mirror of
https://github.com/postgres/postgres.git
synced 2025-04-25 21:42:33 +03:00
has an alias SERIAL4 and a sister SERIAL8. SERIAL8 is just the same except the created column is type int8 not int4. initdb forced. Note this also breaks any chance of pg_upgrade from 7.1, unless we hack up pg_upgrade to drop and recreate sequences. (Which is not out of the question, but I don't wanna do it.)
3268 lines
91 KiB
C
3268 lines
91 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* analyze.c
|
|
* transform the parse tree into a query tree
|
|
*
|
|
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* $Header: /cvsroot/pgsql/src/backend/parser/analyze.c,v 1.195 2001/08/16 20:38:53 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/heapam.h"
|
|
#include "catalog/catname.h"
|
|
#include "catalog/pg_index.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "parser/analyze.h"
|
|
#include "parser/parse.h"
|
|
#include "parser/parsetree.h"
|
|
#include "parser/parse_agg.h"
|
|
#include "parser/parse_clause.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "parser/parse_relation.h"
|
|
#include "parser/parse_target.h"
|
|
#include "parser/parse_type.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "rewrite/rewriteManip.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/fmgroids.h"
|
|
#include "utils/numeric.h"
|
|
#include "utils/relcache.h"
|
|
#include "utils/syscache.h"
|
|
|
|
#ifdef MULTIBYTE
|
|
#include "mb/pg_wchar.h"
|
|
#endif
|
|
|
|
static Query *transformStmt(ParseState *pstate, Node *stmt);
|
|
static Query *transformDeleteStmt(ParseState *pstate, DeleteStmt *stmt);
|
|
static Query *transformInsertStmt(ParseState *pstate, InsertStmt *stmt);
|
|
static Query *transformIndexStmt(ParseState *pstate, IndexStmt *stmt);
|
|
static Query *transformRuleStmt(ParseState *query, RuleStmt *stmt);
|
|
static Query *transformSelectStmt(ParseState *pstate, SelectStmt *stmt);
|
|
static Query *transformSetOperationStmt(ParseState *pstate, SelectStmt *stmt);
|
|
static Node *transformSetOperationTree(ParseState *pstate, SelectStmt *stmt);
|
|
static Query *transformUpdateStmt(ParseState *pstate, UpdateStmt *stmt);
|
|
static Query *transformCreateStmt(ParseState *pstate, CreateStmt *stmt);
|
|
static Query *transformAlterTableStmt(ParseState *pstate, AlterTableStmt *stmt);
|
|
static Node *transformTypeRefs(ParseState *pstate, Node *stmt);
|
|
|
|
static void transformTypeRefsList(ParseState *pstate, List *l);
|
|
static void transformTypeRef(ParseState *pstate, TypeName *tn);
|
|
static List *getSetColTypes(ParseState *pstate, Node *node);
|
|
static void transformForUpdate(Query *qry, List *forUpdate);
|
|
static void transformFkeyGetPrimaryKey(FkConstraint *fkconstraint, Oid *pktypoid);
|
|
static void transformConstraintAttrs(List *constraintList);
|
|
static void transformColumnType(ParseState *pstate, ColumnDef *column);
|
|
static void transformFkeyCheckAttrs(FkConstraint *fkconstraint, Oid *pktypoid);
|
|
|
|
static void release_pstate_resources(ParseState *pstate);
|
|
static FromExpr *makeFromExpr(List *fromlist, Node *quals);
|
|
|
|
/* kluge to return extra info from transformCreateStmt() */
|
|
static List *extras_before;
|
|
static List *extras_after;
|
|
|
|
|
|
/*
|
|
* parse_analyze -
|
|
* analyze a raw parse tree and transform it to Query form.
|
|
*
|
|
* The result is a List of Query nodes (we need a list since some commands
|
|
* produce multiple Queries). Optimizable statements require considerable
|
|
* transformation, while many utility-type statements are simply hung off
|
|
* a dummy CMD_UTILITY Query node.
|
|
*/
|
|
List *
|
|
parse_analyze(Node *parseTree, ParseState *parentParseState)
|
|
{
|
|
List *result = NIL;
|
|
ParseState *pstate = make_parsestate(parentParseState);
|
|
Query *query;
|
|
|
|
extras_before = extras_after = NIL;
|
|
|
|
query = transformStmt(pstate, parseTree);
|
|
release_pstate_resources(pstate);
|
|
|
|
while (extras_before != NIL)
|
|
{
|
|
result = lappend(result,
|
|
transformStmt(pstate, lfirst(extras_before)));
|
|
release_pstate_resources(pstate);
|
|
extras_before = lnext(extras_before);
|
|
}
|
|
|
|
result = lappend(result, query);
|
|
|
|
while (extras_after != NIL)
|
|
{
|
|
result = lappend(result,
|
|
transformStmt(pstate, lfirst(extras_after)));
|
|
release_pstate_resources(pstate);
|
|
extras_after = lnext(extras_after);
|
|
}
|
|
|
|
pfree(pstate);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
release_pstate_resources(ParseState *pstate)
|
|
{
|
|
if (pstate->p_target_relation != NULL)
|
|
heap_close(pstate->p_target_relation, NoLock);
|
|
pstate->p_target_relation = NULL;
|
|
pstate->p_target_rangetblentry = NULL;
|
|
}
|
|
|
|
/*
|
|
* transformStmt -
|
|
* transform a Parse tree into a Query tree.
|
|
*/
|
|
static Query *
|
|
transformStmt(ParseState *pstate, Node *parseTree)
|
|
{
|
|
Query *result = NULL;
|
|
|
|
switch (nodeTag(parseTree))
|
|
{
|
|
|
|
/*
|
|
* Non-optimizable statements
|
|
*/
|
|
case T_CreateStmt:
|
|
result = transformCreateStmt(pstate, (CreateStmt *) parseTree);
|
|
break;
|
|
|
|
case T_IndexStmt:
|
|
result = transformIndexStmt(pstate, (IndexStmt *) parseTree);
|
|
break;
|
|
|
|
case T_RuleStmt:
|
|
result = transformRuleStmt(pstate, (RuleStmt *) parseTree);
|
|
break;
|
|
|
|
case T_ViewStmt:
|
|
{
|
|
ViewStmt *n = (ViewStmt *) parseTree;
|
|
|
|
n->query = transformStmt(pstate, (Node *) n->query);
|
|
|
|
/*
|
|
* If a list of column names was given, run through and
|
|
* insert these into the actual query tree. - thomas
|
|
* 2000-03-08
|
|
*
|
|
* Outer loop is over targetlist to make it easier to
|
|
* skip junk targetlist entries.
|
|
*/
|
|
if (n->aliases != NIL)
|
|
{
|
|
List *aliaslist = n->aliases;
|
|
List *targetList;
|
|
|
|
foreach(targetList, n->query->targetList)
|
|
{
|
|
TargetEntry *te = (TargetEntry *) lfirst(targetList);
|
|
Resdom *rd;
|
|
Ident *id;
|
|
|
|
Assert(IsA(te, TargetEntry));
|
|
rd = te->resdom;
|
|
Assert(IsA(rd, Resdom));
|
|
if (rd->resjunk) /* junk columns don't get aliases */
|
|
continue;
|
|
id = (Ident *) lfirst(aliaslist);
|
|
Assert(IsA(id, Ident));
|
|
rd->resname = pstrdup(id->name);
|
|
aliaslist = lnext(aliaslist);
|
|
if (aliaslist == NIL)
|
|
break; /* done assigning aliases */
|
|
}
|
|
|
|
if (aliaslist != NIL)
|
|
elog(ERROR, "CREATE VIEW specifies more column names than columns");
|
|
}
|
|
result = makeNode(Query);
|
|
result->commandType = CMD_UTILITY;
|
|
result->utilityStmt = (Node *) n;
|
|
}
|
|
break;
|
|
|
|
case T_ExplainStmt:
|
|
{
|
|
ExplainStmt *n = (ExplainStmt *) parseTree;
|
|
|
|
result = makeNode(Query);
|
|
result->commandType = CMD_UTILITY;
|
|
n->query = transformStmt(pstate, (Node *) n->query);
|
|
result->utilityStmt = (Node *) parseTree;
|
|
}
|
|
break;
|
|
|
|
case T_AlterTableStmt:
|
|
result = transformAlterTableStmt(pstate, (AlterTableStmt *) parseTree);
|
|
break;
|
|
|
|
/*
|
|
* Optimizable statements
|
|
*/
|
|
case T_InsertStmt:
|
|
result = transformInsertStmt(pstate, (InsertStmt *) parseTree);
|
|
break;
|
|
|
|
case T_DeleteStmt:
|
|
result = transformDeleteStmt(pstate, (DeleteStmt *) parseTree);
|
|
break;
|
|
|
|
case T_UpdateStmt:
|
|
result = transformUpdateStmt(pstate, (UpdateStmt *) parseTree);
|
|
break;
|
|
|
|
case T_SelectStmt:
|
|
if (((SelectStmt *) parseTree)->op == SETOP_NONE)
|
|
result = transformSelectStmt(pstate,
|
|
(SelectStmt *) parseTree);
|
|
else
|
|
result = transformSetOperationStmt(pstate,
|
|
(SelectStmt *) parseTree);
|
|
break;
|
|
|
|
/*
|
|
* Convert use of %TYPE in statements where it is permitted.
|
|
*/
|
|
case T_ProcedureStmt:
|
|
case T_CommentStmt:
|
|
case T_RemoveFuncStmt:
|
|
case T_DefineStmt:
|
|
result = makeNode(Query);
|
|
result->commandType = CMD_UTILITY;
|
|
result->utilityStmt = transformTypeRefs(pstate, parseTree);
|
|
break;
|
|
|
|
default:
|
|
|
|
/*
|
|
* other statements don't require any transformation-- just
|
|
* return the original parsetree, yea!
|
|
*/
|
|
result = makeNode(Query);
|
|
result->commandType = CMD_UTILITY;
|
|
result->utilityStmt = (Node *) parseTree;
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* transformDeleteStmt -
|
|
* transforms a Delete Statement
|
|
*/
|
|
static Query *
|
|
transformDeleteStmt(ParseState *pstate, DeleteStmt *stmt)
|
|
{
|
|
Query *qry = makeNode(Query);
|
|
Node *qual;
|
|
|
|
qry->commandType = CMD_DELETE;
|
|
|
|
/* set up range table with just the result rel */
|
|
qry->resultRelation = setTargetTable(pstate, stmt->relname,
|
|
interpretInhOption(stmt->inhOpt),
|
|
true);
|
|
|
|
qry->distinctClause = NIL;
|
|
|
|
/* fix where clause */
|
|
qual = transformWhereClause(pstate, stmt->whereClause);
|
|
|
|
/* done building the range table and jointree */
|
|
qry->rtable = pstate->p_rtable;
|
|
qry->jointree = makeFromExpr(pstate->p_joinlist, qual);
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
qry->hasAggs = pstate->p_hasAggs;
|
|
if (pstate->p_hasAggs)
|
|
parseCheckAggregates(pstate, qry, qual);
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* transformInsertStmt -
|
|
* transform an Insert Statement
|
|
*/
|
|
static Query *
|
|
transformInsertStmt(ParseState *pstate, InsertStmt *stmt)
|
|
{
|
|
Query *qry = makeNode(Query);
|
|
List *sub_rtable;
|
|
List *sub_namespace;
|
|
List *icolumns;
|
|
List *attrnos;
|
|
List *attnos;
|
|
int numuseratts;
|
|
List *tl;
|
|
TupleDesc rd_att;
|
|
|
|
qry->commandType = CMD_INSERT;
|
|
pstate->p_is_insert = true;
|
|
|
|
/*
|
|
* If a non-nil rangetable/namespace was passed in, and we are doing
|
|
* INSERT/SELECT, arrange to pass the rangetable/namespace down to the
|
|
* SELECT. This can only happen if we are inside a CREATE RULE, and
|
|
* in that case we want the rule's OLD and NEW rtable entries to
|
|
* appear as part of the SELECT's rtable, not as outer references for
|
|
* it. (Kluge!) The SELECT's joinlist is not affected however. We
|
|
* must do this before adding the target table to the INSERT's rtable.
|
|
*/
|
|
if (stmt->selectStmt)
|
|
{
|
|
sub_rtable = pstate->p_rtable;
|
|
pstate->p_rtable = NIL;
|
|
sub_namespace = pstate->p_namespace;
|
|
pstate->p_namespace = NIL;
|
|
}
|
|
else
|
|
{
|
|
sub_rtable = NIL; /* not used, but keep compiler quiet */
|
|
sub_namespace = NIL;
|
|
}
|
|
|
|
/*
|
|
* Must get write lock on INSERT target table before scanning SELECT,
|
|
* else we will grab the wrong kind of initial lock if the target
|
|
* table is also mentioned in the SELECT part. Note that the target
|
|
* table is not added to the joinlist or namespace.
|
|
*/
|
|
qry->resultRelation = setTargetTable(pstate, stmt->relname,
|
|
false, false);
|
|
|
|
/*
|
|
* Is it INSERT ... SELECT or INSERT ... VALUES?
|
|
*/
|
|
if (stmt->selectStmt)
|
|
{
|
|
ParseState *sub_pstate = make_parsestate(pstate->parentParseState);
|
|
Query *selectQuery;
|
|
RangeTblEntry *rte;
|
|
RangeTblRef *rtr;
|
|
|
|
/*
|
|
* Process the source SELECT.
|
|
*
|
|
* It is important that this be handled just like a standalone
|
|
* SELECT; otherwise the behavior of SELECT within INSERT might be
|
|
* different from a stand-alone SELECT. (Indeed, Postgres up
|
|
* through 6.5 had bugs of just that nature...)
|
|
*/
|
|
sub_pstate->p_rtable = sub_rtable;
|
|
sub_pstate->p_namespace = sub_namespace;
|
|
|
|
selectQuery = transformStmt(sub_pstate, stmt->selectStmt);
|
|
|
|
release_pstate_resources(sub_pstate);
|
|
pfree(sub_pstate);
|
|
|
|
Assert(IsA(selectQuery, Query));
|
|
Assert(selectQuery->commandType == CMD_SELECT);
|
|
if (selectQuery->into || selectQuery->isPortal)
|
|
elog(ERROR, "INSERT ... SELECT may not specify INTO");
|
|
|
|
/*
|
|
* Make the source be a subquery in the INSERT's rangetable, and
|
|
* add it to the INSERT's joinlist.
|
|
*/
|
|
rte = addRangeTableEntryForSubquery(pstate,
|
|
selectQuery,
|
|
makeAttr("*SELECT*", NULL),
|
|
true);
|
|
rtr = makeNode(RangeTblRef);
|
|
/* assume new rte is at end */
|
|
rtr->rtindex = length(pstate->p_rtable);
|
|
Assert(rte == rt_fetch(rtr->rtindex, pstate->p_rtable));
|
|
pstate->p_joinlist = lappend(pstate->p_joinlist, rtr);
|
|
|
|
/*
|
|
* Generate a targetlist for the INSERT that selects all the
|
|
* non-resjunk columns from the subquery. (We need this to be
|
|
* separate from the subquery's tlist because we may add columns,
|
|
* insert datatype coercions, etc.)
|
|
*
|
|
* HACK: constants in the INSERT's targetlist are copied up as-is
|
|
* rather than being referenced as subquery outputs. This is
|
|
* mainly to ensure that when we try to coerce them to the target
|
|
* column's datatype, the right things happen for UNKNOWN
|
|
* constants. Otherwise this fails: INSERT INTO foo SELECT 'bar',
|
|
* ... FROM baz
|
|
*/
|
|
qry->targetList = NIL;
|
|
foreach(tl, selectQuery->targetList)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(tl);
|
|
Resdom *resnode = tle->resdom;
|
|
Node *expr;
|
|
|
|
if (resnode->resjunk)
|
|
continue;
|
|
if (tle->expr && IsA(tle->expr, Const))
|
|
expr = tle->expr;
|
|
else
|
|
expr = (Node *) makeVar(rtr->rtindex,
|
|
resnode->resno,
|
|
resnode->restype,
|
|
resnode->restypmod,
|
|
0);
|
|
resnode = copyObject(resnode);
|
|
resnode->resno = (AttrNumber) pstate->p_last_resno++;
|
|
qry->targetList = lappend(qry->targetList,
|
|
makeTargetEntry(resnode, expr));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
/*
|
|
* For INSERT ... VALUES, transform the given list of values to
|
|
* form a targetlist for the INSERT.
|
|
*/
|
|
qry->targetList = transformTargetList(pstate, stmt->targetList);
|
|
}
|
|
|
|
/*
|
|
* Now we are done with SELECT-like processing, and can get on with
|
|
* transforming the target list to match the INSERT target columns.
|
|
*/
|
|
|
|
/* Prepare to assign non-conflicting resnos to resjunk attributes */
|
|
if (pstate->p_last_resno <= pstate->p_target_relation->rd_rel->relnatts)
|
|
pstate->p_last_resno = pstate->p_target_relation->rd_rel->relnatts + 1;
|
|
|
|
/* Validate stmt->cols list, or build default list if no list given */
|
|
icolumns = checkInsertTargets(pstate, stmt->cols, &attrnos);
|
|
|
|
/*
|
|
* Prepare columns for assignment to target table.
|
|
*/
|
|
numuseratts = 0;
|
|
attnos = attrnos;
|
|
foreach(tl, qry->targetList)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(tl);
|
|
Ident *id;
|
|
|
|
Assert(!tle->resdom->resjunk);
|
|
if (icolumns == NIL || attnos == NIL)
|
|
elog(ERROR, "INSERT has more expressions than target columns");
|
|
id = (Ident *) lfirst(icolumns);
|
|
updateTargetListEntry(pstate, tle, id->name, lfirsti(attnos),
|
|
id->indirection);
|
|
numuseratts++;
|
|
icolumns = lnext(icolumns);
|
|
attnos = lnext(attnos);
|
|
}
|
|
|
|
/*
|
|
* It is possible that the targetlist has fewer entries than were in
|
|
* the columns list. We do not consider this an error (perhaps we
|
|
* should, if the columns list was explictly given?). We must
|
|
* truncate the attrnos list to only include the attrs actually
|
|
* provided, else we will fail to apply defaults for them below.
|
|
*/
|
|
if (icolumns != NIL)
|
|
attrnos = ltruncate(numuseratts, attrnos);
|
|
|
|
/*
|
|
* Add targetlist items to assign DEFAULT values to any columns that
|
|
* have defaults and were not assigned to by the user.
|
|
*
|
|
* XXX wouldn't it make more sense to do this further downstream, after
|
|
* the rule rewriter? As is, altering a column default will not
|
|
* change the behavior of INSERTs in already-defined rules.
|
|
*/
|
|
rd_att = pstate->p_target_relation->rd_att;
|
|
if (rd_att->constr && rd_att->constr->num_defval > 0)
|
|
{
|
|
Form_pg_attribute *att = rd_att->attrs;
|
|
AttrDefault *defval = rd_att->constr->defval;
|
|
int ndef = rd_att->constr->num_defval;
|
|
|
|
while (--ndef >= 0)
|
|
{
|
|
AttrNumber attrno = defval[ndef].adnum;
|
|
Form_pg_attribute thisatt = att[attrno - 1];
|
|
TargetEntry *te;
|
|
|
|
if (intMember((int) attrno, attrnos))
|
|
continue; /* there was a user-specified value */
|
|
|
|
/*
|
|
* No user-supplied value, so add a targetentry with DEFAULT
|
|
* expr and correct data for the target column.
|
|
*/
|
|
te = makeTargetEntry(
|
|
makeResdom(attrno,
|
|
thisatt->atttypid,
|
|
thisatt->atttypmod,
|
|
pstrdup(NameStr(thisatt->attname)),
|
|
false),
|
|
stringToNode(defval[ndef].adbin));
|
|
qry->targetList = lappend(qry->targetList, te);
|
|
|
|
/*
|
|
* Make sure the value is coerced to the target column type
|
|
* (might not be right type if it's not a constant!)
|
|
*/
|
|
updateTargetListEntry(pstate, te, te->resdom->resname, attrno,
|
|
NIL);
|
|
}
|
|
}
|
|
|
|
/* done building the range table and jointree */
|
|
qry->rtable = pstate->p_rtable;
|
|
qry->jointree = makeFromExpr(pstate->p_joinlist, NULL);
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
qry->hasAggs = pstate->p_hasAggs;
|
|
if (pstate->p_hasAggs)
|
|
parseCheckAggregates(pstate, qry, NULL);
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* makeObjectName()
|
|
*
|
|
* Create a name for an implicitly created index, sequence, constraint, etc.
|
|
*
|
|
* The parameters are: the original table name, the original field name, and
|
|
* a "type" string (such as "seq" or "pkey"). The field name and/or type
|
|
* can be NULL if not relevant.
|
|
*
|
|
* The result is a palloc'd string.
|
|
*
|
|
* The basic result we want is "name1_name2_type", omitting "_name2" or
|
|
* "_type" when those parameters are NULL. However, we must generate
|
|
* a name with less than NAMEDATALEN characters! So, we truncate one or
|
|
* both names if necessary to make a short-enough string. The type part
|
|
* is never truncated (so it had better be reasonably short).
|
|
*
|
|
* To reduce the probability of collisions, we might someday add more
|
|
* smarts to this routine, like including some "hash" characters computed
|
|
* from the truncated characters. Currently it seems best to keep it simple,
|
|
* so that the generated names are easily predictable by a person.
|
|
*/
|
|
static char *
|
|
makeObjectName(char *name1, char *name2, char *typename)
|
|
{
|
|
char *name;
|
|
int overhead = 0; /* chars needed for type and underscores */
|
|
int availchars; /* chars available for name(s) */
|
|
int name1chars; /* chars allocated to name1 */
|
|
int name2chars; /* chars allocated to name2 */
|
|
int ndx;
|
|
|
|
name1chars = strlen(name1);
|
|
if (name2)
|
|
{
|
|
name2chars = strlen(name2);
|
|
overhead++; /* allow for separating underscore */
|
|
}
|
|
else
|
|
name2chars = 0;
|
|
if (typename)
|
|
overhead += strlen(typename) + 1;
|
|
|
|
availchars = NAMEDATALEN - 1 - overhead;
|
|
|
|
/*
|
|
* If we must truncate, preferentially truncate the longer name. This
|
|
* logic could be expressed without a loop, but it's simple and
|
|
* obvious as a loop.
|
|
*/
|
|
while (name1chars + name2chars > availchars)
|
|
{
|
|
if (name1chars > name2chars)
|
|
name1chars--;
|
|
else
|
|
name2chars--;
|
|
}
|
|
|
|
#ifdef MULTIBYTE
|
|
if (name1)
|
|
name1chars = pg_mbcliplen(name1, name1chars, name1chars);
|
|
if (name2)
|
|
name2chars = pg_mbcliplen(name2, name2chars, name2chars);
|
|
#endif
|
|
|
|
/* Now construct the string using the chosen lengths */
|
|
name = palloc(name1chars + name2chars + overhead + 1);
|
|
strncpy(name, name1, name1chars);
|
|
ndx = name1chars;
|
|
if (name2)
|
|
{
|
|
name[ndx++] = '_';
|
|
strncpy(name + ndx, name2, name2chars);
|
|
ndx += name2chars;
|
|
}
|
|
if (typename)
|
|
{
|
|
name[ndx++] = '_';
|
|
strcpy(name + ndx, typename);
|
|
}
|
|
else
|
|
name[ndx] = '\0';
|
|
|
|
return name;
|
|
}
|
|
|
|
static char *
|
|
CreateIndexName(char *table_name, char *column_name,
|
|
char *label, List *indices)
|
|
{
|
|
int pass = 0;
|
|
char *iname = NULL;
|
|
List *ilist;
|
|
char typename[NAMEDATALEN];
|
|
|
|
/*
|
|
* The type name for makeObjectName is label, or labelN if that's
|
|
* necessary to prevent collisions among multiple indexes for the same
|
|
* table. Note there is no check for collisions with already-existing
|
|
* indexes, only among the indexes we're about to create now; this
|
|
* ought to be improved someday.
|
|
*/
|
|
strcpy(typename, label);
|
|
|
|
for (;;)
|
|
{
|
|
iname = makeObjectName(table_name, column_name, typename);
|
|
|
|
foreach(ilist, indices)
|
|
{
|
|
IndexStmt *index = lfirst(ilist);
|
|
|
|
if (index->idxname != NULL &&
|
|
strcmp(iname, index->idxname) == 0)
|
|
break;
|
|
}
|
|
/* ran through entire list? then no name conflict found so done */
|
|
if (ilist == NIL)
|
|
break;
|
|
|
|
/* found a conflict, so try a new name component */
|
|
pfree(iname);
|
|
sprintf(typename, "%s%d", label, ++pass);
|
|
}
|
|
|
|
return iname;
|
|
}
|
|
|
|
/*
|
|
* transformCreateStmt -
|
|
* transforms the "create table" statement
|
|
* SQL92 allows constraints to be scattered all over, so thumb through
|
|
* the columns and collect all constraints into one place.
|
|
* If there are any implied indices (e.g. UNIQUE or PRIMARY KEY)
|
|
* then expand those into multiple IndexStmt blocks.
|
|
* - thomas 1997-12-02
|
|
*/
|
|
static Query *
|
|
transformCreateStmt(ParseState *pstate, CreateStmt *stmt)
|
|
{
|
|
Query *q;
|
|
List *elements;
|
|
Node *element;
|
|
List *columns;
|
|
List *dlist;
|
|
ColumnDef *column;
|
|
List *constraints,
|
|
*clist;
|
|
Constraint *constraint;
|
|
List *fkconstraints, /* List of FOREIGN KEY constraints to */
|
|
*fkclist; /* add finally */
|
|
FkConstraint *fkconstraint;
|
|
List *keys;
|
|
Ident *key;
|
|
List *blist = NIL; /* "before list" of things to do before
|
|
* creating the table */
|
|
List *ilist = NIL; /* "index list" of things to do after
|
|
* creating the table */
|
|
IndexStmt *index,
|
|
*pkey = NULL;
|
|
IndexElem *iparam;
|
|
bool saw_nullable;
|
|
bool is_serial;
|
|
|
|
q = makeNode(Query);
|
|
q->commandType = CMD_UTILITY;
|
|
|
|
fkconstraints = NIL;
|
|
constraints = stmt->constraints;
|
|
columns = NIL;
|
|
dlist = NIL;
|
|
|
|
/*
|
|
* Run through each primary element in the table creation clause
|
|
*/
|
|
foreach(elements, stmt->tableElts)
|
|
{
|
|
element = lfirst(elements);
|
|
switch (nodeTag(element))
|
|
{
|
|
case T_ColumnDef:
|
|
column = (ColumnDef *) element;
|
|
columns = lappend(columns, column);
|
|
|
|
/* Check for SERIAL pseudo-types */
|
|
is_serial = false;
|
|
if (strcmp(column->typename->name, "serial") == 0 ||
|
|
strcmp(column->typename->name, "serial4") == 0)
|
|
{
|
|
is_serial = true;
|
|
column->typename->name = pstrdup("int4");
|
|
}
|
|
else if (strcmp(column->typename->name, "serial8") == 0)
|
|
{
|
|
is_serial = true;
|
|
column->typename->name = pstrdup("int8");
|
|
}
|
|
|
|
/* Do necessary work on the column type declaration */
|
|
transformColumnType(pstate, column);
|
|
|
|
/* Special actions for SERIAL pseudo-types */
|
|
if (is_serial)
|
|
{
|
|
char *sname;
|
|
char *qstring;
|
|
A_Const *snamenode;
|
|
FuncCall *funccallnode;
|
|
CreateSeqStmt *sequence;
|
|
|
|
/*
|
|
* Create appropriate constraints for SERIAL. We do
|
|
* this in full, rather than shortcutting, so that we
|
|
* will detect any conflicting constraints the user
|
|
* wrote (like a different DEFAULT).
|
|
*/
|
|
sname = makeObjectName(stmt->relname, column->colname,
|
|
"seq");
|
|
|
|
/*
|
|
* Create an expression tree representing the function
|
|
* call nextval('"sequencename"')
|
|
*/
|
|
qstring = palloc(strlen(sname) + 2 + 1);
|
|
sprintf(qstring, "\"%s\"", sname);
|
|
snamenode = makeNode(A_Const);
|
|
snamenode->val.type = T_String;
|
|
snamenode->val.val.str = qstring;
|
|
funccallnode = makeNode(FuncCall);
|
|
funccallnode->funcname = "nextval";
|
|
funccallnode->args = makeList1(snamenode);
|
|
funccallnode->agg_star = false;
|
|
funccallnode->agg_distinct = false;
|
|
|
|
constraint = makeNode(Constraint);
|
|
constraint->contype = CONSTR_DEFAULT;
|
|
constraint->name = sname;
|
|
constraint->raw_expr = (Node *) funccallnode;
|
|
constraint->cooked_expr = NULL;
|
|
constraint->keys = NIL;
|
|
column->constraints = lappend(column->constraints,
|
|
constraint);
|
|
|
|
constraint = makeNode(Constraint);
|
|
constraint->contype = CONSTR_UNIQUE;
|
|
constraint->name = NULL; /* assign later */
|
|
column->constraints = lappend(column->constraints,
|
|
constraint);
|
|
|
|
constraint = makeNode(Constraint);
|
|
constraint->contype = CONSTR_NOTNULL;
|
|
column->constraints = lappend(column->constraints,
|
|
constraint);
|
|
|
|
/*
|
|
* Build a CREATE SEQUENCE command to create the
|
|
* sequence object, and add it to the list of things
|
|
* to be done before this CREATE TABLE.
|
|
*/
|
|
sequence = makeNode(CreateSeqStmt);
|
|
sequence->seqname = pstrdup(sname);
|
|
sequence->istemp = stmt->istemp;
|
|
sequence->options = NIL;
|
|
|
|
elog(NOTICE, "CREATE TABLE will create implicit sequence '%s' for SERIAL column '%s.%s'",
|
|
sequence->seqname, stmt->relname, column->colname);
|
|
|
|
blist = lappend(blist, sequence);
|
|
}
|
|
|
|
/* Process column constraints, if any... */
|
|
transformConstraintAttrs(column->constraints);
|
|
|
|
saw_nullable = false;
|
|
|
|
foreach(clist, column->constraints)
|
|
{
|
|
constraint = lfirst(clist);
|
|
|
|
/*
|
|
* If this column constraint is a FOREIGN KEY
|
|
* constraint, then we fill in the current attributes
|
|
* name and throw it into the list of FK constraints
|
|
* to be processed later.
|
|
*/
|
|
if (IsA(constraint, FkConstraint))
|
|
{
|
|
Ident *id = makeNode(Ident);
|
|
|
|
id->name = column->colname;
|
|
id->indirection = NIL;
|
|
id->isRel = false;
|
|
|
|
fkconstraint = (FkConstraint *) constraint;
|
|
fkconstraint->fk_attrs = makeList1(id);
|
|
|
|
fkconstraints = lappend(fkconstraints, constraint);
|
|
continue;
|
|
}
|
|
|
|
switch (constraint->contype)
|
|
{
|
|
case CONSTR_NULL:
|
|
if (saw_nullable && column->is_not_null)
|
|
elog(ERROR, "CREATE TABLE/(NOT) NULL conflicting declaration"
|
|
" for '%s.%s'", stmt->relname, column->colname);
|
|
column->is_not_null = FALSE;
|
|
saw_nullable = true;
|
|
break;
|
|
|
|
case CONSTR_NOTNULL:
|
|
if (saw_nullable && !column->is_not_null)
|
|
elog(ERROR, "CREATE TABLE/(NOT) NULL conflicting declaration"
|
|
" for '%s.%s'", stmt->relname, column->colname);
|
|
column->is_not_null = TRUE;
|
|
saw_nullable = true;
|
|
break;
|
|
|
|
case CONSTR_DEFAULT:
|
|
if (column->raw_default != NULL)
|
|
elog(ERROR, "CREATE TABLE/DEFAULT multiple values specified"
|
|
" for '%s.%s'", stmt->relname, column->colname);
|
|
column->raw_default = constraint->raw_expr;
|
|
Assert(constraint->cooked_expr == NULL);
|
|
break;
|
|
|
|
case CONSTR_PRIMARY:
|
|
if (constraint->name == NULL)
|
|
constraint->name = makeObjectName(stmt->relname, NULL, "pkey");
|
|
if (constraint->keys == NIL)
|
|
{
|
|
key = makeNode(Ident);
|
|
key->name = pstrdup(column->colname);
|
|
constraint->keys = makeList1(key);
|
|
}
|
|
dlist = lappend(dlist, constraint);
|
|
break;
|
|
|
|
case CONSTR_UNIQUE:
|
|
if (constraint->name == NULL)
|
|
constraint->name = makeObjectName(stmt->relname, column->colname, "key");
|
|
if (constraint->keys == NIL)
|
|
{
|
|
key = makeNode(Ident);
|
|
key->name = pstrdup(column->colname);
|
|
constraint->keys = makeList1(key);
|
|
}
|
|
dlist = lappend(dlist, constraint);
|
|
break;
|
|
|
|
case CONSTR_CHECK:
|
|
if (constraint->name == NULL)
|
|
constraint->name = makeObjectName(stmt->relname, column->colname, NULL);
|
|
constraints = lappend(constraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_ATTR_DEFERRABLE:
|
|
case CONSTR_ATTR_NOT_DEFERRABLE:
|
|
case CONSTR_ATTR_DEFERRED:
|
|
case CONSTR_ATTR_IMMEDIATE:
|
|
/* transformConstraintAttrs took care of these */
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "parser: unrecognized constraint (internal error)");
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_Constraint:
|
|
constraint = (Constraint *) element;
|
|
switch (constraint->contype)
|
|
{
|
|
case CONSTR_PRIMARY:
|
|
if (constraint->name == NULL)
|
|
constraint->name = makeObjectName(stmt->relname, NULL, "pkey");
|
|
dlist = lappend(dlist, constraint);
|
|
break;
|
|
|
|
case CONSTR_UNIQUE:
|
|
dlist = lappend(dlist, constraint);
|
|
break;
|
|
|
|
case CONSTR_CHECK:
|
|
constraints = lappend(constraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_NULL:
|
|
case CONSTR_NOTNULL:
|
|
case CONSTR_DEFAULT:
|
|
case CONSTR_ATTR_DEFERRABLE:
|
|
case CONSTR_ATTR_NOT_DEFERRABLE:
|
|
case CONSTR_ATTR_DEFERRED:
|
|
case CONSTR_ATTR_IMMEDIATE:
|
|
elog(ERROR, "parser: illegal context for constraint (internal error)");
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "parser: unrecognized constraint (internal error)");
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case T_FkConstraint:
|
|
|
|
/*
|
|
* Table level FOREIGN KEY constraints are already
|
|
* complete. Just remember for later.
|
|
*/
|
|
fkconstraints = lappend(fkconstraints, element);
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "parser: unrecognized node (internal error)");
|
|
}
|
|
}
|
|
|
|
stmt->tableElts = columns;
|
|
stmt->constraints = constraints;
|
|
|
|
/* Now run through the "deferred list" to complete the query transformation.
|
|
* For PRIMARY KEY, mark each column as NOT NULL and create an index.
|
|
* For UNIQUE, create an index as for PRIMARY KEY, but do not insist on
|
|
* NOT NULL.
|
|
*/
|
|
while (dlist != NIL)
|
|
{
|
|
constraint = lfirst(dlist);
|
|
Assert(IsA(constraint, Constraint));
|
|
Assert((constraint->contype == CONSTR_PRIMARY)
|
|
|| (constraint->contype == CONSTR_UNIQUE));
|
|
|
|
index = makeNode(IndexStmt);
|
|
|
|
index->unique = true;
|
|
index->primary = (constraint->contype == CONSTR_PRIMARY);
|
|
if (index->primary)
|
|
{
|
|
if (pkey != NULL)
|
|
elog(ERROR, "CREATE TABLE/PRIMARY KEY multiple primary keys"
|
|
" for table '%s' are not allowed", stmt->relname);
|
|
pkey = index;
|
|
}
|
|
|
|
if (constraint->name != NULL)
|
|
index->idxname = pstrdup(constraint->name);
|
|
else if (constraint->contype == CONSTR_PRIMARY)
|
|
index->idxname = makeObjectName(stmt->relname, NULL, "pkey");
|
|
else
|
|
index->idxname = NULL; /* will set it later */
|
|
|
|
index->relname = stmt->relname;
|
|
index->accessMethod = "btree";
|
|
index->indexParams = NIL;
|
|
index->withClause = NIL;
|
|
index->whereClause = NULL;
|
|
|
|
foreach(keys, constraint->keys)
|
|
{
|
|
bool found = false;
|
|
|
|
key = (Ident *) lfirst(keys);
|
|
Assert(IsA(key, Ident));
|
|
column = NULL;
|
|
foreach(columns, stmt->tableElts)
|
|
{
|
|
column = lfirst(columns);
|
|
Assert(IsA(column, ColumnDef));
|
|
if (strcmp(column->colname, key->name) == 0)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found)
|
|
{
|
|
/* found column in the new table; force it to be NOT NULL */
|
|
if (constraint->contype == CONSTR_PRIMARY)
|
|
column->is_not_null = TRUE;
|
|
}
|
|
else
|
|
{
|
|
/* try inherited tables */
|
|
List *inhRelnames = stmt->inhRelnames;
|
|
List *inher;
|
|
|
|
foreach(inher, inhRelnames)
|
|
{
|
|
Value *inh = lfirst(inher);
|
|
Relation rel;
|
|
int count;
|
|
|
|
Assert(IsA(inh, String));
|
|
rel = heap_openr(strVal(inh), AccessShareLock);
|
|
if (rel->rd_rel->relkind != RELKIND_RELATION)
|
|
elog(ERROR, "inherited table \"%s\" is not a relation",
|
|
strVal(inh));
|
|
for (count = 0; count < rel->rd_att->natts; count++)
|
|
{
|
|
Form_pg_attribute inhattr = rel->rd_att->attrs[count];
|
|
char *inhname = NameStr(inhattr->attname);
|
|
|
|
if (strcmp(key->name, inhname) == 0)
|
|
{
|
|
found = true;
|
|
|
|
/*
|
|
* If the column is inherited, we currently
|
|
* have no easy way to force it to be NOT
|
|
* NULL. Only way I can see to fix this would
|
|
* be to convert the inherited-column info to
|
|
* ColumnDef nodes before we reach this point,
|
|
* and then create the table from those nodes
|
|
* rather than referencing the parent tables
|
|
* later. That would likely be cleaner, but
|
|
* too much work to contemplate right now.
|
|
* Instead, raise an error if the inherited
|
|
* column won't be NOT NULL. (Would a NOTICE
|
|
* be more reasonable?)
|
|
*/
|
|
if (constraint->contype == CONSTR_PRIMARY &&
|
|
!inhattr->attnotnull)
|
|
elog(ERROR, "inherited attribute \"%s\" cannot be a PRIMARY KEY because it is not marked NOT NULL",
|
|
inhname);
|
|
break;
|
|
}
|
|
}
|
|
heap_close(rel, NoLock);
|
|
if (found)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
elog(ERROR, "CREATE TABLE: column \"%s\" named in key does not exist",
|
|
key->name);
|
|
|
|
/* Check for PRIMARY KEY(foo, foo) */
|
|
foreach(columns, index->indexParams)
|
|
{
|
|
iparam = (IndexElem *) lfirst(columns);
|
|
if (strcmp(key->name, iparam->name) == 0)
|
|
elog(ERROR, "CREATE TABLE: column \"%s\" appears twice in %s constraint",
|
|
key->name,
|
|
index->primary ? "PRIMARY KEY" : "UNIQUE");
|
|
}
|
|
|
|
/* OK, add it to the index definition */
|
|
iparam = makeNode(IndexElem);
|
|
iparam->name = pstrdup(key->name);
|
|
iparam->args = NIL;
|
|
iparam->class = NULL;
|
|
index->indexParams = lappend(index->indexParams, iparam);
|
|
}
|
|
|
|
ilist = lappend(ilist, index);
|
|
dlist = lnext(dlist);
|
|
}
|
|
|
|
/*
|
|
* Scan the index list and remove any redundant index specifications.
|
|
* This can happen if, for instance, the user writes SERIAL PRIMARY
|
|
* KEY or SERIAL UNIQUE. A strict reading of SQL92 would suggest
|
|
* raising an error instead, but that strikes me as too
|
|
* anal-retentive. - tgl 2001-02-14
|
|
*/
|
|
dlist = ilist;
|
|
ilist = NIL;
|
|
if (pkey != NULL)
|
|
{
|
|
/* Make sure we keep the PKEY index in preference to others... */
|
|
ilist = makeList1(pkey);
|
|
}
|
|
while (dlist != NIL)
|
|
{
|
|
index = lfirst(dlist);
|
|
|
|
/* if it's pkey, it's already in ilist */
|
|
if (index != pkey)
|
|
{
|
|
bool keep = true;
|
|
List *priorlist;
|
|
|
|
foreach(priorlist, ilist)
|
|
{
|
|
IndexStmt *priorindex = lfirst(priorlist);
|
|
|
|
if (equal(index->indexParams, priorindex->indexParams))
|
|
{
|
|
|
|
/*
|
|
* If the prior index is as yet unnamed, and this one
|
|
* is named, then transfer the name to the prior
|
|
* index. This ensures that if we have named and
|
|
* unnamed constraints, we'll use (at least one of)
|
|
* the names for the index.
|
|
*/
|
|
if (priorindex->idxname == NULL)
|
|
priorindex->idxname = index->idxname;
|
|
keep = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (keep)
|
|
ilist = lappend(ilist, index);
|
|
}
|
|
|
|
dlist = lnext(dlist);
|
|
}
|
|
|
|
/*
|
|
* Finally, select unique names for all not-previously-named indices,
|
|
* and display notice messages.
|
|
*/
|
|
dlist = ilist;
|
|
while (dlist != NIL)
|
|
{
|
|
index = lfirst(dlist);
|
|
|
|
if (index->idxname == NULL && index->indexParams != NIL)
|
|
{
|
|
iparam = lfirst(index->indexParams);
|
|
index->idxname = CreateIndexName(stmt->relname, iparam->name,
|
|
"key", ilist);
|
|
}
|
|
if (index->idxname == NULL) /* should not happen */
|
|
elog(ERROR, "CREATE TABLE: failed to make implicit index name");
|
|
|
|
elog(NOTICE, "CREATE TABLE/%s will create implicit index '%s' for table '%s'",
|
|
(index->primary ? "PRIMARY KEY" : "UNIQUE"),
|
|
index->idxname, stmt->relname);
|
|
|
|
dlist = lnext(dlist);
|
|
}
|
|
|
|
q->utilityStmt = (Node *) stmt;
|
|
extras_before = blist;
|
|
extras_after = ilist;
|
|
|
|
/*
|
|
* Now process the FOREIGN KEY constraints and add appropriate queries
|
|
* to the extras_after statements list.
|
|
*/
|
|
if (fkconstraints != NIL)
|
|
{
|
|
CreateTrigStmt *fk_trigger;
|
|
List *fk_attr;
|
|
List *pk_attr;
|
|
Ident *id;
|
|
Oid pktypoid[INDEX_MAX_KEYS];
|
|
Oid fktypoid[INDEX_MAX_KEYS];
|
|
int i;
|
|
|
|
for (i=0; i<INDEX_MAX_KEYS; i++) {
|
|
pktypoid[i]=fktypoid[i]=0;
|
|
}
|
|
elog(NOTICE, "CREATE TABLE will create implicit trigger(s) for FOREIGN KEY check(s)");
|
|
|
|
foreach(fkclist, fkconstraints)
|
|
{
|
|
fkconstraint = (FkConstraint *) lfirst(fkclist);
|
|
|
|
/*
|
|
* If the constraint has no name, set it to <unnamed>
|
|
*
|
|
*/
|
|
if (fkconstraint->constr_name == NULL)
|
|
fkconstraint->constr_name = "<unnamed>";
|
|
|
|
/*
|
|
* Check to see if the attributes mentioned by the constraint
|
|
* actually exist on this table.
|
|
*/
|
|
if (fkconstraint->fk_attrs != NIL)
|
|
{
|
|
int found = 0;
|
|
int attnum=0;
|
|
List *cols;
|
|
List *fkattrs;
|
|
Ident *fkattr = NULL;
|
|
ColumnDef *col;
|
|
|
|
foreach(fkattrs, fkconstraint->fk_attrs)
|
|
{
|
|
found = 0;
|
|
fkattr = lfirst(fkattrs);
|
|
foreach(cols, stmt->tableElts)
|
|
{
|
|
col = lfirst(cols);
|
|
if (strcmp(col->colname, fkattr->name) == 0)
|
|
{
|
|
char *buff=TypeNameToInternalName(col->typename);
|
|
Oid type=typenameTypeId(buff);
|
|
if (!OidIsValid(type)) {
|
|
elog(ERROR, "Unable to lookup type %s", col->typename->name);
|
|
}
|
|
fktypoid[attnum++]=type;
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
List *inher;
|
|
List *inhRelnames = stmt->inhRelnames;
|
|
Relation rel;
|
|
|
|
foreach(inher, inhRelnames)
|
|
{
|
|
Value *inh = lfirst(inher);
|
|
int count;
|
|
|
|
Assert(IsA(inh, String));
|
|
rel = heap_openr(strVal(inh), AccessShareLock);
|
|
if (rel->rd_rel->relkind != RELKIND_RELATION)
|
|
elog(ERROR, "inherited table \"%s\" is not a relation",
|
|
strVal(inh));
|
|
for (count = 0; count < rel->rd_att->natts; count++)
|
|
{
|
|
char *name = NameStr(rel->rd_att->attrs[count]->attname);
|
|
|
|
if (strcmp(fkattr->name, name) == 0)
|
|
{
|
|
fktypoid[attnum++]=rel->rd_att->attrs[count]->atttypid;
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
heap_close(rel, NoLock);
|
|
if (found)
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
break;
|
|
}
|
|
if (!found)
|
|
elog(ERROR, "columns referenced in foreign key constraint not found.");
|
|
}
|
|
|
|
/*
|
|
* If the attribute list for the referenced table was omitted,
|
|
* lookup for the definition of the primary key. If the
|
|
* referenced table is this table, use the definition we found
|
|
* above, rather than looking to the system tables.
|
|
*
|
|
*/
|
|
if (fkconstraint->fk_attrs != NIL && fkconstraint->pk_attrs == NIL)
|
|
{
|
|
if (strcmp(fkconstraint->pktable_name, stmt->relname) != 0)
|
|
transformFkeyGetPrimaryKey(fkconstraint, pktypoid);
|
|
else if (pkey != NULL)
|
|
{
|
|
List *pkey_attr = pkey->indexParams;
|
|
List *attr;
|
|
List *findattr;
|
|
IndexElem *ielem;
|
|
Ident *pkattr;
|
|
int attnum=0;
|
|
ColumnDef *col;
|
|
|
|
foreach(attr, pkey_attr)
|
|
{
|
|
ielem = lfirst(attr);
|
|
pkattr = (Ident *) makeNode(Ident);
|
|
pkattr->name = pstrdup(ielem->name);
|
|
pkattr->indirection = NIL;
|
|
pkattr->isRel = false;
|
|
fkconstraint->pk_attrs = lappend(fkconstraint->pk_attrs, pkattr);
|
|
foreach (findattr, stmt->tableElts) {
|
|
col=lfirst(findattr);
|
|
if (strcmp(col->colname, ielem->name)==0) {
|
|
char *buff=TypeNameToInternalName(col->typename);
|
|
Oid type=typenameTypeId(buff);
|
|
if (!OidIsValid(type)) {
|
|
elog(ERROR, "Unable to lookup type %s", col->typename->name);
|
|
}
|
|
pktypoid[attnum++]=type; /* need to convert typename */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
elog(ERROR, "PRIMARY KEY for referenced table \"%s\" not found",
|
|
fkconstraint->pktable_name);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (strcmp(fkconstraint->pktable_name, stmt->relname) != 0)
|
|
transformFkeyCheckAttrs(fkconstraint, pktypoid);
|
|
else
|
|
{
|
|
/* Get a unique/pk constraint from above */
|
|
List *index;
|
|
int found = 0;
|
|
|
|
foreach(index, ilist)
|
|
{
|
|
IndexStmt *ind = lfirst(index);
|
|
IndexElem *indparm;
|
|
List *indparms;
|
|
List *pkattrs;
|
|
List *findattr;
|
|
ColumnDef *col;
|
|
Ident *pkattr;
|
|
|
|
if (ind->unique)
|
|
{
|
|
int count = 0;
|
|
int attnum=0;
|
|
|
|
foreach(indparms, ind->indexParams)
|
|
count++;
|
|
if (count != length(fkconstraint->pk_attrs))
|
|
found = 0;
|
|
else
|
|
{
|
|
foreach(pkattrs, fkconstraint->pk_attrs)
|
|
{
|
|
found = 0;
|
|
pkattr = lfirst(pkattrs);
|
|
foreach(indparms, ind->indexParams)
|
|
{
|
|
indparm = lfirst(indparms);
|
|
if (strcmp(indparm->name, pkattr->name) == 0)
|
|
{
|
|
foreach (findattr, stmt->tableElts) {
|
|
col=lfirst(findattr);
|
|
if (strcmp(col->colname, indparm->name)==0) {
|
|
char *buff=TypeNameToInternalName(col->typename);
|
|
Oid type=typenameTypeId(buff);
|
|
if (!OidIsValid(type)) {
|
|
elog(ERROR, "Unable to lookup type %s", col->typename->name);
|
|
}
|
|
pktypoid[attnum++]=type;
|
|
found=1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
List *inher;
|
|
List *inhRelnames=stmt->inhRelnames;
|
|
Relation rel;
|
|
foreach (inher, inhRelnames) {
|
|
Value *inh=lfirst(inher);
|
|
int count;
|
|
Assert(IsA(inh, String));
|
|
rel=heap_openr(strVal(inh), AccessShareLock);
|
|
if (rel->rd_rel->relkind!=RELKIND_RELATION)
|
|
elog(ERROR, "inherited table \"%s\" is not a relation", strVal(inh));
|
|
for (count=0; count<rel->rd_att->natts; count++) {
|
|
char *name=NameStr(rel->rd_att->attrs[count]->attname);
|
|
if (strcmp(pkattr->name, name)==0) {
|
|
pktypoid[attnum++]=rel->rd_att->attrs[count]->atttypid;
|
|
found=1;
|
|
break;
|
|
}
|
|
}
|
|
heap_close(rel, NoLock);
|
|
if (found)
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (found)
|
|
break;
|
|
}
|
|
if (!found)
|
|
elog(ERROR, "UNIQUE constraint matching given keys for referenced table \"%s\" not found",
|
|
fkconstraint->pktable_name);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < INDEX_MAX_KEYS && fktypoid[i] != 0; i++) {
|
|
/*
|
|
* fktypoid[i] is the foreign key table's i'th element's type oid
|
|
* pktypoid[i] is the primary key table's i'th element's type oid
|
|
* We let oper() do our work for us, including elog(ERROR) if the
|
|
* types don't compare with =
|
|
*/
|
|
Operator o=oper("=", fktypoid[i], pktypoid[i], false);
|
|
ReleaseSysCache(o);
|
|
}
|
|
/*
|
|
* Build a CREATE CONSTRAINT TRIGGER statement for the CHECK
|
|
* action.
|
|
*
|
|
*/
|
|
fk_trigger = (CreateTrigStmt *) makeNode(CreateTrigStmt);
|
|
fk_trigger->trigname = fkconstraint->constr_name;
|
|
fk_trigger->relname = stmt->relname;
|
|
fk_trigger->funcname = "RI_FKey_check_ins";
|
|
fk_trigger->before = false;
|
|
fk_trigger->row = true;
|
|
fk_trigger->actions[0] = 'i';
|
|
fk_trigger->actions[1] = 'u';
|
|
fk_trigger->actions[2] = '\0';
|
|
fk_trigger->lang = NULL;
|
|
fk_trigger->text = NULL;
|
|
|
|
fk_trigger->attr = NIL;
|
|
fk_trigger->when = NULL;
|
|
fk_trigger->isconstraint = true;
|
|
fk_trigger->deferrable = fkconstraint->deferrable;
|
|
fk_trigger->initdeferred = fkconstraint->initdeferred;
|
|
fk_trigger->constrrelname = fkconstraint->pktable_name;
|
|
|
|
fk_trigger->args = NIL;
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->constr_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(stmt->relname));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->pktable_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->match_type));
|
|
fk_attr = fkconstraint->fk_attrs;
|
|
pk_attr = fkconstraint->pk_attrs;
|
|
if (length(fk_attr) != length(pk_attr))
|
|
{
|
|
elog(NOTICE, "Illegal FOREIGN KEY definition REFERENCES \"%s\"",
|
|
fkconstraint->pktable_name);
|
|
elog(ERROR, "number of key attributes in referenced table must be equal to foreign key");
|
|
}
|
|
while (fk_attr != NIL)
|
|
{
|
|
id = (Ident *) lfirst(fk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
id = (Ident *) lfirst(pk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
fk_attr = lnext(fk_attr);
|
|
pk_attr = lnext(pk_attr);
|
|
}
|
|
|
|
extras_after = lappend(extras_after, (Node *) fk_trigger);
|
|
|
|
/*
|
|
* Build a CREATE CONSTRAINT TRIGGER statement for the ON
|
|
* DELETE action fired on the PK table !!!
|
|
*
|
|
*/
|
|
fk_trigger = (CreateTrigStmt *) makeNode(CreateTrigStmt);
|
|
fk_trigger->trigname = fkconstraint->constr_name;
|
|
fk_trigger->relname = fkconstraint->pktable_name;
|
|
fk_trigger->before = false;
|
|
fk_trigger->row = true;
|
|
fk_trigger->actions[0] = 'd';
|
|
fk_trigger->actions[1] = '\0';
|
|
fk_trigger->lang = NULL;
|
|
fk_trigger->text = NULL;
|
|
|
|
fk_trigger->attr = NIL;
|
|
fk_trigger->when = NULL;
|
|
fk_trigger->isconstraint = true;
|
|
fk_trigger->deferrable = fkconstraint->deferrable;
|
|
fk_trigger->initdeferred = fkconstraint->initdeferred;
|
|
fk_trigger->constrrelname = stmt->relname;
|
|
switch ((fkconstraint->actions & FKCONSTR_ON_DELETE_MASK)
|
|
>> FKCONSTR_ON_DELETE_SHIFT)
|
|
{
|
|
case FKCONSTR_ON_KEY_NOACTION:
|
|
fk_trigger->funcname = "RI_FKey_noaction_del";
|
|
break;
|
|
case FKCONSTR_ON_KEY_RESTRICT:
|
|
fk_trigger->deferrable = false;
|
|
fk_trigger->initdeferred = false;
|
|
fk_trigger->funcname = "RI_FKey_restrict_del";
|
|
break;
|
|
case FKCONSTR_ON_KEY_CASCADE:
|
|
fk_trigger->funcname = "RI_FKey_cascade_del";
|
|
break;
|
|
case FKCONSTR_ON_KEY_SETNULL:
|
|
fk_trigger->funcname = "RI_FKey_setnull_del";
|
|
break;
|
|
case FKCONSTR_ON_KEY_SETDEFAULT:
|
|
fk_trigger->funcname = "RI_FKey_setdefault_del";
|
|
break;
|
|
default:
|
|
elog(ERROR, "Only one ON DELETE action can be specified for FOREIGN KEY constraint");
|
|
break;
|
|
}
|
|
|
|
fk_trigger->args = NIL;
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->constr_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(stmt->relname));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->pktable_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->match_type));
|
|
fk_attr = fkconstraint->fk_attrs;
|
|
pk_attr = fkconstraint->pk_attrs;
|
|
while (fk_attr != NIL)
|
|
{
|
|
id = (Ident *) lfirst(fk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
id = (Ident *) lfirst(pk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
fk_attr = lnext(fk_attr);
|
|
pk_attr = lnext(pk_attr);
|
|
}
|
|
|
|
extras_after = lappend(extras_after, (Node *) fk_trigger);
|
|
|
|
/*
|
|
* Build a CREATE CONSTRAINT TRIGGER statement for the ON
|
|
* UPDATE action fired on the PK table !!!
|
|
*
|
|
*/
|
|
fk_trigger = (CreateTrigStmt *) makeNode(CreateTrigStmt);
|
|
fk_trigger->trigname = fkconstraint->constr_name;
|
|
fk_trigger->relname = fkconstraint->pktable_name;
|
|
fk_trigger->before = false;
|
|
fk_trigger->row = true;
|
|
fk_trigger->actions[0] = 'u';
|
|
fk_trigger->actions[1] = '\0';
|
|
fk_trigger->lang = NULL;
|
|
fk_trigger->text = NULL;
|
|
|
|
fk_trigger->attr = NIL;
|
|
fk_trigger->when = NULL;
|
|
fk_trigger->isconstraint = true;
|
|
fk_trigger->deferrable = fkconstraint->deferrable;
|
|
fk_trigger->initdeferred = fkconstraint->initdeferred;
|
|
fk_trigger->constrrelname = stmt->relname;
|
|
switch ((fkconstraint->actions & FKCONSTR_ON_UPDATE_MASK)
|
|
>> FKCONSTR_ON_UPDATE_SHIFT)
|
|
{
|
|
case FKCONSTR_ON_KEY_NOACTION:
|
|
fk_trigger->funcname = "RI_FKey_noaction_upd";
|
|
break;
|
|
case FKCONSTR_ON_KEY_RESTRICT:
|
|
fk_trigger->deferrable = false;
|
|
fk_trigger->initdeferred = false;
|
|
fk_trigger->funcname = "RI_FKey_restrict_upd";
|
|
break;
|
|
case FKCONSTR_ON_KEY_CASCADE:
|
|
fk_trigger->funcname = "RI_FKey_cascade_upd";
|
|
break;
|
|
case FKCONSTR_ON_KEY_SETNULL:
|
|
fk_trigger->funcname = "RI_FKey_setnull_upd";
|
|
break;
|
|
case FKCONSTR_ON_KEY_SETDEFAULT:
|
|
fk_trigger->funcname = "RI_FKey_setdefault_upd";
|
|
break;
|
|
default:
|
|
elog(ERROR, "Only one ON UPDATE action can be specified for FOREIGN KEY constraint");
|
|
break;
|
|
}
|
|
|
|
fk_trigger->args = NIL;
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->constr_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(stmt->relname));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->pktable_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->match_type));
|
|
fk_attr = fkconstraint->fk_attrs;
|
|
pk_attr = fkconstraint->pk_attrs;
|
|
while (fk_attr != NIL)
|
|
{
|
|
id = (Ident *) lfirst(fk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
id = (Ident *) lfirst(pk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
fk_attr = lnext(fk_attr);
|
|
pk_attr = lnext(pk_attr);
|
|
}
|
|
|
|
extras_after = lappend(extras_after, (Node *) fk_trigger);
|
|
}
|
|
}
|
|
|
|
return q;
|
|
} /* transformCreateStmt() */
|
|
|
|
|
|
/*
|
|
* transformIndexStmt -
|
|
* transforms the qualification of the index statement
|
|
*/
|
|
static Query *
|
|
transformIndexStmt(ParseState *pstate, IndexStmt *stmt)
|
|
{
|
|
Query *qry;
|
|
RangeTblEntry *rte;
|
|
|
|
qry = makeNode(Query);
|
|
qry->commandType = CMD_UTILITY;
|
|
|
|
/* take care of the where clause */
|
|
if (stmt->whereClause)
|
|
{
|
|
/*
|
|
* Put the parent table into the rtable so that the WHERE clause can
|
|
* refer to its fields without qualification. Note that this only
|
|
* works if the parent table already exists --- so we can't easily
|
|
* support predicates on indexes created implicitly by CREATE TABLE.
|
|
* Fortunately, that's not necessary.
|
|
*/
|
|
rte = addRangeTableEntry(pstate, stmt->relname, NULL, false, true);
|
|
|
|
/* no to join list, yes to namespace */
|
|
addRTEtoQuery(pstate, rte, false, true);
|
|
|
|
stmt->whereClause = transformWhereClause(pstate, stmt->whereClause);
|
|
}
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
stmt->rangetable = pstate->p_rtable;
|
|
|
|
qry->utilityStmt = (Node *) stmt;
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* transformRuleStmt -
|
|
* transform a Create Rule Statement. The actions is a list of parse
|
|
* trees which is transformed into a list of query trees.
|
|
*/
|
|
static Query *
|
|
transformRuleStmt(ParseState *pstate, RuleStmt *stmt)
|
|
{
|
|
Query *qry;
|
|
RangeTblEntry *oldrte;
|
|
RangeTblEntry *newrte;
|
|
|
|
qry = makeNode(Query);
|
|
qry->commandType = CMD_UTILITY;
|
|
qry->utilityStmt = (Node *) stmt;
|
|
|
|
/*
|
|
* To avoid deadlock, make sure the first thing we do is grab
|
|
* AccessExclusiveLock on the target relation. This will be needed by
|
|
* DefineQueryRewrite(), and we don't want to grab a lesser lock
|
|
* beforehand. We don't need to hold a refcount on the relcache
|
|
* entry, however.
|
|
*/
|
|
heap_close(heap_openr(stmt->object->relname, AccessExclusiveLock),
|
|
NoLock);
|
|
|
|
/*
|
|
* NOTE: 'OLD' must always have a varno equal to 1 and 'NEW' equal to
|
|
* 2. Set up their RTEs in the main pstate for use in parsing the
|
|
* rule qualification.
|
|
*/
|
|
Assert(pstate->p_rtable == NIL);
|
|
oldrte = addRangeTableEntry(pstate, stmt->object->relname,
|
|
makeAttr("*OLD*", NULL),
|
|
false, true);
|
|
newrte = addRangeTableEntry(pstate, stmt->object->relname,
|
|
makeAttr("*NEW*", NULL),
|
|
false, true);
|
|
/* Must override addRangeTableEntry's default access-check flags */
|
|
oldrte->checkForRead = false;
|
|
newrte->checkForRead = false;
|
|
|
|
/*
|
|
* They must be in the namespace too for lookup purposes, but only add
|
|
* the one(s) that are relevant for the current kind of rule. In an
|
|
* UPDATE rule, quals must refer to OLD.field or NEW.field to be
|
|
* unambiguous, but there's no need to be so picky for INSERT &
|
|
* DELETE. (Note we marked the RTEs "inFromCl = true" above to allow
|
|
* unqualified references to their fields.) We do not add them to the
|
|
* joinlist.
|
|
*/
|
|
switch (stmt->event)
|
|
{
|
|
case CMD_SELECT:
|
|
addRTEtoQuery(pstate, oldrte, false, true);
|
|
break;
|
|
case CMD_UPDATE:
|
|
addRTEtoQuery(pstate, oldrte, false, true);
|
|
addRTEtoQuery(pstate, newrte, false, true);
|
|
break;
|
|
case CMD_INSERT:
|
|
addRTEtoQuery(pstate, newrte, false, true);
|
|
break;
|
|
case CMD_DELETE:
|
|
addRTEtoQuery(pstate, oldrte, false, true);
|
|
break;
|
|
default:
|
|
elog(ERROR, "transformRuleStmt: unexpected event type %d",
|
|
(int) stmt->event);
|
|
break;
|
|
}
|
|
|
|
/* take care of the where clause */
|
|
stmt->whereClause = transformWhereClause(pstate, stmt->whereClause);
|
|
|
|
if (length(pstate->p_rtable) != 2) /* naughty, naughty... */
|
|
elog(ERROR, "Rule WHERE condition may not contain references to other relations");
|
|
|
|
/* save info about sublinks in where clause */
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
|
|
/*
|
|
* 'instead nothing' rules with a qualification need a query
|
|
* rangetable so the rewrite handler can add the negated rule
|
|
* qualification to the original query. We create a query with the new
|
|
* command type CMD_NOTHING here that is treated specially by the
|
|
* rewrite system.
|
|
*/
|
|
if (stmt->actions == NIL)
|
|
{
|
|
Query *nothing_qry = makeNode(Query);
|
|
|
|
nothing_qry->commandType = CMD_NOTHING;
|
|
nothing_qry->rtable = pstate->p_rtable;
|
|
nothing_qry->jointree = makeFromExpr(NIL, NULL); /* no join wanted */
|
|
|
|
stmt->actions = makeList1(nothing_qry);
|
|
}
|
|
else
|
|
{
|
|
List *oldactions;
|
|
List *newactions = NIL;
|
|
|
|
/*
|
|
* transform each statement, like parse_analyze()
|
|
*/
|
|
foreach(oldactions, stmt->actions)
|
|
{
|
|
Node *action = (Node *) lfirst(oldactions);
|
|
ParseState *sub_pstate = make_parsestate(pstate->parentParseState);
|
|
Query *sub_qry,
|
|
*top_subqry;
|
|
bool has_old,
|
|
has_new;
|
|
|
|
/*
|
|
* Set up OLD/NEW in the rtable for this statement. The
|
|
* entries are marked not inFromCl because we don't want them
|
|
* to be referred to by unqualified field names nor "*" in the
|
|
* rule actions. We must add them to the namespace, however,
|
|
* or they won't be accessible at all. We decide later
|
|
* whether to put them in the joinlist.
|
|
*/
|
|
oldrte = addRangeTableEntry(sub_pstate, stmt->object->relname,
|
|
makeAttr("*OLD*", NULL),
|
|
false, false);
|
|
newrte = addRangeTableEntry(sub_pstate, stmt->object->relname,
|
|
makeAttr("*NEW*", NULL),
|
|
false, false);
|
|
oldrte->checkForRead = false;
|
|
newrte->checkForRead = false;
|
|
addRTEtoQuery(sub_pstate, oldrte, false, true);
|
|
addRTEtoQuery(sub_pstate, newrte, false, true);
|
|
|
|
/* Transform the rule action statement */
|
|
top_subqry = transformStmt(sub_pstate, action);
|
|
|
|
/*
|
|
* We cannot support utility-statement actions (eg NOTIFY)
|
|
* with nonempty rule WHERE conditions, because there's no
|
|
* way to make the utility action execute conditionally.
|
|
*/
|
|
if (top_subqry->commandType == CMD_UTILITY &&
|
|
stmt->whereClause != NULL)
|
|
elog(ERROR, "Rules with WHERE conditions may only have SELECT, INSERT, UPDATE, or DELETE actions");
|
|
|
|
/*
|
|
* If the action is INSERT...SELECT, OLD/NEW have been pushed
|
|
* down into the SELECT, and that's what we need to look at.
|
|
* (Ugly kluge ... try to fix this when we redesign
|
|
* querytrees.)
|
|
*/
|
|
sub_qry = getInsertSelectQuery(top_subqry, NULL);
|
|
|
|
/*
|
|
* Validate action's use of OLD/NEW, qual too
|
|
*/
|
|
has_old =
|
|
rangeTableEntry_used((Node *) sub_qry, PRS2_OLD_VARNO, 0) ||
|
|
rangeTableEntry_used(stmt->whereClause, PRS2_OLD_VARNO, 0);
|
|
has_new =
|
|
rangeTableEntry_used((Node *) sub_qry, PRS2_NEW_VARNO, 0) ||
|
|
rangeTableEntry_used(stmt->whereClause, PRS2_NEW_VARNO, 0);
|
|
|
|
switch (stmt->event)
|
|
{
|
|
case CMD_SELECT:
|
|
if (has_old)
|
|
elog(ERROR, "ON SELECT rule may not use OLD");
|
|
if (has_new)
|
|
elog(ERROR, "ON SELECT rule may not use NEW");
|
|
break;
|
|
case CMD_UPDATE:
|
|
/* both are OK */
|
|
break;
|
|
case CMD_INSERT:
|
|
if (has_old)
|
|
elog(ERROR, "ON INSERT rule may not use OLD");
|
|
break;
|
|
case CMD_DELETE:
|
|
if (has_new)
|
|
elog(ERROR, "ON DELETE rule may not use NEW");
|
|
break;
|
|
default:
|
|
elog(ERROR, "transformRuleStmt: unexpected event type %d",
|
|
(int) stmt->event);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* For efficiency's sake, add OLD to the rule action's
|
|
* jointree only if it was actually referenced in the
|
|
* statement or qual.
|
|
*
|
|
* For INSERT, NEW is not really a relation (only a reference to
|
|
* the to-be-inserted tuple) and should never be added to the
|
|
* jointree.
|
|
*
|
|
* For UPDATE, we treat NEW as being another kind of reference to
|
|
* OLD, because it represents references to *transformed*
|
|
* tuples of the existing relation. It would be wrong to
|
|
* enter NEW separately in the jointree, since that would
|
|
* cause a double join of the updated relation. It's also
|
|
* wrong to fail to make a jointree entry if only NEW and not
|
|
* OLD is mentioned.
|
|
*/
|
|
if (has_old || (has_new && stmt->event == CMD_UPDATE))
|
|
{
|
|
/* hack so we can use addRTEtoQuery() */
|
|
sub_pstate->p_rtable = sub_qry->rtable;
|
|
sub_pstate->p_joinlist = sub_qry->jointree->fromlist;
|
|
addRTEtoQuery(sub_pstate, oldrte, true, false);
|
|
sub_qry->jointree->fromlist = sub_pstate->p_joinlist;
|
|
}
|
|
|
|
newactions = lappend(newactions, top_subqry);
|
|
|
|
release_pstate_resources(sub_pstate);
|
|
pfree(sub_pstate);
|
|
}
|
|
|
|
stmt->actions = newactions;
|
|
}
|
|
|
|
return qry;
|
|
}
|
|
|
|
|
|
/*
|
|
* transformSelectStmt -
|
|
* transforms a Select Statement
|
|
*
|
|
* Note: this is also used for DECLARE CURSOR statements.
|
|
*/
|
|
static Query *
|
|
transformSelectStmt(ParseState *pstate, SelectStmt *stmt)
|
|
{
|
|
Query *qry = makeNode(Query);
|
|
Node *qual;
|
|
|
|
qry->commandType = CMD_SELECT;
|
|
|
|
if (stmt->portalname)
|
|
{
|
|
/* DECLARE CURSOR */
|
|
if (stmt->into)
|
|
elog(ERROR, "DECLARE CURSOR must not specify INTO");
|
|
if (stmt->forUpdate)
|
|
elog(ERROR, "DECLARE/UPDATE is not supported"
|
|
"\n\tCursors must be READ ONLY");
|
|
|
|
/*
|
|
* 15 august 1991 -- since 3.0 postgres does locking right, we
|
|
* discovered that portals were violating locking protocol. portal
|
|
* locks cannot span xacts. as a short-term fix, we installed the
|
|
* check here. -- mao
|
|
*/
|
|
if (!IsTransactionBlock())
|
|
elog(ERROR, "DECLARE CURSOR may only be used in begin/end transaction blocks");
|
|
|
|
qry->into = stmt->portalname;
|
|
qry->isTemp = stmt->istemp;
|
|
qry->isPortal = TRUE;
|
|
qry->isBinary = stmt->binary; /* internal portal */
|
|
}
|
|
else
|
|
{
|
|
/* SELECT */
|
|
qry->into = stmt->into;
|
|
qry->isTemp = stmt->istemp;
|
|
qry->isPortal = FALSE;
|
|
qry->isBinary = FALSE;
|
|
}
|
|
|
|
/* make FOR UPDATE clause available to addRangeTableEntry */
|
|
pstate->p_forUpdate = stmt->forUpdate;
|
|
|
|
/* process the FROM clause */
|
|
transformFromClause(pstate, stmt->fromClause);
|
|
|
|
/* transform targetlist and WHERE */
|
|
qry->targetList = transformTargetList(pstate, stmt->targetList);
|
|
|
|
qual = transformWhereClause(pstate, stmt->whereClause);
|
|
|
|
/*
|
|
* Initial processing of HAVING clause is just like WHERE clause.
|
|
* Additional work will be done in optimizer/plan/planner.c.
|
|
*/
|
|
qry->havingQual = transformWhereClause(pstate, stmt->havingClause);
|
|
|
|
qry->groupClause = transformGroupClause(pstate,
|
|
stmt->groupClause,
|
|
qry->targetList);
|
|
|
|
qry->sortClause = transformSortClause(pstate,
|
|
stmt->sortClause,
|
|
qry->targetList);
|
|
|
|
qry->distinctClause = transformDistinctClause(pstate,
|
|
stmt->distinctClause,
|
|
qry->targetList,
|
|
&qry->sortClause);
|
|
|
|
qry->limitOffset = stmt->limitOffset;
|
|
qry->limitCount = stmt->limitCount;
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
qry->hasAggs = pstate->p_hasAggs;
|
|
if (pstate->p_hasAggs || qry->groupClause || qry->havingQual)
|
|
parseCheckAggregates(pstate, qry, qual);
|
|
|
|
qry->rtable = pstate->p_rtable;
|
|
qry->jointree = makeFromExpr(pstate->p_joinlist, qual);
|
|
|
|
if (stmt->forUpdate != NIL)
|
|
transformForUpdate(qry, stmt->forUpdate);
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* transformSetOperationsStmt -
|
|
* transforms a set-operations tree
|
|
*
|
|
* A set-operation tree is just a SELECT, but with UNION/INTERSECT/EXCEPT
|
|
* structure to it. We must transform each leaf SELECT and build up a top-
|
|
* level Query that contains the leaf SELECTs as subqueries in its rangetable.
|
|
* The tree of set operations is converted into the setOperations field of
|
|
* the top-level Query.
|
|
*/
|
|
static Query *transformSetOperationStmt(ParseState *pstate, SelectStmt *stmt)
|
|
{
|
|
Query *qry = makeNode(Query);
|
|
SelectStmt *leftmostSelect;
|
|
int leftmostRTI;
|
|
Query *leftmostQuery;
|
|
SetOperationStmt *sostmt;
|
|
char *into;
|
|
bool istemp;
|
|
char *portalname;
|
|
bool binary;
|
|
List *sortClause;
|
|
Node *limitOffset;
|
|
Node *limitCount;
|
|
List *forUpdate;
|
|
Node *node;
|
|
List *lefttl,
|
|
*dtlist,
|
|
*targetvars,
|
|
*targetnames,
|
|
*sv_namespace;
|
|
JoinExpr *jnode;
|
|
int tllen;
|
|
|
|
qry->commandType = CMD_SELECT;
|
|
|
|
/*
|
|
* Find leftmost leaf SelectStmt; extract the one-time-only items from
|
|
* it and from the top-level node.
|
|
*/
|
|
leftmostSelect = stmt->larg;
|
|
while (leftmostSelect && leftmostSelect->op != SETOP_NONE)
|
|
leftmostSelect = leftmostSelect->larg;
|
|
Assert(leftmostSelect && IsA(leftmostSelect, SelectStmt) &&
|
|
leftmostSelect->larg == NULL);
|
|
into = leftmostSelect->into;
|
|
istemp = leftmostSelect->istemp;
|
|
portalname = stmt->portalname;
|
|
binary = stmt->binary;
|
|
|
|
/* clear them to prevent complaints in transformSetOperationTree() */
|
|
leftmostSelect->into = NULL;
|
|
leftmostSelect->istemp = false;
|
|
stmt->portalname = NULL;
|
|
stmt->binary = false;
|
|
|
|
/*
|
|
* These are not one-time, exactly, but we want to process them here
|
|
* and not let transformSetOperationTree() see them --- else it'll
|
|
* just recurse right back here!
|
|
*/
|
|
sortClause = stmt->sortClause;
|
|
limitOffset = stmt->limitOffset;
|
|
limitCount = stmt->limitCount;
|
|
forUpdate = stmt->forUpdate;
|
|
|
|
stmt->sortClause = NIL;
|
|
stmt->limitOffset = NULL;
|
|
stmt->limitCount = NULL;
|
|
stmt->forUpdate = NIL;
|
|
|
|
/* We don't support forUpdate with set ops at the moment. */
|
|
if (forUpdate)
|
|
elog(ERROR, "SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT");
|
|
|
|
/*
|
|
* Recursively transform the components of the tree.
|
|
*/
|
|
sostmt = (SetOperationStmt *) transformSetOperationTree(pstate, stmt);
|
|
Assert(sostmt && IsA(sostmt, SetOperationStmt));
|
|
qry->setOperations = (Node *) sostmt;
|
|
|
|
/*
|
|
* Re-find leftmost SELECT (now it's a sub-query in rangetable)
|
|
*/
|
|
node = sostmt->larg;
|
|
while (node && IsA(node, SetOperationStmt))
|
|
node = ((SetOperationStmt *) node)->larg;
|
|
Assert(node && IsA(node, RangeTblRef));
|
|
leftmostRTI = ((RangeTblRef *) node)->rtindex;
|
|
leftmostQuery = rt_fetch(leftmostRTI, pstate->p_rtable)->subquery;
|
|
Assert(leftmostQuery != NULL);
|
|
|
|
/*
|
|
* Generate dummy targetlist for outer query using column names of
|
|
* leftmost select and common datatypes of topmost set operation. Also
|
|
* make lists of the dummy vars and their names for use in parsing
|
|
* ORDER BY.
|
|
*/
|
|
qry->targetList = NIL;
|
|
targetvars = NIL;
|
|
targetnames = NIL;
|
|
lefttl = leftmostQuery->targetList;
|
|
foreach(dtlist, sostmt->colTypes)
|
|
{
|
|
Oid colType = (Oid) lfirsti(dtlist);
|
|
Resdom *leftResdom = ((TargetEntry *) lfirst(lefttl))->resdom;
|
|
char *colName = pstrdup(leftResdom->resname);
|
|
Resdom *resdom;
|
|
Node *expr;
|
|
|
|
resdom = makeResdom((AttrNumber) pstate->p_last_resno++,
|
|
colType,
|
|
-1,
|
|
colName,
|
|
false);
|
|
expr = (Node *) makeVar(leftmostRTI,
|
|
leftResdom->resno,
|
|
colType,
|
|
-1,
|
|
0);
|
|
qry->targetList = lappend(qry->targetList,
|
|
makeTargetEntry(resdom, expr));
|
|
targetvars = lappend(targetvars, expr);
|
|
targetnames = lappend(targetnames, makeString(colName));
|
|
lefttl = lnext(lefttl);
|
|
}
|
|
|
|
/*
|
|
* Insert one-time items into top-level query
|
|
*
|
|
* This needs to agree with transformSelectStmt!
|
|
*/
|
|
if (portalname)
|
|
{
|
|
/* DECLARE CURSOR */
|
|
if (into)
|
|
elog(ERROR, "DECLARE CURSOR must not specify INTO");
|
|
if (forUpdate)
|
|
elog(ERROR, "DECLARE/UPDATE is not supported"
|
|
"\n\tCursors must be READ ONLY");
|
|
|
|
/*
|
|
* 15 august 1991 -- since 3.0 postgres does locking right, we
|
|
* discovered that portals were violating locking protocol. portal
|
|
* locks cannot span xacts. as a short-term fix, we installed the
|
|
* check here. -- mao
|
|
*/
|
|
if (!IsTransactionBlock())
|
|
elog(ERROR, "DECLARE CURSOR may only be used in begin/end transaction blocks");
|
|
|
|
qry->into = portalname;
|
|
qry->isTemp = istemp;
|
|
qry->isPortal = TRUE;
|
|
qry->isBinary = binary; /* internal portal */
|
|
}
|
|
else
|
|
{
|
|
/* SELECT */
|
|
qry->into = into;
|
|
qry->isTemp = istemp;
|
|
qry->isPortal = FALSE;
|
|
qry->isBinary = FALSE;
|
|
}
|
|
|
|
/*
|
|
* As a first step towards supporting sort clauses that are
|
|
* expressions using the output columns, generate a namespace entry
|
|
* that makes the output columns visible. A JoinExpr node is handy
|
|
* for this, since we can easily control the Vars generated upon
|
|
* matches.
|
|
*
|
|
* Note: we don't yet do anything useful with such cases, but at least
|
|
* "ORDER BY upper(foo)" will draw the right error message rather than
|
|
* "foo not found".
|
|
*/
|
|
jnode = makeNode(JoinExpr);
|
|
jnode->colnames = targetnames;
|
|
jnode->colvars = targetvars;
|
|
|
|
sv_namespace = pstate->p_namespace;
|
|
pstate->p_namespace = makeList1(jnode);
|
|
|
|
/*
|
|
* For now, we don't support resjunk sort clauses on the output of a
|
|
* setOperation tree --- you can only use the SQL92-spec options of
|
|
* selecting an output column by name or number. Enforce by checking
|
|
* that transformSortClause doesn't add any items to tlist.
|
|
*/
|
|
tllen = length(qry->targetList);
|
|
|
|
qry->sortClause = transformSortClause(pstate,
|
|
sortClause,
|
|
qry->targetList);
|
|
|
|
pstate->p_namespace = sv_namespace;
|
|
|
|
if (tllen != length(qry->targetList))
|
|
elog(ERROR, "ORDER BY on a UNION/INTERSECT/EXCEPT result must be on one of the result columns");
|
|
|
|
qry->limitOffset = limitOffset;
|
|
qry->limitCount = limitCount;
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
qry->hasAggs = pstate->p_hasAggs;
|
|
if (pstate->p_hasAggs || qry->groupClause || qry->havingQual)
|
|
parseCheckAggregates(pstate, qry, NULL);
|
|
|
|
qry->rtable = pstate->p_rtable;
|
|
qry->jointree = makeFromExpr(pstate->p_joinlist, NULL);
|
|
|
|
if (forUpdate != NIL)
|
|
transformForUpdate(qry, forUpdate);
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* transformSetOperationTree
|
|
* Recursively transform leaves and internal nodes of a set-op tree
|
|
*/
|
|
static Node *
|
|
transformSetOperationTree(ParseState *pstate, SelectStmt *stmt)
|
|
{
|
|
bool isLeaf;
|
|
|
|
Assert(stmt && IsA(stmt, SelectStmt));
|
|
|
|
/*
|
|
* Validity-check both leaf and internal SELECTs for disallowed ops.
|
|
*/
|
|
if (stmt->into)
|
|
elog(ERROR, "INTO is only allowed on first SELECT of UNION/INTERSECT/EXCEPT");
|
|
if (stmt->portalname) /* should not happen */
|
|
elog(ERROR, "Portal may not appear in UNION/INTERSECT/EXCEPT");
|
|
/* We don't support forUpdate with set ops at the moment. */
|
|
if (stmt->forUpdate)
|
|
elog(ERROR, "SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT");
|
|
|
|
/*
|
|
* If an internal node of a set-op tree has ORDER BY, UPDATE, or LIMIT
|
|
* clauses attached, we need to treat it like a leaf node to generate
|
|
* an independent sub-Query tree. Otherwise, it can be represented by
|
|
* a SetOperationStmt node underneath the parent Query.
|
|
*/
|
|
if (stmt->op == SETOP_NONE)
|
|
{
|
|
Assert(stmt->larg == NULL && stmt->rarg == NULL);
|
|
isLeaf = true;
|
|
}
|
|
else
|
|
{
|
|
Assert(stmt->larg != NULL && stmt->rarg != NULL);
|
|
if (stmt->sortClause || stmt->limitOffset || stmt->limitCount ||
|
|
stmt->forUpdate)
|
|
isLeaf = true;
|
|
else
|
|
isLeaf = false;
|
|
}
|
|
|
|
if (isLeaf)
|
|
{
|
|
/* Process leaf SELECT */
|
|
List *selectList;
|
|
Query *selectQuery;
|
|
char selectName[32];
|
|
RangeTblEntry *rte;
|
|
RangeTblRef *rtr;
|
|
|
|
/*
|
|
* Transform SelectStmt into a Query.
|
|
*
|
|
* Note: previously transformed sub-queries don't affect the parsing
|
|
* of this sub-query, because they are not in the toplevel
|
|
* pstate's namespace list.
|
|
*/
|
|
selectList = parse_analyze((Node *) stmt, pstate);
|
|
|
|
Assert(length(selectList) == 1);
|
|
selectQuery = (Query *) lfirst(selectList);
|
|
|
|
/*
|
|
* Make the leaf query be a subquery in the top-level rangetable.
|
|
*/
|
|
sprintf(selectName, "*SELECT* %d", length(pstate->p_rtable) + 1);
|
|
rte = addRangeTableEntryForSubquery(pstate,
|
|
selectQuery,
|
|
makeAttr(pstrdup(selectName),
|
|
NULL),
|
|
false);
|
|
|
|
/*
|
|
* Return a RangeTblRef to replace the SelectStmt in the set-op
|
|
* tree.
|
|
*/
|
|
rtr = makeNode(RangeTblRef);
|
|
/* assume new rte is at end */
|
|
rtr->rtindex = length(pstate->p_rtable);
|
|
Assert(rte == rt_fetch(rtr->rtindex, pstate->p_rtable));
|
|
return (Node *) rtr;
|
|
}
|
|
else
|
|
{
|
|
/* Process an internal node (set operation node) */
|
|
SetOperationStmt *op = makeNode(SetOperationStmt);
|
|
List *lcoltypes;
|
|
List *rcoltypes;
|
|
const char *context;
|
|
|
|
context = (stmt->op == SETOP_UNION ? "UNION" :
|
|
(stmt->op == SETOP_INTERSECT ? "INTERSECT" :
|
|
"EXCEPT"));
|
|
|
|
op->op = stmt->op;
|
|
op->all = stmt->all;
|
|
|
|
/*
|
|
* Recursively transform the child nodes.
|
|
*/
|
|
op->larg = transformSetOperationTree(pstate, stmt->larg);
|
|
op->rarg = transformSetOperationTree(pstate, stmt->rarg);
|
|
|
|
/*
|
|
* Verify that the two children have the same number of non-junk
|
|
* columns, and determine the types of the merged output columns.
|
|
*/
|
|
lcoltypes = getSetColTypes(pstate, op->larg);
|
|
rcoltypes = getSetColTypes(pstate, op->rarg);
|
|
if (length(lcoltypes) != length(rcoltypes))
|
|
elog(ERROR, "Each %s query must have the same number of columns",
|
|
context);
|
|
op->colTypes = NIL;
|
|
while (lcoltypes != NIL)
|
|
{
|
|
Oid lcoltype = (Oid) lfirsti(lcoltypes);
|
|
Oid rcoltype = (Oid) lfirsti(rcoltypes);
|
|
Oid rescoltype;
|
|
|
|
rescoltype = select_common_type(makeListi2(lcoltype, rcoltype),
|
|
context);
|
|
op->colTypes = lappendi(op->colTypes, rescoltype);
|
|
lcoltypes = lnext(lcoltypes);
|
|
rcoltypes = lnext(rcoltypes);
|
|
}
|
|
|
|
return (Node *) op;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* getSetColTypes
|
|
* Get output column types of an (already transformed) set-op node
|
|
*/
|
|
static List *
|
|
getSetColTypes(ParseState *pstate, Node *node)
|
|
{
|
|
if (IsA(node, RangeTblRef))
|
|
{
|
|
RangeTblRef *rtr = (RangeTblRef *) node;
|
|
RangeTblEntry *rte = rt_fetch(rtr->rtindex, pstate->p_rtable);
|
|
Query *selectQuery = rte->subquery;
|
|
List *result = NIL;
|
|
List *tl;
|
|
|
|
Assert(selectQuery != NULL);
|
|
/* Get types of non-junk columns */
|
|
foreach(tl, selectQuery->targetList)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(tl);
|
|
Resdom *resnode = tle->resdom;
|
|
|
|
if (resnode->resjunk)
|
|
continue;
|
|
result = lappendi(result, resnode->restype);
|
|
}
|
|
return result;
|
|
}
|
|
else if (IsA(node, SetOperationStmt))
|
|
{
|
|
SetOperationStmt *op = (SetOperationStmt *) node;
|
|
|
|
/* Result already computed during transformation of node */
|
|
Assert(op->colTypes != NIL);
|
|
return op->colTypes;
|
|
}
|
|
else
|
|
{
|
|
elog(ERROR, "getSetColTypes: unexpected node %d",
|
|
(int) nodeTag(node));
|
|
return NIL; /* keep compiler quiet */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* transformUpdateStmt -
|
|
* transforms an update statement
|
|
*
|
|
*/
|
|
static Query *
|
|
transformUpdateStmt(ParseState *pstate, UpdateStmt *stmt)
|
|
{
|
|
Query *qry = makeNode(Query);
|
|
Node *qual;
|
|
List *origTargetList;
|
|
List *tl;
|
|
|
|
qry->commandType = CMD_UPDATE;
|
|
pstate->p_is_update = true;
|
|
|
|
qry->resultRelation = setTargetTable(pstate, stmt->relname,
|
|
interpretInhOption(stmt->inhOpt),
|
|
true);
|
|
|
|
/*
|
|
* the FROM clause is non-standard SQL syntax. We used to be able to
|
|
* do this with REPLACE in POSTQUEL so we keep the feature.
|
|
*/
|
|
transformFromClause(pstate, stmt->fromClause);
|
|
|
|
qry->targetList = transformTargetList(pstate, stmt->targetList);
|
|
|
|
qual = transformWhereClause(pstate, stmt->whereClause);
|
|
|
|
qry->rtable = pstate->p_rtable;
|
|
qry->jointree = makeFromExpr(pstate->p_joinlist, qual);
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
qry->hasAggs = pstate->p_hasAggs;
|
|
if (pstate->p_hasAggs)
|
|
parseCheckAggregates(pstate, qry, qual);
|
|
|
|
/*
|
|
* Now we are done with SELECT-like processing, and can get on with
|
|
* transforming the target list to match the UPDATE target columns.
|
|
*/
|
|
|
|
/* Prepare to assign non-conflicting resnos to resjunk attributes */
|
|
if (pstate->p_last_resno <= pstate->p_target_relation->rd_rel->relnatts)
|
|
pstate->p_last_resno = pstate->p_target_relation->rd_rel->relnatts + 1;
|
|
|
|
/* Prepare non-junk columns for assignment to target table */
|
|
origTargetList = stmt->targetList;
|
|
foreach(tl, qry->targetList)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(tl);
|
|
Resdom *resnode = tle->resdom;
|
|
ResTarget *origTarget;
|
|
|
|
if (resnode->resjunk)
|
|
{
|
|
|
|
/*
|
|
* Resjunk nodes need no additional processing, but be sure
|
|
* they have names and resnos that do not match any target
|
|
* columns; else rewriter or planner might get confused.
|
|
*/
|
|
resnode->resname = "?resjunk?";
|
|
resnode->resno = (AttrNumber) pstate->p_last_resno++;
|
|
continue;
|
|
}
|
|
if (origTargetList == NIL)
|
|
elog(ERROR, "UPDATE target count mismatch --- internal error");
|
|
origTarget = (ResTarget *) lfirst(origTargetList);
|
|
updateTargetListEntry(pstate, tle, origTarget->name,
|
|
attnameAttNum(pstate->p_target_relation,
|
|
origTarget->name),
|
|
origTarget->indirection);
|
|
origTargetList = lnext(origTargetList);
|
|
}
|
|
if (origTargetList != NIL)
|
|
elog(ERROR, "UPDATE target count mismatch --- internal error");
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* tranformAlterTableStmt -
|
|
* transform an Alter Table Statement
|
|
*
|
|
*/
|
|
static Query *
|
|
transformAlterTableStmt(ParseState *pstate, AlterTableStmt *stmt)
|
|
{
|
|
Query *qry;
|
|
|
|
qry = makeNode(Query);
|
|
qry->commandType = CMD_UTILITY;
|
|
|
|
/*
|
|
* The only subtypes that currently have special handling are 'A'dd
|
|
* column and Add 'C'onstraint. In addition, right now only Foreign
|
|
* Key 'C'onstraints have a special transformation.
|
|
*
|
|
*/
|
|
switch (stmt->subtype)
|
|
{
|
|
case 'A':
|
|
transformColumnType(pstate, (ColumnDef *) stmt->def);
|
|
break;
|
|
case 'C':
|
|
if (stmt->def && IsA(stmt->def, FkConstraint))
|
|
{
|
|
CreateTrigStmt *fk_trigger;
|
|
List *fk_attr;
|
|
List *pk_attr;
|
|
Ident *id;
|
|
FkConstraint *fkconstraint;
|
|
|
|
extras_after = NIL;
|
|
elog(NOTICE, "ALTER TABLE ... ADD CONSTRAINT will create implicit trigger(s) for FOREIGN KEY check(s)");
|
|
|
|
fkconstraint = (FkConstraint *) stmt->def;
|
|
|
|
/*
|
|
* If the constraint has no name, set it to <unnamed>
|
|
*
|
|
*/
|
|
if (fkconstraint->constr_name == NULL)
|
|
fkconstraint->constr_name = "<unnamed>";
|
|
|
|
/*
|
|
* If the attribute list for the referenced table was
|
|
* omitted, lookup for the definition of the primary key
|
|
*
|
|
*/
|
|
if (fkconstraint->fk_attrs != NIL && fkconstraint->pk_attrs == NIL) {
|
|
Oid pktypoid[INDEX_MAX_KEYS];
|
|
transformFkeyGetPrimaryKey(fkconstraint, pktypoid);
|
|
}
|
|
|
|
/*
|
|
* Build a CREATE CONSTRAINT TRIGGER statement for the
|
|
* CHECK action.
|
|
*
|
|
*/
|
|
fk_trigger = (CreateTrigStmt *) makeNode(CreateTrigStmt);
|
|
fk_trigger->trigname = fkconstraint->constr_name;
|
|
fk_trigger->relname = stmt->relname;
|
|
fk_trigger->funcname = "RI_FKey_check_ins";
|
|
fk_trigger->before = false;
|
|
fk_trigger->row = true;
|
|
fk_trigger->actions[0] = 'i';
|
|
fk_trigger->actions[1] = 'u';
|
|
fk_trigger->actions[2] = '\0';
|
|
fk_trigger->lang = NULL;
|
|
fk_trigger->text = NULL;
|
|
|
|
fk_trigger->attr = NIL;
|
|
fk_trigger->when = NULL;
|
|
fk_trigger->isconstraint = true;
|
|
fk_trigger->deferrable = fkconstraint->deferrable;
|
|
fk_trigger->initdeferred = fkconstraint->initdeferred;
|
|
fk_trigger->constrrelname = fkconstraint->pktable_name;
|
|
|
|
fk_trigger->args = NIL;
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->constr_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(stmt->relname));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->pktable_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->match_type));
|
|
fk_attr = fkconstraint->fk_attrs;
|
|
pk_attr = fkconstraint->pk_attrs;
|
|
if (length(fk_attr) != length(pk_attr))
|
|
{
|
|
elog(NOTICE, "Illegal FOREIGN KEY definition REFERENCES \"%s\"",
|
|
fkconstraint->pktable_name);
|
|
elog(ERROR, "number of key attributes in referenced table must be equal to foreign key");
|
|
}
|
|
while (fk_attr != NIL)
|
|
{
|
|
id = (Ident *) lfirst(fk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
id = (Ident *) lfirst(pk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
fk_attr = lnext(fk_attr);
|
|
pk_attr = lnext(pk_attr);
|
|
}
|
|
|
|
extras_after = lappend(extras_after, (Node *) fk_trigger);
|
|
|
|
/*
|
|
* Build a CREATE CONSTRAINT TRIGGER statement for the ON
|
|
* DELETE action fired on the PK table !!!
|
|
*
|
|
*/
|
|
fk_trigger = (CreateTrigStmt *) makeNode(CreateTrigStmt);
|
|
fk_trigger->trigname = fkconstraint->constr_name;
|
|
fk_trigger->relname = fkconstraint->pktable_name;
|
|
switch ((fkconstraint->actions & FKCONSTR_ON_DELETE_MASK)
|
|
>> FKCONSTR_ON_DELETE_SHIFT)
|
|
{
|
|
case FKCONSTR_ON_KEY_NOACTION:
|
|
fk_trigger->funcname = "RI_FKey_noaction_del";
|
|
break;
|
|
case FKCONSTR_ON_KEY_RESTRICT:
|
|
fk_trigger->funcname = "RI_FKey_restrict_del";
|
|
break;
|
|
case FKCONSTR_ON_KEY_CASCADE:
|
|
fk_trigger->funcname = "RI_FKey_cascade_del";
|
|
break;
|
|
case FKCONSTR_ON_KEY_SETNULL:
|
|
fk_trigger->funcname = "RI_FKey_setnull_del";
|
|
break;
|
|
case FKCONSTR_ON_KEY_SETDEFAULT:
|
|
fk_trigger->funcname = "RI_FKey_setdefault_del";
|
|
break;
|
|
default:
|
|
elog(ERROR, "Only one ON DELETE action can be specified for FOREIGN KEY constraint");
|
|
break;
|
|
}
|
|
fk_trigger->before = false;
|
|
fk_trigger->row = true;
|
|
fk_trigger->actions[0] = 'd';
|
|
fk_trigger->actions[1] = '\0';
|
|
fk_trigger->lang = NULL;
|
|
fk_trigger->text = NULL;
|
|
|
|
fk_trigger->attr = NIL;
|
|
fk_trigger->when = NULL;
|
|
fk_trigger->isconstraint = true;
|
|
fk_trigger->deferrable = fkconstraint->deferrable;
|
|
fk_trigger->initdeferred = fkconstraint->initdeferred;
|
|
fk_trigger->constrrelname = stmt->relname;
|
|
|
|
fk_trigger->args = NIL;
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->constr_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(stmt->relname));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->pktable_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->match_type));
|
|
fk_attr = fkconstraint->fk_attrs;
|
|
pk_attr = fkconstraint->pk_attrs;
|
|
while (fk_attr != NIL)
|
|
{
|
|
id = (Ident *) lfirst(fk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
id = (Ident *) lfirst(pk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
fk_attr = lnext(fk_attr);
|
|
pk_attr = lnext(pk_attr);
|
|
}
|
|
|
|
extras_after = lappend(extras_after, (Node *) fk_trigger);
|
|
|
|
/*
|
|
* Build a CREATE CONSTRAINT TRIGGER statement for the ON
|
|
* UPDATE action fired on the PK table !!!
|
|
*
|
|
*/
|
|
fk_trigger = (CreateTrigStmt *) makeNode(CreateTrigStmt);
|
|
fk_trigger->trigname = fkconstraint->constr_name;
|
|
fk_trigger->relname = fkconstraint->pktable_name;
|
|
switch ((fkconstraint->actions & FKCONSTR_ON_UPDATE_MASK)
|
|
>> FKCONSTR_ON_UPDATE_SHIFT)
|
|
{
|
|
case FKCONSTR_ON_KEY_NOACTION:
|
|
fk_trigger->funcname = "RI_FKey_noaction_upd";
|
|
break;
|
|
case FKCONSTR_ON_KEY_RESTRICT:
|
|
fk_trigger->funcname = "RI_FKey_restrict_upd";
|
|
break;
|
|
case FKCONSTR_ON_KEY_CASCADE:
|
|
fk_trigger->funcname = "RI_FKey_cascade_upd";
|
|
break;
|
|
case FKCONSTR_ON_KEY_SETNULL:
|
|
fk_trigger->funcname = "RI_FKey_setnull_upd";
|
|
break;
|
|
case FKCONSTR_ON_KEY_SETDEFAULT:
|
|
fk_trigger->funcname = "RI_FKey_setdefault_upd";
|
|
break;
|
|
default:
|
|
elog(ERROR, "Only one ON UPDATE action can be specified for FOREIGN KEY constraint");
|
|
break;
|
|
}
|
|
fk_trigger->before = false;
|
|
fk_trigger->row = true;
|
|
fk_trigger->actions[0] = 'u';
|
|
fk_trigger->actions[1] = '\0';
|
|
fk_trigger->lang = NULL;
|
|
fk_trigger->text = NULL;
|
|
|
|
fk_trigger->attr = NIL;
|
|
fk_trigger->when = NULL;
|
|
fk_trigger->isconstraint = true;
|
|
fk_trigger->deferrable = fkconstraint->deferrable;
|
|
fk_trigger->initdeferred = fkconstraint->initdeferred;
|
|
fk_trigger->constrrelname = stmt->relname;
|
|
|
|
fk_trigger->args = NIL;
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->constr_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(stmt->relname));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->pktable_name));
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(fkconstraint->match_type));
|
|
fk_attr = fkconstraint->fk_attrs;
|
|
pk_attr = fkconstraint->pk_attrs;
|
|
while (fk_attr != NIL)
|
|
{
|
|
id = (Ident *) lfirst(fk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
id = (Ident *) lfirst(pk_attr);
|
|
fk_trigger->args = lappend(fk_trigger->args,
|
|
makeString(id->name));
|
|
|
|
fk_attr = lnext(fk_attr);
|
|
pk_attr = lnext(pk_attr);
|
|
}
|
|
|
|
extras_after = lappend(extras_after, (Node *) fk_trigger);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
qry->utilityStmt = (Node *) stmt;
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* Transform uses of %TYPE in a statement.
|
|
*/
|
|
static Node *
|
|
transformTypeRefs(ParseState *pstate, Node *stmt)
|
|
{
|
|
switch (nodeTag(stmt))
|
|
{
|
|
case T_ProcedureStmt:
|
|
{
|
|
ProcedureStmt *ps = (ProcedureStmt *) stmt;
|
|
|
|
transformTypeRefsList(pstate, ps->argTypes);
|
|
transformTypeRef(pstate, (TypeName *) ps->returnType);
|
|
transformTypeRefsList(pstate, ps->withClause);
|
|
}
|
|
break;
|
|
|
|
case T_CommentStmt:
|
|
{
|
|
CommentStmt *cs = (CommentStmt *) stmt;
|
|
|
|
transformTypeRefsList(pstate, cs->objlist);
|
|
}
|
|
break;
|
|
|
|
case T_RemoveFuncStmt:
|
|
{
|
|
RemoveFuncStmt *rs = (RemoveFuncStmt *) stmt;
|
|
|
|
transformTypeRefsList(pstate, rs->args);
|
|
}
|
|
break;
|
|
|
|
case T_DefineStmt:
|
|
{
|
|
DefineStmt *ds = (DefineStmt *) stmt;
|
|
List *ele;
|
|
|
|
foreach(ele, ds->definition)
|
|
{
|
|
DefElem *de = (DefElem *) lfirst(ele);
|
|
|
|
if (de->arg != NULL
|
|
&& IsA(de->arg, TypeName))
|
|
{
|
|
transformTypeRef(pstate, (TypeName *) de->arg);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "Unsupported type %d in transformTypeRefs",
|
|
nodeTag(stmt));
|
|
break;
|
|
}
|
|
|
|
return stmt;
|
|
}
|
|
|
|
/*
|
|
* Transform uses of %TYPE in a list.
|
|
*/
|
|
static void
|
|
transformTypeRefsList(ParseState *pstate, List *l)
|
|
{
|
|
List *ele;
|
|
|
|
foreach(ele, l)
|
|
{
|
|
if (IsA(lfirst(ele), TypeName))
|
|
transformTypeRef(pstate, (TypeName *) lfirst(ele));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transform a TypeName to not use %TYPE.
|
|
*/
|
|
static void
|
|
transformTypeRef(ParseState *pstate, TypeName *tn)
|
|
{
|
|
Attr *att;
|
|
Node *n;
|
|
Var *v;
|
|
char *tyn;
|
|
|
|
if (tn->attrname == NULL)
|
|
return;
|
|
att = makeAttr(tn->name, tn->attrname);
|
|
n = transformExpr(pstate, (Node *) att, EXPR_COLUMN_FIRST);
|
|
if (! IsA(n, Var))
|
|
elog(ERROR, "unsupported expression in %%TYPE");
|
|
v = (Var *) n;
|
|
tyn = typeidTypeName(v->vartype);
|
|
elog(NOTICE, "%s.%s%%TYPE converted to %s", tn->name, tn->attrname, tyn);
|
|
tn->name = tyn;
|
|
tn->typmod = v->vartypmod;
|
|
tn->attrname = NULL;
|
|
}
|
|
|
|
/* exported so planner can check again after rewriting, query pullup, etc */
|
|
void
|
|
CheckSelectForUpdate(Query *qry)
|
|
{
|
|
if (qry->setOperations)
|
|
elog(ERROR, "SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT");
|
|
if (qry->distinctClause != NIL)
|
|
elog(ERROR, "SELECT FOR UPDATE is not allowed with DISTINCT clause");
|
|
if (qry->groupClause != NIL)
|
|
elog(ERROR, "SELECT FOR UPDATE is not allowed with GROUP BY clause");
|
|
if (qry->hasAggs)
|
|
elog(ERROR, "SELECT FOR UPDATE is not allowed with AGGREGATE");
|
|
}
|
|
|
|
static void
|
|
transformForUpdate(Query *qry, List *forUpdate)
|
|
{
|
|
List *rowMarks = qry->rowMarks;
|
|
List *l;
|
|
List *rt;
|
|
Index i;
|
|
|
|
CheckSelectForUpdate(qry);
|
|
|
|
if (lfirst(forUpdate) == NULL)
|
|
{
|
|
/* all tables used in query */
|
|
i = 0;
|
|
foreach(rt, qry->rtable)
|
|
{
|
|
RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt);
|
|
|
|
++i;
|
|
if (rte->subquery)
|
|
{
|
|
/* FOR UPDATE of subquery is propagated to subquery's rels */
|
|
transformForUpdate(rte->subquery, makeList1(NULL));
|
|
}
|
|
else
|
|
{
|
|
if (!intMember(i, rowMarks)) /* avoid duplicates */
|
|
rowMarks = lappendi(rowMarks, i);
|
|
rte->checkForWrite = true;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* just the named tables */
|
|
foreach(l, forUpdate)
|
|
{
|
|
char *relname = strVal(lfirst(l));
|
|
|
|
i = 0;
|
|
foreach(rt, qry->rtable)
|
|
{
|
|
RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt);
|
|
|
|
++i;
|
|
if (strcmp(rte->eref->relname, relname) == 0)
|
|
{
|
|
if (rte->subquery)
|
|
{
|
|
/* propagate to subquery */
|
|
transformForUpdate(rte->subquery, makeList1(NULL));
|
|
}
|
|
else
|
|
{
|
|
if (!intMember(i, rowMarks)) /* avoid duplicates */
|
|
rowMarks = lappendi(rowMarks, i);
|
|
rte->checkForWrite = true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (rt == NIL)
|
|
elog(ERROR, "FOR UPDATE: relation \"%s\" not found in FROM clause",
|
|
relname);
|
|
}
|
|
}
|
|
|
|
qry->rowMarks = rowMarks;
|
|
}
|
|
|
|
|
|
/*
|
|
* transformFkeyCheckAttrs -
|
|
*
|
|
* Try to make sure that the attributes of a referenced table
|
|
* belong to a unique (or primary key) constraint.
|
|
*
|
|
*/
|
|
static void
|
|
transformFkeyCheckAttrs(FkConstraint *fkconstraint, Oid *pktypoid)
|
|
{
|
|
Relation pkrel;
|
|
Form_pg_attribute *pkrel_attrs;
|
|
List *indexoidlist,
|
|
*indexoidscan;
|
|
int i;
|
|
bool found = false;
|
|
|
|
/*
|
|
* Open the referenced table and get the attributes list
|
|
*/
|
|
pkrel = heap_openr(fkconstraint->pktable_name, AccessShareLock);
|
|
if (pkrel == NULL)
|
|
elog(ERROR, "referenced table \"%s\" not found",
|
|
fkconstraint->pktable_name);
|
|
pkrel_attrs = pkrel->rd_att->attrs;
|
|
|
|
/*
|
|
* Get the list of index OIDs for the table from the relcache, and
|
|
* look up each one in the pg_index syscache for each unique one, and
|
|
* then compare the attributes we were given to those defined.
|
|
*/
|
|
indexoidlist = RelationGetIndexList(pkrel);
|
|
|
|
foreach(indexoidscan, indexoidlist)
|
|
{
|
|
Oid indexoid = lfirsti(indexoidscan);
|
|
HeapTuple indexTuple;
|
|
Form_pg_index indexStruct;
|
|
|
|
indexTuple = SearchSysCache(INDEXRELID,
|
|
ObjectIdGetDatum(indexoid),
|
|
0, 0, 0);
|
|
if (!HeapTupleIsValid(indexTuple))
|
|
elog(ERROR, "transformFkeyGetPrimaryKey: index %u not found",
|
|
indexoid);
|
|
indexStruct = (Form_pg_index) GETSTRUCT(indexTuple);
|
|
|
|
if (indexStruct->indisunique)
|
|
{
|
|
List *attrl;
|
|
int attnum=0;
|
|
|
|
for (i = 0; i < INDEX_MAX_KEYS && indexStruct->indkey[i] != 0; i++);
|
|
if (i != length(fkconstraint->pk_attrs))
|
|
found = false;
|
|
else
|
|
{
|
|
/* go through the fkconstraint->pk_attrs list */
|
|
foreach(attrl, fkconstraint->pk_attrs)
|
|
{
|
|
Ident *attr = lfirst(attrl);
|
|
|
|
found = false;
|
|
for (i = 0; i < INDEX_MAX_KEYS && indexStruct->indkey[i] != 0; i++)
|
|
{
|
|
int pkattno = indexStruct->indkey[i];
|
|
|
|
if (pkattno > 0)
|
|
{
|
|
char *name = NameStr(pkrel_attrs[pkattno - 1]->attname);
|
|
|
|
if (strcmp(name, attr->name) == 0)
|
|
{
|
|
pktypoid[attnum++]=pkrel_attrs[pkattno-1]->atttypid;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!found)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
ReleaseSysCache(indexTuple);
|
|
if (found)
|
|
break;
|
|
}
|
|
if (!found)
|
|
elog(ERROR, "UNIQUE constraint matching given keys for referenced table \"%s\" not found",
|
|
fkconstraint->pktable_name);
|
|
|
|
freeList(indexoidlist);
|
|
heap_close(pkrel, AccessShareLock);
|
|
}
|
|
|
|
|
|
/*
|
|
* transformFkeyGetPrimaryKey -
|
|
*
|
|
* Try to find the primary key attributes of a referenced table if
|
|
* the column list in the REFERENCES specification was omitted.
|
|
*
|
|
*/
|
|
static void
|
|
transformFkeyGetPrimaryKey(FkConstraint *fkconstraint, Oid *pktypoid)
|
|
{
|
|
Relation pkrel;
|
|
Form_pg_attribute *pkrel_attrs;
|
|
List *indexoidlist,
|
|
*indexoidscan;
|
|
HeapTuple indexTuple = NULL;
|
|
Form_pg_index indexStruct = NULL;
|
|
int i;
|
|
int attnum=0;
|
|
|
|
/*
|
|
* Open the referenced table and get the attributes list
|
|
*/
|
|
pkrel = heap_openr(fkconstraint->pktable_name, AccessShareLock);
|
|
if (pkrel == NULL)
|
|
elog(ERROR, "referenced table \"%s\" not found",
|
|
fkconstraint->pktable_name);
|
|
pkrel_attrs = pkrel->rd_att->attrs;
|
|
|
|
/*
|
|
* Get the list of index OIDs for the table from the relcache, and
|
|
* look up each one in the pg_index syscache until we find one marked
|
|
* primary key (hopefully there isn't more than one such).
|
|
*/
|
|
indexoidlist = RelationGetIndexList(pkrel);
|
|
|
|
foreach(indexoidscan, indexoidlist)
|
|
{
|
|
Oid indexoid = lfirsti(indexoidscan);
|
|
|
|
indexTuple = SearchSysCache(INDEXRELID,
|
|
ObjectIdGetDatum(indexoid),
|
|
0, 0, 0);
|
|
if (!HeapTupleIsValid(indexTuple))
|
|
elog(ERROR, "transformFkeyGetPrimaryKey: index %u not found",
|
|
indexoid);
|
|
indexStruct = (Form_pg_index) GETSTRUCT(indexTuple);
|
|
if (indexStruct->indisprimary)
|
|
break;
|
|
ReleaseSysCache(indexTuple);
|
|
indexStruct = NULL;
|
|
}
|
|
|
|
freeList(indexoidlist);
|
|
|
|
/*
|
|
* Check that we found it
|
|
*/
|
|
if (indexStruct == NULL)
|
|
elog(ERROR, "PRIMARY KEY for referenced table \"%s\" not found",
|
|
fkconstraint->pktable_name);
|
|
|
|
/*
|
|
* Now build the list of PK attributes from the indkey definition
|
|
* using the attribute names of the PK relation descriptor
|
|
*/
|
|
for (i = 0; i < INDEX_MAX_KEYS && indexStruct->indkey[i] != 0; i++)
|
|
{
|
|
int pkattno = indexStruct->indkey[i];
|
|
Ident *pkattr = makeNode(Ident);
|
|
|
|
pkattr->name = DatumGetCString(DirectFunctionCall1(nameout,
|
|
NameGetDatum(&(pkrel_attrs[pkattno - 1]->attname))));
|
|
pkattr->indirection = NIL;
|
|
pkattr->isRel = false;
|
|
pktypoid[attnum++]=pkrel_attrs[pkattno-1]->atttypid;
|
|
|
|
fkconstraint->pk_attrs = lappend(fkconstraint->pk_attrs, pkattr);
|
|
}
|
|
|
|
ReleaseSysCache(indexTuple);
|
|
|
|
heap_close(pkrel, AccessShareLock);
|
|
}
|
|
|
|
/*
|
|
* Preprocess a list of column constraint clauses
|
|
* to attach constraint attributes to their primary constraint nodes
|
|
* and detect inconsistent/misplaced constraint attributes.
|
|
*
|
|
* NOTE: currently, attributes are only supported for FOREIGN KEY primary
|
|
* constraints, but someday they ought to be supported for other constraints.
|
|
*/
|
|
static void
|
|
transformConstraintAttrs(List *constraintList)
|
|
{
|
|
Node *lastprimarynode = NULL;
|
|
bool saw_deferrability = false;
|
|
bool saw_initially = false;
|
|
List *clist;
|
|
|
|
foreach(clist, constraintList)
|
|
{
|
|
Node *node = lfirst(clist);
|
|
|
|
if (!IsA(node, Constraint))
|
|
{
|
|
lastprimarynode = node;
|
|
/* reset flags for new primary node */
|
|
saw_deferrability = false;
|
|
saw_initially = false;
|
|
}
|
|
else
|
|
{
|
|
Constraint *con = (Constraint *) node;
|
|
|
|
switch (con->contype)
|
|
{
|
|
case CONSTR_ATTR_DEFERRABLE:
|
|
if (lastprimarynode == NULL ||
|
|
!IsA(lastprimarynode, FkConstraint))
|
|
elog(ERROR, "Misplaced DEFERRABLE clause");
|
|
if (saw_deferrability)
|
|
elog(ERROR, "Multiple DEFERRABLE/NOT DEFERRABLE clauses not allowed");
|
|
saw_deferrability = true;
|
|
((FkConstraint *) lastprimarynode)->deferrable = true;
|
|
break;
|
|
case CONSTR_ATTR_NOT_DEFERRABLE:
|
|
if (lastprimarynode == NULL ||
|
|
!IsA(lastprimarynode, FkConstraint))
|
|
elog(ERROR, "Misplaced NOT DEFERRABLE clause");
|
|
if (saw_deferrability)
|
|
elog(ERROR, "Multiple DEFERRABLE/NOT DEFERRABLE clauses not allowed");
|
|
saw_deferrability = true;
|
|
((FkConstraint *) lastprimarynode)->deferrable = false;
|
|
if (saw_initially &&
|
|
((FkConstraint *) lastprimarynode)->initdeferred)
|
|
elog(ERROR, "INITIALLY DEFERRED constraint must be DEFERRABLE");
|
|
break;
|
|
case CONSTR_ATTR_DEFERRED:
|
|
if (lastprimarynode == NULL ||
|
|
!IsA(lastprimarynode, FkConstraint))
|
|
elog(ERROR, "Misplaced INITIALLY DEFERRED clause");
|
|
if (saw_initially)
|
|
elog(ERROR, "Multiple INITIALLY IMMEDIATE/DEFERRED clauses not allowed");
|
|
saw_initially = true;
|
|
((FkConstraint *) lastprimarynode)->initdeferred = true;
|
|
|
|
/*
|
|
* If only INITIALLY DEFERRED appears, assume
|
|
* DEFERRABLE
|
|
*/
|
|
if (!saw_deferrability)
|
|
((FkConstraint *) lastprimarynode)->deferrable = true;
|
|
else if (!((FkConstraint *) lastprimarynode)->deferrable)
|
|
elog(ERROR, "INITIALLY DEFERRED constraint must be DEFERRABLE");
|
|
break;
|
|
case CONSTR_ATTR_IMMEDIATE:
|
|
if (lastprimarynode == NULL ||
|
|
!IsA(lastprimarynode, FkConstraint))
|
|
elog(ERROR, "Misplaced INITIALLY IMMEDIATE clause");
|
|
if (saw_initially)
|
|
elog(ERROR, "Multiple INITIALLY IMMEDIATE/DEFERRED clauses not allowed");
|
|
saw_initially = true;
|
|
((FkConstraint *) lastprimarynode)->initdeferred = false;
|
|
break;
|
|
default:
|
|
/* Otherwise it's not an attribute */
|
|
lastprimarynode = node;
|
|
/* reset flags for new primary node */
|
|
saw_deferrability = false;
|
|
saw_initially = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Build a FromExpr node */
|
|
static FromExpr *
|
|
makeFromExpr(List *fromlist, Node *quals)
|
|
{
|
|
FromExpr *f = makeNode(FromExpr);
|
|
|
|
f->fromlist = fromlist;
|
|
f->quals = quals;
|
|
return f;
|
|
}
|
|
|
|
/*
|
|
* Special handling of type definition for a column
|
|
*/
|
|
static void
|
|
transformColumnType(ParseState *pstate, ColumnDef *column)
|
|
{
|
|
TypeName *typename = column->typename;
|
|
Type ctype = typenameType(typename->name);
|
|
|
|
/*
|
|
* If the column doesn't have an explicitly specified typmod, check to
|
|
* see if we want to insert a default length.
|
|
*
|
|
* Note that we deliberately do NOT look at array or set information
|
|
* here; "numeric[]" needs the same default typmod as "numeric".
|
|
*/
|
|
if (typename->typmod == -1)
|
|
{
|
|
switch (typeTypeId(ctype))
|
|
{
|
|
case BPCHAROID:
|
|
/* "char" -> "char(1)" */
|
|
typename->typmod = VARHDRSZ + 1;
|
|
break;
|
|
case NUMERICOID:
|
|
typename->typmod = VARHDRSZ +
|
|
((NUMERIC_DEFAULT_PRECISION << 16) | NUMERIC_DEFAULT_SCALE);
|
|
break;
|
|
case BITOID:
|
|
/* 'bit' -> 'bit(1)' */
|
|
typename->typmod = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Is this the name of a complex type? If so, implement it as a set.
|
|
*
|
|
* XXX this is a hangover from ancient Berkeley code that probably
|
|
* doesn't work anymore anyway.
|
|
*/
|
|
if (typeTypeRelid(ctype) != InvalidOid)
|
|
{
|
|
|
|
/*
|
|
* (Eventually add in here that the set can only contain one
|
|
* element.)
|
|
*/
|
|
typename->setof = true;
|
|
}
|
|
|
|
ReleaseSysCache(ctype);
|
|
}
|