ((TargetEntry *) lfirst(tlist_item))->expr;
|
|
if (!var || !IsA(var, Var))
|
|
return false; /* tlist item not a Var */
|
|
/* if these Asserts fail, planner messed up */
|
|
Assert(var->varno == varno);
|
|
Assert(var->varlevelsup == 0);
|
|
if (var->varattno != attrno)
|
|
return false; /* out of order */
|
|
if (att_tup->attisdropped)
|
|
return false; /* table contains dropped columns */
|
|
if (att_tup->atthasmissing)
|
|
return false; /* table contains cols with missing values */
|
|
|
|
/*
|
|
* Note: usually the Var's type should match the tupdesc exactly, but
|
|
* in situations involving unions of columns that have different
|
|
* typmods, the Var may have come from above the union and hence have
|
|
* typmod -1. This is a legitimate situation since the Var still
|
|
* describes the column, just not as exactly as the tupdesc does. We
|
|
* could change the planner to prevent it, but it'd then insert
|
|
* projection steps just to convert from specific typmod to typmod -1,
|
|
* which is pretty silly.
|
|
*/
|
|
if (var->vartype != att_tup->atttypid ||
|
|
(var->vartypmod != att_tup->atttypmod &&
|
|
var->vartypmod != -1))
|
|
return false; /* type mismatch */
|
|
|
|
tlist_item = lnext(tlist_item);
|
|
}
|
|
|
|
if (tlist_item)
|
|
return false; /* tlist too long */
|
|
|
|
/*
|
|
* If the plan context requires a particular hasoid setting, then that has
|
|
* to match, too.
|
|
*/
|
|
if (ExecContextForcesOids(ps, &hasoid) &&
|
|
hasoid != tupdesc->tdhasoid)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* ----------------
|
|
* ExecFreeExprContext
|
|
*
|
|
* A plan node's ExprContext should be freed explicitly during executor
|
|
* shutdown because there may be shutdown callbacks to call. (Other resources
|
|
* made by the above routines, such as projection info, don't need to be freed
|
|
* explicitly because they're just memory in the per-query memory context.)
|
|
*
|
|
* However ... there is no particular need to do it during ExecEndNode,
|
|
* because FreeExecutorState will free any remaining ExprContexts within
|
|
* the EState. Letting FreeExecutorState do it allows the ExprContexts to
|
|
* be freed in reverse order of creation, rather than order of creation as
|
|
* will happen if we delete them here, which saves O(N^2) work in the list
|
|
* cleanup inside FreeExprContext.
|
|
* ----------------
|
|
*/
|
|
void
|
|
ExecFreeExprContext(PlanState *planstate)
|
|
{
|
|
/*
|
|
* Per above discussion, don't actually delete the ExprContext. We do
|
|
* unlink it from the plan node, though.
|
|
*/
|
|
planstate->ps_ExprContext = NULL;
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* Scan node support
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
/* ----------------
|
|
* ExecAssignScanType
|
|
* ----------------
|
|
*/
|
|
void
|
|
ExecAssignScanType(ScanState *scanstate, TupleDesc tupDesc)
|
|
{
|
|
TupleTableSlot *slot = scanstate->ss_ScanTupleSlot;
|
|
|
|
ExecSetSlotDescriptor(slot, tupDesc);
|
|
}
|
|
|
|
/* ----------------
|
|
* ExecCreateSlotFromOuterPlan
|
|
* ----------------
|
|
*/
|
|
void
|
|
ExecCreateScanSlotFromOuterPlan(EState *estate, ScanState *scanstate)
|
|
{
|
|
PlanState *outerPlan;
|
|
TupleDesc tupDesc;
|
|
|
|
outerPlan = outerPlanState(scanstate);
|
|
tupDesc = ExecGetResultType(outerPlan);
|
|
|
|
ExecInitScanTupleSlot(estate, scanstate, tupDesc);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecRelationIsTargetRelation
|
|
*
|
|
* Detect whether a relation (identified by rangetable index)
|
|
* is one of the target relations of the query.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
bool
|
|
ExecRelationIsTargetRelation(EState *estate, Index scanrelid)
|
|
{
|
|
ResultRelInfo *resultRelInfos;
|
|
int i;
|
|
|
|
resultRelInfos = estate->es_result_relations;
|
|
for (i = 0; i < estate->es_num_result_relations; i++)
|
|
{
|
|
if (resultRelInfos[i].ri_RangeTableIndex == scanrelid)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecOpenScanRelation
|
|
*
|
|
* Open the heap relation to be scanned by a base-level scan plan node.
|
|
* This should be called during the node's ExecInit routine.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
Relation
|
|
ExecOpenScanRelation(EState *estate, Index scanrelid, int eflags)
|
|
{
|
|
Relation rel;
|
|
|
|
/* Open the relation. */
|
|
rel = ExecGetRangeTableRelation(estate, scanrelid);
|
|
|
|
/*
|
|
* Complain if we're attempting a scan of an unscannable relation, except
|
|
* when the query won't actually be run. This is a slightly klugy place
|
|
* to do this, perhaps, but there is no better place.
|
|
*/
|
|
if ((eflags & (EXEC_FLAG_EXPLAIN_ONLY | EXEC_FLAG_WITH_NO_DATA)) == 0 &&
|
|
!RelationIsScannable(rel))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("materialized view \"%s\" has not been populated",
|
|
RelationGetRelationName(rel)),
|
|
errhint("Use the REFRESH MATERIALIZED VIEW command.")));
|
|
|
|
return rel;
|
|
}
|
|
|
|
/*
|
|
* ExecInitRangeTable
|
|
* Set up executor's range-table-related data
|
|
*
|
|
* We build an array from the range table list to allow faster lookup by RTI.
|
|
* (The es_range_table field is now somewhat redundant, but we keep it to
|
|
* avoid breaking external code unnecessarily.)
|
|
* This is also a convenient place to set up the parallel es_relations array.
|
|
*/
|
|
void
|
|
ExecInitRangeTable(EState *estate, List *rangeTable)
|
|
{
|
|
Index rti;
|
|
ListCell *lc;
|
|
|
|
/* Remember the range table List as-is */
|
|
estate->es_range_table = rangeTable;
|
|
|
|
/* Set up the equivalent array representation */
|
|
estate->es_range_table_size = list_length(rangeTable);
|
|
estate->es_range_table_array = (RangeTblEntry **)
|
|
palloc(estate->es_range_table_size * sizeof(RangeTblEntry *));
|
|
rti = 0;
|
|
foreach(lc, rangeTable)
|
|
{
|
|
estate->es_range_table_array[rti++] = lfirst_node(RangeTblEntry, lc);
|
|
}
|
|
|
|
/*
|
|
* Allocate an array to store an open Relation corresponding to each
|
|
* rangetable entry, and initialize entries to NULL. Relations are opened
|
|
* and stored here as needed.
|
|
*/
|
|
estate->es_relations = (Relation *)
|
|
palloc0(estate->es_range_table_size * sizeof(Relation));
|
|
}
|
|
|
|
/*
|
|
* ExecGetRangeTableRelation
|
|
* Open the Relation for a range table entry, if not already done
|
|
*
|
|
* The Relations will be closed again in ExecEndPlan().
|
|
*/
|
|
Relation
|
|
ExecGetRangeTableRelation(EState *estate, Index rti)
|
|
{
|
|
Relation rel;
|
|
|
|
Assert(rti > 0 && rti <= estate->es_range_table_size);
|
|
|
|
rel = estate->es_relations[rti - 1];
|
|
if (rel == NULL)
|
|
{
|
|
/* First time through, so open the relation */
|
|
RangeTblEntry *rte = exec_rt_fetch(rti, estate);
|
|
|
|
Assert(rte->rtekind == RTE_RELATION);
|
|
|
|
rel = estate->es_relations[rti - 1] = heap_open(rte->relid, NoLock);
|
|
|
|
/*
|
|
* Verify that appropriate lock was obtained before execution.
|
|
*
|
|
* In the case of parallel query, only the leader would've obtained
|
|
* the lock (that needs to be fixed, though).
|
|
*/
|
|
Assert(IsParallelWorker() ||
|
|
CheckRelationLockedByMe(rel, rte->rellockmode, false));
|
|
}
|
|
|
|
return rel;
|
|
}
|
|
|
|
/*
|
|
* UpdateChangedParamSet
|
|
* Add changed parameters to a plan node's chgParam set
|
|
*/
|
|
void
|
|
UpdateChangedParamSet(PlanState *node, Bitmapset *newchg)
|
|
{
|
|
Bitmapset *parmset;
|
|
|
|
/*
|
|
* The plan node only depends on params listed in its allParam set. Don't
|
|
* include anything else into its chgParam set.
|
|
*/
|
|
parmset = bms_intersect(node->plan->allParam, newchg);
|
|
|
|
/*
|
|
* Keep node->chgParam == NULL if there's not actually any members; this
|
|
* allows the simplest possible tests in executor node files.
|
|
*/
|
|
if (!bms_is_empty(parmset))
|
|
node->chgParam = bms_join(node->chgParam, parmset);
|
|
else
|
|
bms_free(parmset);
|
|
}
|
|
|
|
/*
|
|
* executor_errposition
|
|
* Report an execution-time cursor position, if possible.
|
|
*
|
|
* This is expected to be used within an ereport() call. The return value
|
|
* is a dummy (always 0, in fact).
|
|
*
|
|
* The locations stored in parsetrees are byte offsets into the source string.
|
|
* We have to convert them to 1-based character indexes for reporting to
|
|
* clients. (We do things this way to avoid unnecessary overhead in the
|
|
* normal non-error case: computing character indexes would be much more
|
|
* expensive than storing token offsets.)
|
|
*/
|
|
int
|
|
executor_errposition(EState *estate, int location)
|
|
{
|
|
int pos;
|
|
|
|
/* No-op if location was not provided */
|
|
if (location < 0)
|
|
return 0;
|
|
/* Can't do anything if source text is not available */
|
|
if (estate == NULL || estate->es_sourceText == NULL)
|
|
return 0;
|
|
/* Convert offset to character number */
|
|
pos = pg_mbstrlen_with_len(estate->es_sourceText, location) + 1;
|
|
/* And pass it to the ereport mechanism */
|
|
return errposition(pos);
|
|
}
|
|
|
|
/*
|
|
* Register a shutdown callback in an ExprContext.
|
|
*
|
|
* Shutdown callbacks will be called (in reverse order of registration)
|
|
* when the ExprContext is deleted or rescanned. This provides a hook
|
|
* for functions called in the context to do any cleanup needed --- it's
|
|
* particularly useful for functions returning sets. Note that the
|
|
* callback will *not* be called in the event that execution is aborted
|
|
* by an error.
|
|
*/
|
|
void
|
|
RegisterExprContextCallback(ExprContext *econtext,
|
|
ExprContextCallbackFunction function,
|
|
Datum arg)
|
|
{
|
|
ExprContext_CB *ecxt_callback;
|
|
|
|
/* Save the info in appropriate memory context */
|
|
ecxt_callback = (ExprContext_CB *)
|
|
MemoryContextAlloc(econtext->ecxt_per_query_memory,
|
|
sizeof(ExprContext_CB));
|
|
|
|
ecxt_callback->function = function;
|
|
ecxt_callback->arg = arg;
|
|
|
|
/* link to front of list for appropriate execution order */
|
|
ecxt_callback->next = econtext->ecxt_callbacks;
|
|
econtext->ecxt_callbacks = ecxt_callback;
|
|
}
|
|
|
|
/*
|
|
* Deregister a shutdown callback in an ExprContext.
|
|
*
|
|
* Any list entries matching the function and arg will be removed.
|
|
* This can be used if it's no longer necessary to call the callback.
|
|
*/
|
|
void
|
|
UnregisterExprContextCallback(ExprContext *econtext,
|
|
ExprContextCallbackFunction function,
|
|
Datum arg)
|
|
{
|
|
ExprContext_CB **prev_callback;
|
|
ExprContext_CB *ecxt_callback;
|
|
|
|
prev_callback = &econtext->ecxt_callbacks;
|
|
|
|
while ((ecxt_callback = *prev_callback) != NULL)
|
|
{
|
|
if (ecxt_callback->function == function && ecxt_callback->arg == arg)
|
|
{
|
|
*prev_callback = ecxt_callback->next;
|
|
pfree(ecxt_callback);
|
|
}
|
|
else
|
|
prev_callback = &ecxt_callback->next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Call all the shutdown callbacks registered in an ExprContext.
|
|
*
|
|
* The callback list is emptied (important in case this is only a rescan
|
|
* reset, and not deletion of the ExprContext).
|
|
*
|
|
* If isCommit is false, just clean the callback list but don't call 'em.
|
|
* (See comment for FreeExprContext.)
|
|
*/
|
|
static void
|
|
ShutdownExprContext(ExprContext *econtext, bool isCommit)
|
|
{
|
|
ExprContext_CB *ecxt_callback;
|
|
MemoryContext oldcontext;
|
|
|
|
/* Fast path in normal case where there's nothing to do. */
|
|
if (econtext->ecxt_callbacks == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Call the callbacks in econtext's per-tuple context. This ensures that
|
|
* any memory they might leak will get cleaned up.
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
|
|
|
|
/*
|
|
* Call each callback function in reverse registration order.
|
|
*/
|
|
while ((ecxt_callback = econtext->ecxt_callbacks) != NULL)
|
|
{
|
|
econtext->ecxt_callbacks = ecxt_callback->next;
|
|
if (isCommit)
|
|
ecxt_callback->function(ecxt_callback->arg);
|
|
pfree(ecxt_callback);
|
|
}
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/*
|
|
* ExecLockNonLeafAppendTables
|
|
*
|
|
* Locks, if necessary, the tables indicated by the RT indexes contained in
|
|
* the partitioned_rels list. These are the non-leaf tables in the partition
|
|
* tree controlled by a given Append or MergeAppend node.
|
|
*/
|
|
void
|
|
ExecLockNonLeafAppendTables(List *partitioned_rels, EState *estate)
|
|
{
|
|
PlannedStmt *stmt = estate->es_plannedstmt;
|
|
ListCell *lc;
|
|
|
|
foreach(lc, partitioned_rels)
|
|
{
|
|
ListCell *l;
|
|
Index rti = lfirst_int(lc);
|
|
bool is_result_rel = false;
|
|
Oid relid = exec_rt_fetch(rti, estate)->relid;
|
|
|
|
/* If this is a result relation, already locked in InitPlan */
|
|
foreach(l, stmt->nonleafResultRelations)
|
|
{
|
|
if (rti == lfirst_int(l))
|
|
{
|
|
is_result_rel = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Not a result relation; check if there is a RowMark that requires
|
|
* taking a RowShareLock on this rel.
|
|
*/
|
|
if (!is_result_rel)
|
|
{
|
|
PlanRowMark *rc = NULL;
|
|
LOCKMODE lockmode;
|
|
|
|
foreach(l, stmt->rowMarks)
|
|
{
|
|
if (((PlanRowMark *) lfirst(l))->rti == rti)
|
|
{
|
|
rc = lfirst(l);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (rc && RowMarkRequiresRowShareLock(rc->markType))
|
|
lockmode = RowShareLock;
|
|
else
|
|
lockmode = AccessShareLock;
|
|
|
|
Assert(lockmode == exec_rt_fetch(rti, estate)->rellockmode);
|
|
|
|
LockRelationOid(relid, lockmode);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* GetAttributeByName
|
|
* GetAttributeByNum
|
|
*
|
|
* These functions return the value of the requested attribute
|
|
* out of the given tuple Datum.
|
|
* C functions which take a tuple as an argument are expected
|
|
* to use these. Ex: overpaid(EMP) might call GetAttributeByNum().
|
|
* Note: these are actually rather slow because they do a typcache
|
|
* lookup on each call.
|
|
*/
|
|
Datum
|
|
GetAttributeByName(HeapTupleHeader tuple, const char *attname, bool *isNull)
|
|
{
|
|
AttrNumber attrno;
|
|
Datum result;
|
|
Oid tupType;
|
|
int32 tupTypmod;
|
|
TupleDesc tupDesc;
|
|
HeapTupleData tmptup;
|
|
int i;
|
|
|
|
if (attname == NULL)
|
|
elog(ERROR, "invalid attribute name");
|
|
|
|
if (isNull == NULL)
|
|
elog(ERROR, "a NULL isNull pointer was passed");
|
|
|
|
if (tuple == NULL)
|
|
{
|
|
/* Kinda bogus but compatible with old behavior... */
|
|
*isNull = true;
|
|
return (Datum) 0;
|
|
}
|
|
|
|
tupType = HeapTupleHeaderGetTypeId(tuple);
|
|
tupTypmod = HeapTupleHeaderGetTypMod(tuple);
|
|
tupDesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
|
|
|
|
attrno = InvalidAttrNumber;
|
|
for (i = 0; i < tupDesc->natts; i++)
|
|
{
|
|
Form_pg_attribute att = TupleDescAttr(tupDesc, i);
|
|
|
|
if (namestrcmp(&(att->attname), attname) == 0)
|
|
{
|
|
attrno = att->attnum;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (attrno == InvalidAttrNumber)
|
|
elog(ERROR, "attribute \"%s\" does not exist", attname);
|
|
|
|
/*
|
|
* heap_getattr needs a HeapTuple not a bare HeapTupleHeader. We set all
|
|
* the fields in the struct just in case user tries to inspect system
|
|
* columns.
|
|
*/
|
|
tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
|
|
ItemPointerSetInvalid(&(tmptup.t_self));
|
|
tmptup.t_tableOid = InvalidOid;
|
|
tmptup.t_data = tuple;
|
|
|
|
result = heap_getattr(&tmptup,
|
|
attrno,
|
|
tupDesc,
|
|
isNull);
|
|
|
|
ReleaseTupleDesc(tupDesc);
|
|
|
|
return result;
|
|
}
|
|
|
|
Datum
|
|
GetAttributeByNum(HeapTupleHeader tuple,
|
|
AttrNumber attrno,
|
|
bool *isNull)
|
|
{
|
|
Datum result;
|
|
Oid tupType;
|
|
int32 tupTypmod;
|
|
TupleDesc tupDesc;
|
|
HeapTupleData tmptup;
|
|
|
|
if (!AttributeNumberIsValid(attrno))
|
|
elog(ERROR, "invalid attribute number %d", attrno);
|
|
|
|
if (isNull == NULL)
|
|
elog(ERROR, "a NULL isNull pointer was passed");
|
|
|
|
if (tuple == NULL)
|
|
{
|
|
/* Kinda bogus but compatible with old behavior... */
|
|
*isNull = true;
|
|
return (Datum) 0;
|
|
}
|
|
|
|
tupType = HeapTupleHeaderGetTypeId(tuple);
|
|
tupTypmod = HeapTupleHeaderGetTypMod(tuple);
|
|
tupDesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
|
|
|
|
/*
|
|
* heap_getattr needs a HeapTuple not a bare HeapTupleHeader. We set all
|
|
* the fields in the struct just in case user tries to inspect system
|
|
* columns.
|
|
*/
|
|
tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
|
|
ItemPointerSetInvalid(&(tmptup.t_self));
|
|
tmptup.t_tableOid = InvalidOid;
|
|
tmptup.t_data = tuple;
|
|
|
|
result = heap_getattr(&tmptup,
|
|
attrno,
|
|
tupDesc,
|
|
isNull);
|
|
|
|
ReleaseTupleDesc(tupDesc);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Number of items in a tlist (including any resjunk items!)
|
|
*/
|
|
int
|
|
ExecTargetListLength(List *targetlist)
|
|
{
|
|
/* This used to be more complex, but fjoins are dead */
|
|
return list_length(targetlist);
|
|
}
|
|
|
|
/*
|
|
* Number of items in a tlist, not including any resjunk items
|
|
*/
|
|
int
|
|
ExecCleanTargetListLength(List *targetlist)
|
|
{
|
|
int len = 0;
|
|
ListCell *tl;
|
|
|
|
foreach(tl, targetlist)
|
|
{
|
|
TargetEntry *curTle = lfirst_node(TargetEntry, tl);
|
|
|
|
if (!curTle->resjunk)
|
|
len++;
|
|
}
|
|
return len;
|
|
}
|