1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-28 05:21:27 +03:00

522 lines
14 KiB
C

/*-------------------------------------------------------------------------
*
* sinvaladt.c
* POSTGRES shared cache invalidation segment definitions.
*
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/storage/ipc/sinvaladt.c,v 1.69 2008/03/18 12:36:43 alvherre Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "miscadmin.h"
#include "storage/backendid.h"
#include "storage/ipc.h"
#include "storage/lwlock.h"
#include "storage/pmsignal.h"
#include "storage/proc.h"
#include "storage/shmem.h"
#include "storage/sinvaladt.h"
/*
* Conceptually, the shared cache invalidation messages are stored in an
* infinite array, where maxMsgNum is the next array subscript to store a
* submitted message in, minMsgNum is the smallest array subscript containing a
* message not yet read by all backends, and we always have maxMsgNum >=
* minMsgNum. (They are equal when there are no messages pending.) For each
* active backend, there is a nextMsgNum pointer indicating the next message it
* needs to read; we have maxMsgNum >= nextMsgNum >= minMsgNum for every
* backend.
*
* In reality, the messages are stored in a circular buffer of MAXNUMMESSAGES
* entries. We translate MsgNum values into circular-buffer indexes by
* computing MsgNum % MAXNUMMESSAGES (this should be fast as long as
* MAXNUMMESSAGES is a constant and a power of 2). As long as maxMsgNum
* doesn't exceed minMsgNum by more than MAXNUMMESSAGES, we have enough space
* in the buffer. If the buffer does overflow, we reset it to empty and
* force each backend to "reset", ie, discard all its invalidatable state.
*
* We would have problems if the MsgNum values overflow an integer, so
* whenever minMsgNum exceeds MSGNUMWRAPAROUND, we subtract MSGNUMWRAPAROUND
* from all the MsgNum variables simultaneously. MSGNUMWRAPAROUND can be
* large so that we don't need to do this often. It must be a multiple of
* MAXNUMMESSAGES so that the existing circular-buffer entries don't need
* to be moved when we do it.
*/
/*
* Configurable parameters.
*
* MAXNUMMESSAGES: max number of shared-inval messages we can buffer.
* Must be a power of 2 for speed.
*
* MSGNUMWRAPAROUND: how often to reduce MsgNum variables to avoid overflow.
* Must be a multiple of MAXNUMMESSAGES. Should be large.
*/
#define MAXNUMMESSAGES 4096
#define MSGNUMWRAPAROUND (MAXNUMMESSAGES * 4096)
/* Per-backend state in shared invalidation structure */
typedef struct ProcState
{
/* nextMsgNum is -1 in an inactive ProcState array entry. */
int nextMsgNum; /* next message number to read, or -1 */
bool resetState; /* true, if backend has to reset its state */
} ProcState;
/* Shared cache invalidation memory segment */
typedef struct SISeg
{
/*
* General state information
*/
int minMsgNum; /* oldest message still needed */
int maxMsgNum; /* next message number to be assigned */
int lastBackend; /* index of last active procState entry, +1 */
int maxBackends; /* size of procState array */
int freeBackends; /* number of empty procState slots */
/*
* Next LocalTransactionId to use for each idle backend slot. We keep
* this here because it is indexed by BackendId and it is convenient to
* copy the value to and from local memory when MyBackendId is set.
*/
LocalTransactionId *nextLXID; /* array of maxBackends entries */
/*
* Circular buffer holding shared-inval messages
*/
SharedInvalidationMessage buffer[MAXNUMMESSAGES];
/*
* Per-backend state info.
*
* We declare procState as 1 entry because C wants a fixed-size array, but
* actually it is maxBackends entries long.
*/
ProcState procState[1]; /* reflects the invalidation state */
} SISeg;
static SISeg *shmInvalBuffer; /* pointer to the shared inval buffer */
static LocalTransactionId nextLocalTransactionId;
static void CleanupInvalidationState(int status, Datum arg);
static void SISetProcStateInvalid(SISeg *segP);
/*
* SInvalShmemSize --- return shared-memory space needed
*/
Size
SInvalShmemSize(void)
{
Size size;
size = offsetof(SISeg, procState);
size = add_size(size, mul_size(sizeof(ProcState), MaxBackends));
size = add_size(size, mul_size(sizeof(LocalTransactionId), MaxBackends));
return size;
}
/*
* SharedInvalBufferInit
* Create and initialize the SI message buffer
*/
void
CreateSharedInvalidationState(void)
{
Size size;
int i;
bool found;
/* Allocate space in shared memory */
size = offsetof(SISeg, procState);
size = add_size(size, mul_size(sizeof(ProcState), MaxBackends));
shmInvalBuffer = (SISeg *)
ShmemInitStruct("shmInvalBuffer", size, &found);
if (found)
return;
shmInvalBuffer->nextLXID = ShmemAlloc(sizeof(LocalTransactionId) * MaxBackends);
/* Clear message counters, save size of procState array */
shmInvalBuffer->minMsgNum = 0;
shmInvalBuffer->maxMsgNum = 0;
shmInvalBuffer->lastBackend = 0;
shmInvalBuffer->maxBackends = MaxBackends;
shmInvalBuffer->freeBackends = MaxBackends;
/* The buffer[] array is initially all unused, so we need not fill it */
/* Mark all backends inactive, and initialize nextLXID */
for (i = 0; i < shmInvalBuffer->maxBackends; i++)
{
shmInvalBuffer->procState[i].nextMsgNum = -1; /* inactive */
shmInvalBuffer->procState[i].resetState = false;
shmInvalBuffer->nextLXID[i] = InvalidLocalTransactionId;
}
}
/*
* SharedInvalBackendInit
* Initialize a new backend to operate on the sinval buffer
*/
void
SharedInvalBackendInit(void)
{
int index;
ProcState *stateP = NULL;
SISeg *segP = shmInvalBuffer;
LWLockAcquire(SInvalLock, LW_EXCLUSIVE);
/* Look for a free entry in the procState array */
for (index = 0; index < segP->lastBackend; index++)
{
if (segP->procState[index].nextMsgNum < 0) /* inactive slot? */
{
stateP = &segP->procState[index];
break;
}
}
if (stateP == NULL)
{
if (segP->lastBackend < segP->maxBackends)
{
stateP = &segP->procState[segP->lastBackend];
Assert(stateP->nextMsgNum < 0);
segP->lastBackend++;
}
else
{
/*
* out of procState slots: MaxBackends exceeded -- report normally
*/
MyBackendId = InvalidBackendId;
LWLockRelease(SInvalLock);
ereport(FATAL,
(errcode(ERRCODE_TOO_MANY_CONNECTIONS),
errmsg("sorry, too many clients already")));
}
}
MyBackendId = (stateP - &segP->procState[0]) + 1;
#ifdef INVALIDDEBUG
elog(DEBUG2, "my backend id is %d", MyBackendId);
#endif /* INVALIDDEBUG */
/* Advertise assigned backend ID in MyProc */
MyProc->backendId = MyBackendId;
/* Reduce free slot count */
segP->freeBackends--;
/* Fetch next local transaction ID into local memory */
nextLocalTransactionId = segP->nextLXID[MyBackendId - 1];
/* mark myself active, with all extant messages already read */
stateP->nextMsgNum = segP->maxMsgNum;
stateP->resetState = false;
LWLockRelease(SInvalLock);
/* register exit routine to mark my entry inactive at exit */
on_shmem_exit(CleanupInvalidationState, PointerGetDatum(segP));
}
/*
* CleanupInvalidationState
* Mark the current backend as no longer active.
*
* This function is called via on_shmem_exit() during backend shutdown,
* so the caller has NOT acquired the lock for us.
*
* arg is really of type "SISeg*".
*/
static void
CleanupInvalidationState(int status, Datum arg)
{
SISeg *segP = (SISeg *) DatumGetPointer(arg);
int i;
Assert(PointerIsValid(segP));
LWLockAcquire(SInvalLock, LW_EXCLUSIVE);
/* Update next local transaction ID for next holder of this backendID */
segP->nextLXID[MyBackendId - 1] = nextLocalTransactionId;
/* Mark myself inactive */
segP->procState[MyBackendId - 1].nextMsgNum = -1;
segP->procState[MyBackendId - 1].resetState = false;
/* Recompute index of last active backend */
for (i = segP->lastBackend; i > 0; i--)
{
if (segP->procState[i - 1].nextMsgNum >= 0)
break;
}
segP->lastBackend = i;
/* Adjust free slot count */
segP->freeBackends++;
LWLockRelease(SInvalLock);
}
/*
* SIInsertDataEntry
* Add a new invalidation message to the buffer.
*
* If we are unable to insert the message because the buffer is full,
* then clear the buffer and assert the "reset" flag to each backend.
* This will cause all the backends to discard *all* invalidatable state.
*
* Returns true for normal successful insertion, false if had to reset.
*/
bool
SIInsertDataEntry(SharedInvalidationMessage *data)
{
int numMsgs;
bool signal_postmaster = false;
SISeg *segP;
LWLockAcquire(SInvalLock, LW_EXCLUSIVE);
segP = shmInvalBuffer;
numMsgs = segP->maxMsgNum - segP->minMsgNum;
/* Is the buffer full? */
if (numMsgs >= MAXNUMMESSAGES)
{
/*
* Don't panic just yet: slowest backend might have consumed some
* messages but not yet have done SIDelExpiredDataEntries() to advance
* minMsgNum. So, make sure minMsgNum is up-to-date.
*/
SIDelExpiredDataEntries(true);
numMsgs = segP->maxMsgNum - segP->minMsgNum;
if (numMsgs >= MAXNUMMESSAGES)
{
/* Yup, it's definitely full, no choice but to reset */
SISetProcStateInvalid(segP);
LWLockRelease(SInvalLock);
return false;
}
}
/*
* Try to prevent table overflow. When the table is 70% full send a
* WAKEN_CHILDREN request to the postmaster. The postmaster will send a
* SIGUSR1 signal to all the backends, which will cause sinval.c to read
* any pending SI entries.
*
* This should never happen if all the backends are actively executing
* queries, but if a backend is sitting idle then it won't be starting
* transactions and so won't be reading SI entries.
*/
if (numMsgs == (MAXNUMMESSAGES * 70 / 100) && IsUnderPostmaster)
signal_postmaster = true;
/*
* Insert new message into proper slot of circular buffer
*/
segP->buffer[segP->maxMsgNum % MAXNUMMESSAGES] = *data;
segP->maxMsgNum++;
LWLockRelease(SInvalLock);
if (signal_postmaster)
{
elog(DEBUG4, "SI table is 70%% full, signaling postmaster");
SendPostmasterSignal(PMSIGNAL_WAKEN_CHILDREN);
}
return true;
}
/*
* SISetProcStateInvalid
* Flush pending messages from buffer, assert reset flag for each backend
*
* This is used only to recover from SI buffer overflow.
*/
static void
SISetProcStateInvalid(SISeg *segP)
{
int i;
segP->minMsgNum = 0;
segP->maxMsgNum = 0;
for (i = 0; i < segP->lastBackend; i++)
{
if (segP->procState[i].nextMsgNum >= 0) /* active backend? */
{
segP->procState[i].resetState = true;
segP->procState[i].nextMsgNum = 0;
}
}
}
/*
* SIGetDataEntry
* get next SI message for specified backend, if there is one
*
* Possible return values:
* 0: no SI message available
* 1: next SI message has been extracted into *data
* (there may be more messages available after this one!)
* -1: SI reset message extracted
*
* NB: this can run in parallel with other instances of SIGetDataEntry
* executing on behalf of other backends, since each instance will modify only
* fields of its own backend's ProcState, and no instance will look at fields
* of other backends' ProcStates. We express this by grabbing SInvalLock in
* shared mode. Note that this is not exactly the normal (read-only)
* interpretation of a shared lock! Look closely at the interactions before
* allowing SInvalLock to be grabbed in shared mode for any other reason!
*/
int
SIGetDataEntry(int backendId, SharedInvalidationMessage *data)
{
ProcState *stateP;
SISeg *segP;
LWLockAcquire(SInvalLock, LW_SHARED);
segP = shmInvalBuffer;
stateP = &segP->procState[backendId - 1];
if (stateP->resetState)
{
/*
* Force reset. We can say we have dealt with any messages added
* since the reset, as well...
*/
stateP->resetState = false;
stateP->nextMsgNum = segP->maxMsgNum;
LWLockRelease(SInvalLock);
return -1;
}
if (stateP->nextMsgNum >= segP->maxMsgNum)
{
LWLockRelease(SInvalLock);
return 0; /* nothing to read */
}
/*
* Retrieve message and advance my counter.
*/
*data = segP->buffer[stateP->nextMsgNum % MAXNUMMESSAGES];
stateP->nextMsgNum++;
/*
* There may be other backends that haven't read the message, so we cannot
* delete it here. SIDelExpiredDataEntries() should be called to remove
* dead messages.
*/
LWLockRelease(SInvalLock);
return 1; /* got a message */
}
/*
* SIDelExpiredDataEntries
* Remove messages that have been consumed by all active backends
*/
void
SIDelExpiredDataEntries(bool locked)
{
SISeg *segP = shmInvalBuffer;
int min,
i,
h;
if (!locked)
LWLockAcquire(SInvalLock, LW_EXCLUSIVE);
min = segP->maxMsgNum;
if (min == segP->minMsgNum)
{
if (!locked)
LWLockRelease(SInvalLock);
return; /* fast path if no messages exist */
}
/* Recompute minMsgNum = minimum of all backends' nextMsgNum */
for (i = 0; i < segP->lastBackend; i++)
{
h = segP->procState[i].nextMsgNum;
if (h >= 0)
{ /* backend active */
if (h < min)
min = h;
}
}
segP->minMsgNum = min;
/*
* When minMsgNum gets really large, decrement all message counters so as
* to forestall overflow of the counters.
*/
if (min >= MSGNUMWRAPAROUND)
{
segP->minMsgNum -= MSGNUMWRAPAROUND;
segP->maxMsgNum -= MSGNUMWRAPAROUND;
for (i = 0; i < segP->lastBackend; i++)
{
if (segP->procState[i].nextMsgNum >= 0)
segP->procState[i].nextMsgNum -= MSGNUMWRAPAROUND;
}
}
if (!locked)
LWLockRelease(SInvalLock);
}
/*
* GetNextLocalTransactionId --- allocate a new LocalTransactionId
*
* We split VirtualTransactionIds into two parts so that it is possible
* to allocate a new one without any contention for shared memory, except
* for a bit of additional overhead during backend startup/shutdown.
* The high-order part of a VirtualTransactionId is a BackendId, and the
* low-order part is a LocalTransactionId, which we assign from a local
* counter. To avoid the risk of a VirtualTransactionId being reused
* within a short interval, successive procs occupying the same backend ID
* slot should use a consecutive sequence of local IDs, which is implemented
* by copying nextLocalTransactionId as seen above.
*/
LocalTransactionId
GetNextLocalTransactionId(void)
{
LocalTransactionId result;
/* loop to avoid returning InvalidLocalTransactionId at wraparound */
do
{
result = nextLocalTransactionId++;
} while (!LocalTransactionIdIsValid(result));
return result;
}