mirror of
				https://github.com/postgres/postgres.git
				synced 2025-11-03 09:13:20 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			1050 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1050 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/******************************************************************************
 | 
						|
  This file contains routines that can be bound to a Postgres backend and
 | 
						|
  called by the backend in the process of processing queries.  The calling
 | 
						|
  format for these routines is dictated by Postgres architecture.
 | 
						|
******************************************************************************/
 | 
						|
 | 
						|
#include "postgres.h"
 | 
						|
 | 
						|
#include <float.h>
 | 
						|
 | 
						|
#include "access/gist.h"
 | 
						|
#include "access/rtree.h"
 | 
						|
#include "utils/elog.h"
 | 
						|
#include "utils/palloc.h"
 | 
						|
#include "utils/builtins.h"
 | 
						|
 | 
						|
#include "segdata.h"
 | 
						|
 | 
						|
#define max(a,b)        ((a) >  (b) ? (a) : (b))
 | 
						|
#define min(a,b)        ((a) <= (b) ? (a) : (b))
 | 
						|
#define abs(a)          ((a) <  (0) ? (-a) : (a))
 | 
						|
 | 
						|
/* 
 | 
						|
#define GIST_DEBUG
 | 
						|
#define GIST_QUERY_DEBUG 
 | 
						|
*/
 | 
						|
 | 
						|
extern void  set_parse_buffer(char *str);
 | 
						|
extern int   seg_yyparse();
 | 
						|
/*
 | 
						|
extern int   seg_yydebug;
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
** Input/Output routines
 | 
						|
*/
 | 
						|
SEG *        seg_in(char *str);
 | 
						|
char *       seg_out(SEG *seg);
 | 
						|
float32      seg_lower(SEG *seg);
 | 
						|
float32      seg_upper(SEG *seg);
 | 
						|
float32      seg_center(SEG *seg);
 | 
						|
 | 
						|
/* 
 | 
						|
** GiST support methods
 | 
						|
*/
 | 
						|
bool             gseg_consistent(GISTENTRY *entry, SEG *query, StrategyNumber strategy);
 | 
						|
GISTENTRY *      gseg_compress(GISTENTRY *entry);
 | 
						|
GISTENTRY *      gseg_decompress(GISTENTRY *entry);
 | 
						|
float *          gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
 | 
						|
GIST_SPLITVEC *  gseg_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
 | 
						|
bool             gseg_leaf_consistent(SEG *key, SEG *query, StrategyNumber strategy);
 | 
						|
bool             gseg_internal_consistent(SEG *key, SEG *query, StrategyNumber strategy);
 | 
						|
SEG *            gseg_union(bytea *entryvec, int *sizep);
 | 
						|
SEG *            gseg_binary_union(SEG *r1, SEG *r2, int *sizep);
 | 
						|
bool *           gseg_same(SEG *b1, SEG *b2, bool *result);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** R-tree suport functions
 | 
						|
*/
 | 
						|
bool     seg_same(SEG *a, SEG *b);
 | 
						|
bool     seg_contains_int(SEG *a, int *b);
 | 
						|
bool     seg_contains_float4(SEG *a, float4 *b);
 | 
						|
bool     seg_contains_float8(SEG *a, float8 *b);
 | 
						|
bool     seg_contains(SEG *a, SEG *b);
 | 
						|
bool     seg_contained(SEG *a, SEG *b);
 | 
						|
bool     seg_overlap(SEG *a, SEG *b);
 | 
						|
bool     seg_left(SEG *a, SEG *b);
 | 
						|
bool     seg_over_left(SEG *a, SEG *b);
 | 
						|
bool     seg_right(SEG *a, SEG *b);
 | 
						|
bool     seg_over_right(SEG *a, SEG *b);
 | 
						|
SEG *    seg_union(SEG *a, SEG *b);
 | 
						|
SEG *    seg_inter(SEG *a, SEG *b);
 | 
						|
void     rt_seg_size(SEG *a, float* sz);
 | 
						|
float *  seg_size(SEG *a);
 | 
						|
 | 
						|
/*
 | 
						|
** Various operators
 | 
						|
*/
 | 
						|
int32    seg_cmp(SEG *a, SEG *b);
 | 
						|
bool     seg_lt(SEG *a, SEG *b);
 | 
						|
bool     seg_le(SEG *a, SEG *b);
 | 
						|
bool     seg_gt(SEG *a, SEG *b);
 | 
						|
bool     seg_ge(SEG *a, SEG *b);
 | 
						|
bool     seg_different(SEG *a, SEG *b);
 | 
						|
 | 
						|
/* 
 | 
						|
** Auxiliary funxtions
 | 
						|
*/
 | 
						|
static int    restore(char *s, float val, int n);
 | 
						|
int    significant_digits (char* s);
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 * Input/Output functions
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
SEG *
 | 
						|
seg_in(char *str)
 | 
						|
{
 | 
						|
  SEG * result = palloc(sizeof(SEG));
 | 
						|
  set_parse_buffer( str );
 | 
						|
  
 | 
						|
  /*
 | 
						|
  seg_yydebug = 1;
 | 
						|
  */
 | 
						|
  if ( seg_yyparse(result) != 0 ) {
 | 
						|
    pfree ( result );
 | 
						|
    return NULL;
 | 
						|
  }  
 | 
						|
  return ( result );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * You might have noticed a slight inconsistency between the following
 | 
						|
 * declaration and the SQL definition:
 | 
						|
 *     CREATE FUNCTION seg_out(opaque) RETURNS opaque ...
 | 
						|
 * The reason is that the argument passed into seg_out is really just a
 | 
						|
 * pointer. POSTGRES thinks all output functions are:
 | 
						|
 *     char *out_func(char *);
 | 
						|
 */
 | 
						|
char *
 | 
						|
seg_out(SEG *seg)
 | 
						|
{
 | 
						|
    char *result;
 | 
						|
    char *p;
 | 
						|
 | 
						|
    if (seg == NULL) return(NULL);
 | 
						|
 | 
						|
    p = result = (char *) palloc(40);
 | 
						|
 | 
						|
    if ( seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~' ) {
 | 
						|
      p += sprintf(p, "%c", seg->l_ext);
 | 
						|
    }
 | 
						|
      
 | 
						|
    if ( seg->lower == seg->upper && seg->l_ext == seg->u_ext ) {
 | 
						|
      /* indicates that this interval was built by seg_in off a single point */
 | 
						|
      p += restore(p, seg->lower, seg->l_sigd);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      if ( seg->l_ext != '-' ) {
 | 
						|
	/* print the lower boudary if exists */
 | 
						|
	p += restore(p, seg->lower, seg->l_sigd);
 | 
						|
	p += sprintf(p, " ");
 | 
						|
      }
 | 
						|
      p += sprintf(p, "..");
 | 
						|
      if ( seg->u_ext != '-' ) {
 | 
						|
	/* print the upper boudary if exists */
 | 
						|
	p += sprintf(p, " ");
 | 
						|
	if ( seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~' ) {
 | 
						|
	  p += sprintf(p, "%c", seg->u_ext);
 | 
						|
	}
 | 
						|
	p += restore(p, seg->upper, seg->u_sigd);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return(result);
 | 
						|
}
 | 
						|
 | 
						|
float32
 | 
						|
seg_center(SEG *seg)
 | 
						|
{
 | 
						|
        float32 result = (float32) palloc(sizeof(float32data));
 | 
						|
 | 
						|
        if (!seg)
 | 
						|
                return (float32) NULL;
 | 
						|
 | 
						|
        *result = ((float)seg->lower + (float)seg->upper)/2.0;
 | 
						|
        return (result);
 | 
						|
}
 | 
						|
 | 
						|
float32
 | 
						|
seg_lower(SEG *seg)
 | 
						|
{
 | 
						|
        float32 result = (float32) palloc(sizeof(float32data));
 | 
						|
 | 
						|
        if (!seg)
 | 
						|
                return (float32) NULL;
 | 
						|
 | 
						|
        *result = (float)seg->lower;
 | 
						|
        return (result);
 | 
						|
}
 | 
						|
 | 
						|
float32
 | 
						|
seg_upper(SEG *seg)
 | 
						|
{
 | 
						|
        float32 result = (float32) palloc(sizeof(float32data));
 | 
						|
 | 
						|
        if (!seg)
 | 
						|
                return (float32) NULL;
 | 
						|
 | 
						|
        *result = (float)seg->upper;
 | 
						|
        return (result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 *                         GiST functions
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Consistent method for segments
 | 
						|
** Should return false if for all data items x below entry,
 | 
						|
** the predicate x op query == FALSE, where op is the oper
 | 
						|
** corresponding to strategy in the pg_amop table.
 | 
						|
*/
 | 
						|
bool 
 | 
						|
gseg_consistent(GISTENTRY *entry,
 | 
						|
	       SEG *query,
 | 
						|
	       StrategyNumber strategy)
 | 
						|
{
 | 
						|
    /*
 | 
						|
    ** if entry is not leaf, use gseg_internal_consistent,
 | 
						|
    ** else use gseg_leaf_consistent
 | 
						|
    */
 | 
						|
    if (GIST_LEAF(entry))
 | 
						|
      return(gseg_leaf_consistent((SEG *)(entry->pred), query, strategy));
 | 
						|
    else
 | 
						|
      return(gseg_internal_consistent((SEG *)(entry->pred), query, strategy));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Union method for segments
 | 
						|
** returns the minimal bounding seg that encloses all the entries in entryvec
 | 
						|
*/
 | 
						|
SEG *
 | 
						|
gseg_union(bytea *entryvec, int *sizep)
 | 
						|
{
 | 
						|
    int numranges, i;
 | 
						|
    SEG *out = (SEG *)NULL;
 | 
						|
    SEG *tmp;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    fprintf(stderr, "union\n");
 | 
						|
#endif
 | 
						|
 | 
						|
    numranges = (VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY); 
 | 
						|
    tmp = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[0]).pred;
 | 
						|
    *sizep = sizeof(SEG);
 | 
						|
 | 
						|
    for (i = 1; i < numranges; i++) {
 | 
						|
	out = gseg_binary_union(tmp, (SEG *)
 | 
						|
				 (((GISTENTRY *)(VARDATA(entryvec)))[i]).pred,
 | 
						|
				 sizep);
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
	/*
 | 
						|
	fprintf(stderr, "\t%s ^ %s -> %s\n", seg_out(tmp), seg_out((SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i]).pred), seg_out(out));
 | 
						|
	*/
 | 
						|
#endif
 | 
						|
 | 
						|
	if (i > 1) pfree(tmp);
 | 
						|
	tmp = out;
 | 
						|
    }
 | 
						|
 | 
						|
    return(out);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** GiST Compress and Decompress methods for segments
 | 
						|
** do not do anything.
 | 
						|
*/
 | 
						|
GISTENTRY *
 | 
						|
gseg_compress(GISTENTRY *entry)
 | 
						|
{
 | 
						|
    return(entry);
 | 
						|
}
 | 
						|
 | 
						|
GISTENTRY *
 | 
						|
gseg_decompress(GISTENTRY *entry)
 | 
						|
{
 | 
						|
    return(entry);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Penalty method for segments
 | 
						|
** As in the R-tree paper, we use change in area as our penalty metric
 | 
						|
*/
 | 
						|
float *
 | 
						|
gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
 | 
						|
{
 | 
						|
    Datum ud;
 | 
						|
    float tmp1, tmp2;
 | 
						|
    
 | 
						|
    ud = (Datum)seg_union((SEG *)(origentry->pred), (SEG *)(newentry->pred));
 | 
						|
    rt_seg_size((SEG *)ud, &tmp1);
 | 
						|
    rt_seg_size((SEG *)(origentry->pred), &tmp2);
 | 
						|
    *result = tmp1 - tmp2;
 | 
						|
    pfree((char *)ud);
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    fprintf(stderr, "penalty\n");
 | 
						|
    fprintf(stderr, "\t%g\n", *result);
 | 
						|
#endif
 | 
						|
 | 
						|
    return(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST PickSplit method for segments
 | 
						|
** We use Guttman's poly time split algorithm 
 | 
						|
*/
 | 
						|
GIST_SPLITVEC *
 | 
						|
gseg_picksplit(bytea *entryvec,
 | 
						|
	      GIST_SPLITVEC *v)
 | 
						|
{
 | 
						|
    OffsetNumber i, j;
 | 
						|
    SEG *datum_alpha, *datum_beta;
 | 
						|
    SEG *datum_l, *datum_r;
 | 
						|
    SEG *union_d, *union_dl, *union_dr;
 | 
						|
    SEG *inter_d;
 | 
						|
    bool firsttime;
 | 
						|
    float size_alpha, size_beta, size_union, size_inter;
 | 
						|
    float size_waste, waste;
 | 
						|
    float size_l, size_r;
 | 
						|
    int nbytes;
 | 
						|
    OffsetNumber seed_1 = 0, seed_2 = 0;
 | 
						|
    OffsetNumber *left, *right;
 | 
						|
    OffsetNumber maxoff;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    fprintf(stderr, "picksplit\n");
 | 
						|
#endif
 | 
						|
 | 
						|
    maxoff = ((VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY)) - 2;
 | 
						|
    nbytes =  (maxoff + 2) * sizeof(OffsetNumber);
 | 
						|
    v->spl_left = (OffsetNumber *) palloc(nbytes);
 | 
						|
    v->spl_right = (OffsetNumber *) palloc(nbytes);
 | 
						|
    
 | 
						|
    firsttime = true;
 | 
						|
    waste = 0.0;
 | 
						|
    
 | 
						|
    for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) {
 | 
						|
	datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
 | 
						|
	for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) {
 | 
						|
	    datum_beta = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[j].pred);
 | 
						|
	    
 | 
						|
	    /* compute the wasted space by unioning these guys */
 | 
						|
	    /* size_waste = size_union - size_inter; */
 | 
						|
	    union_d = (SEG *)seg_union(datum_alpha, datum_beta);
 | 
						|
	    rt_seg_size(union_d, &size_union);
 | 
						|
	    inter_d = (SEG *)seg_inter(datum_alpha, datum_beta);
 | 
						|
	    rt_seg_size(inter_d, &size_inter);
 | 
						|
	    size_waste = size_union - size_inter;
 | 
						|
	    
 | 
						|
	    pfree(union_d);
 | 
						|
	    
 | 
						|
	    if (inter_d != (SEG *) NULL)
 | 
						|
		pfree(inter_d);
 | 
						|
	    
 | 
						|
	    /*
 | 
						|
	     *  are these a more promising split that what we've
 | 
						|
	     *  already seen?
 | 
						|
	     */
 | 
						|
	    
 | 
						|
	    if (size_waste > waste || firsttime) {
 | 
						|
		waste = size_waste;
 | 
						|
		seed_1 = i;
 | 
						|
		seed_2 = j;
 | 
						|
		firsttime = false;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
    
 | 
						|
    left = v->spl_left;
 | 
						|
    v->spl_nleft = 0;
 | 
						|
    right = v->spl_right;
 | 
						|
    v->spl_nright = 0;
 | 
						|
    
 | 
						|
    datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_1].pred);
 | 
						|
    datum_l = (SEG *)seg_union(datum_alpha, datum_alpha);
 | 
						|
    rt_seg_size((SEG *)datum_l, &size_l);
 | 
						|
    datum_beta = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_2].pred);;
 | 
						|
    datum_r = (SEG *)seg_union(datum_beta, datum_beta);
 | 
						|
    rt_seg_size((SEG *)datum_r, &size_r);
 | 
						|
    
 | 
						|
    /*
 | 
						|
     *  Now split up the regions between the two seeds.  An important
 | 
						|
     *  property of this split algorithm is that the split vector v
 | 
						|
     *  has the indices of items to be split in order in its left and
 | 
						|
     *  right vectors.  We exploit this property by doing a merge in
 | 
						|
     *  the code that actually splits the page.
 | 
						|
     *
 | 
						|
     *  For efficiency, we also place the new index tuple in this loop.
 | 
						|
     *  This is handled at the very end, when we have placed all the
 | 
						|
     *  existing tuples and i == maxoff + 1.
 | 
						|
     */
 | 
						|
    
 | 
						|
    maxoff = OffsetNumberNext(maxoff);
 | 
						|
    for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) {
 | 
						|
	
 | 
						|
	/*
 | 
						|
	 *  If we've already decided where to place this item, just
 | 
						|
	 *  put it on the right list.  Otherwise, we need to figure
 | 
						|
	 *  out which page needs the least enlargement in order to
 | 
						|
	 *  store the item.
 | 
						|
	 */
 | 
						|
	
 | 
						|
	if (i == seed_1) {
 | 
						|
	    *left++ = i;
 | 
						|
	    v->spl_nleft++;
 | 
						|
	    continue;
 | 
						|
	} else if (i == seed_2) {
 | 
						|
	    *right++ = i;
 | 
						|
	    v->spl_nright++;
 | 
						|
	    continue;
 | 
						|
	}
 | 
						|
	
 | 
						|
	/* okay, which page needs least enlargement? */ 
 | 
						|
	datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
 | 
						|
	union_dl = (SEG *)seg_union(datum_l, datum_alpha);
 | 
						|
	union_dr = (SEG *)seg_union(datum_r, datum_alpha);
 | 
						|
	rt_seg_size((SEG *)union_dl, &size_alpha);
 | 
						|
	rt_seg_size((SEG *)union_dr, &size_beta);
 | 
						|
	
 | 
						|
	/* pick which page to add it to */
 | 
						|
	if (size_alpha - size_l < size_beta - size_r) {
 | 
						|
	    pfree(datum_l);
 | 
						|
	    pfree(union_dr);
 | 
						|
	    datum_l = union_dl;
 | 
						|
	    size_l = size_alpha;
 | 
						|
	    *left++ = i;
 | 
						|
	    v->spl_nleft++;
 | 
						|
	} else {
 | 
						|
	    pfree(datum_r);
 | 
						|
	    pfree(union_dl);
 | 
						|
	    datum_r = union_dr;
 | 
						|
	    size_r = size_alpha;
 | 
						|
	    *right++ = i;
 | 
						|
	    v->spl_nright++;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    *left = *right = FirstOffsetNumber;	/* sentinel value, see dosplit() */
 | 
						|
    
 | 
						|
    v->spl_ldatum = (char *)datum_l;
 | 
						|
    v->spl_rdatum = (char *)datum_r;
 | 
						|
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Equality methods
 | 
						|
*/
 | 
						|
bool *
 | 
						|
gseg_same(SEG *b1, SEG *b2, bool *result)
 | 
						|
{
 | 
						|
  if (seg_same(b1, b2))
 | 
						|
    *result = TRUE;
 | 
						|
  else *result = FALSE;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
  fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
 | 
						|
#endif
 | 
						|
 | 
						|
  return(result);
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** SUPPORT ROUTINES
 | 
						|
*/
 | 
						|
bool 
 | 
						|
gseg_leaf_consistent(SEG *key,
 | 
						|
		     SEG *query,
 | 
						|
		     StrategyNumber strategy)
 | 
						|
{
 | 
						|
    bool retval;
 | 
						|
 | 
						|
#ifdef GIST_QUERY_DEBUG
 | 
						|
  fprintf(stderr, "leaf_consistent, %d\n", strategy);
 | 
						|
#endif
 | 
						|
 | 
						|
    switch(strategy) {
 | 
						|
    case RTLeftStrategyNumber:
 | 
						|
      retval = (bool)seg_left(key, query);
 | 
						|
      break;
 | 
						|
    case RTOverLeftStrategyNumber:
 | 
						|
      retval = (bool)seg_over_left(key,query);
 | 
						|
      break;
 | 
						|
    case RTOverlapStrategyNumber:
 | 
						|
      retval = (bool)seg_overlap(key, query);
 | 
						|
      break;
 | 
						|
    case RTOverRightStrategyNumber:
 | 
						|
      retval = (bool)seg_over_right(key, query);
 | 
						|
      break;
 | 
						|
    case RTRightStrategyNumber:
 | 
						|
      retval = (bool)seg_right(key, query);
 | 
						|
      break;
 | 
						|
    case RTSameStrategyNumber:
 | 
						|
      retval = (bool)seg_same(key, query);
 | 
						|
      break;
 | 
						|
    case RTContainsStrategyNumber:
 | 
						|
      retval = (bool)seg_contains(key, query);
 | 
						|
      break;
 | 
						|
    case RTContainedByStrategyNumber:
 | 
						|
      retval = (bool)seg_contained(key,query);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      retval = FALSE;
 | 
						|
    }
 | 
						|
    return(retval);
 | 
						|
}
 | 
						|
 | 
						|
bool 
 | 
						|
gseg_internal_consistent(SEG *key,
 | 
						|
			SEG *query,
 | 
						|
			StrategyNumber strategy)
 | 
						|
{
 | 
						|
    bool retval;
 | 
						|
 | 
						|
#ifdef GIST_QUERY_DEBUG
 | 
						|
  fprintf(stderr, "internal_consistent, %d\n", strategy);
 | 
						|
#endif
 | 
						|
 | 
						|
    switch(strategy) {
 | 
						|
    case RTLeftStrategyNumber:
 | 
						|
    case RTOverLeftStrategyNumber:
 | 
						|
      retval = (bool)seg_over_left(key,query);
 | 
						|
      break;
 | 
						|
    case RTOverlapStrategyNumber:
 | 
						|
      retval = (bool)seg_overlap(key, query);
 | 
						|
      break;
 | 
						|
    case RTOverRightStrategyNumber:
 | 
						|
    case RTRightStrategyNumber:
 | 
						|
      retval = (bool)seg_right(key, query);
 | 
						|
      break;
 | 
						|
    case RTSameStrategyNumber:
 | 
						|
    case RTContainsStrategyNumber:
 | 
						|
      retval = (bool)seg_contains(key, query);
 | 
						|
      break;
 | 
						|
    case RTContainedByStrategyNumber:
 | 
						|
      retval = (bool)seg_overlap(key, query);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      retval = FALSE;
 | 
						|
    }
 | 
						|
    return(retval);
 | 
						|
}
 | 
						|
 | 
						|
SEG *
 | 
						|
gseg_binary_union(SEG *r1, SEG *r2, int *sizep)
 | 
						|
{
 | 
						|
    SEG *retval;
 | 
						|
 | 
						|
    retval = seg_union(r1, r2);
 | 
						|
    *sizep = sizeof(SEG);
 | 
						|
 | 
						|
    return (retval);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool
 | 
						|
seg_contains(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
  return ( (a->lower <= b->lower) && (a->upper >= b->upper) );
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_contained(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
  return ( seg_contains(b, a) );
 | 
						|
}
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 * Operator class for R-tree indexing
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
bool
 | 
						|
seg_same(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
  return seg_cmp(a, b) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/*  seg_overlap -- does a overlap b?
 | 
						|
 */
 | 
						|
bool
 | 
						|
seg_overlap(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
  return (
 | 
						|
	  ((a->upper >= b->upper) && (a->lower <= b->upper)) 
 | 
						|
	  ||
 | 
						|
	  ((b->upper >= a->upper) && (b->lower <= a->upper))
 | 
						|
	  );
 | 
						|
}
 | 
						|
 | 
						|
/*  seg_overleft -- is the right edge of (a) located to the left of the right edge of (b)?
 | 
						|
 */
 | 
						|
bool
 | 
						|
seg_over_left(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
        return ( a->upper <= b->upper && !seg_left(a, b) && !seg_right(a, b));
 | 
						|
}
 | 
						|
 | 
						|
/*  seg_left -- is (a) entirely on the left of (b)?
 | 
						|
 */
 | 
						|
bool
 | 
						|
seg_left(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
        return ( a->upper < b->lower );
 | 
						|
}
 | 
						|
 | 
						|
/*  seg_right -- is (a) entirely on the right of (b)?
 | 
						|
 */
 | 
						|
bool
 | 
						|
seg_right(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
        return ( a->lower > b->upper );
 | 
						|
}
 | 
						|
 | 
						|
/*  seg_overright -- is the left edge of (a) located to the right of the left edge of (b)?
 | 
						|
 */
 | 
						|
bool
 | 
						|
seg_over_right(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
        return (a->lower >= b->lower && !seg_left(a, b) && !seg_right(a, b));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SEG *
 | 
						|
seg_union(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
  SEG *n;
 | 
						|
  
 | 
						|
  n = (SEG *) palloc(sizeof(*n));
 | 
						|
 | 
						|
  /* take max of upper endpoints */
 | 
						|
  if (a->upper > b->upper)
 | 
						|
  {
 | 
						|
	  n->upper = a->upper;
 | 
						|
	  n->u_sigd = a->u_sigd;
 | 
						|
	  n->u_ext = a->u_ext;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
	  n->upper = b->upper;
 | 
						|
	  n->u_sigd = b->u_sigd;
 | 
						|
	  n->u_ext = b->u_ext;
 | 
						|
  }
 | 
						|
 | 
						|
  /* take min of lower endpoints */
 | 
						|
  if (a->lower < b->lower)
 | 
						|
  {
 | 
						|
	  n->lower = a->lower;
 | 
						|
	  n->l_sigd = a->l_sigd;
 | 
						|
	  n->l_ext = a->l_ext;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
	  n->lower = b->lower;
 | 
						|
	  n->l_sigd = b->l_sigd;
 | 
						|
	  n->l_ext = b->l_ext;
 | 
						|
  }
 | 
						|
 | 
						|
  return (n);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SEG *
 | 
						|
seg_inter(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
  SEG *n;
 | 
						|
  
 | 
						|
  n = (SEG *) palloc(sizeof(*n));
 | 
						|
 | 
						|
  /* take min of upper endpoints */
 | 
						|
  if (a->upper < b->upper)
 | 
						|
  {
 | 
						|
	  n->upper = a->upper;
 | 
						|
	  n->u_sigd = a->u_sigd;
 | 
						|
	  n->u_ext = a->u_ext;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
	  n->upper = b->upper;
 | 
						|
	  n->u_sigd = b->u_sigd;
 | 
						|
	  n->u_ext = b->u_ext;
 | 
						|
  }
 | 
						|
 | 
						|
  /* take max of lower endpoints */
 | 
						|
  if (a->lower > b->lower)
 | 
						|
  {
 | 
						|
	  n->lower = a->lower;
 | 
						|
	  n->l_sigd = a->l_sigd;
 | 
						|
	  n->l_ext = a->l_ext;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
	  n->lower = b->lower;
 | 
						|
	  n->l_sigd = b->l_sigd;
 | 
						|
	  n->l_ext = b->l_ext;
 | 
						|
  }
 | 
						|
 | 
						|
  return (n);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rt_seg_size(SEG *a, float *size)
 | 
						|
{
 | 
						|
  if (a == (SEG *) NULL || a->upper <= a->lower)
 | 
						|
    *size = 0.0;
 | 
						|
  else
 | 
						|
    *size = (float) abs(a->upper - a->lower);
 | 
						|
  
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
float *
 | 
						|
seg_size(SEG *a)
 | 
						|
{
 | 
						|
  float *result;
 | 
						|
 | 
						|
  result = (float *) palloc(sizeof(float));
 | 
						|
  
 | 
						|
  *result = (float) abs(a->upper - a->lower);
 | 
						|
 | 
						|
  return(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 *                 Miscellaneous operators
 | 
						|
 *****************************************************************************/
 | 
						|
int32
 | 
						|
seg_cmp(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * First compare on lower boundary position
 | 
						|
	 */
 | 
						|
	if ( a->lower < b->lower )
 | 
						|
		return -1;
 | 
						|
	if ( a->lower > b->lower )
 | 
						|
		return 1;
 | 
						|
	/*
 | 
						|
	 * a->lower == b->lower, so consider type of boundary.
 | 
						|
	 *
 | 
						|
	 * A '-' lower bound is < any other kind (this could only be relevant
 | 
						|
	 * if -HUGE is used as a regular data value).
 | 
						|
	 * A '<' lower bound is < any other kind except '-'.
 | 
						|
	 * A '>' lower bound is > any other kind.
 | 
						|
	 */
 | 
						|
	if ( a->l_ext != b->l_ext )
 | 
						|
	{
 | 
						|
		if ( a->l_ext == '-')
 | 
						|
			return -1;
 | 
						|
		if ( b->l_ext == '-')
 | 
						|
			return 1;
 | 
						|
		if ( a->l_ext == '<')
 | 
						|
			return -1;
 | 
						|
		if ( b->l_ext == '<')
 | 
						|
			return 1;
 | 
						|
		if ( a->l_ext == '>')
 | 
						|
			return 1;
 | 
						|
		if ( b->l_ext == '>')
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * For other boundary types, consider # of significant digits first.
 | 
						|
	 */
 | 
						|
	if ( a->l_sigd < b->l_sigd ) /* (a) is blurred and is likely to include (b) */
 | 
						|
		return -1;
 | 
						|
	if ( a->l_sigd > b->l_sigd ) /* (a) is less blurred and is likely to be included in (b) */
 | 
						|
		return 1;
 | 
						|
	/*
 | 
						|
	 * For same # of digits, an approximate boundary is more blurred than
 | 
						|
	 * exact.
 | 
						|
	 */
 | 
						|
	if ( a->l_ext != b->l_ext )
 | 
						|
	{
 | 
						|
		if ( a->l_ext == '~' ) /* (a) is approximate, while (b) is exact */
 | 
						|
			return -1;
 | 
						|
		if ( b->l_ext == '~' )
 | 
						|
			return 1;
 | 
						|
		/* can't get here unless data is corrupt */
 | 
						|
		elog(ERROR, "seg_cmp: bogus lower boundary types %d %d",
 | 
						|
			 (int) a->l_ext, (int) b->l_ext);
 | 
						|
	}
 | 
						|
 | 
						|
	/* at this point, the lower boundaries are identical */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First compare on upper boundary position
 | 
						|
	 */
 | 
						|
	if ( a->upper < b->upper )
 | 
						|
		return -1;
 | 
						|
	if ( a->upper > b->upper )
 | 
						|
		return 1;
 | 
						|
	/*
 | 
						|
	 * a->upper == b->upper, so consider type of boundary.
 | 
						|
	 *
 | 
						|
	 * A '-' upper bound is > any other kind (this could only be relevant
 | 
						|
	 * if HUGE is used as a regular data value).
 | 
						|
	 * A '<' upper bound is < any other kind.
 | 
						|
	 * A '>' upper bound is > any other kind except '-'.
 | 
						|
	 */
 | 
						|
	if ( a->u_ext != b->u_ext )
 | 
						|
	{
 | 
						|
		if ( a->u_ext == '-')
 | 
						|
			return 1;
 | 
						|
		if ( b->u_ext == '-')
 | 
						|
			return -1;
 | 
						|
		if ( a->u_ext == '<')
 | 
						|
			return -1;
 | 
						|
		if ( b->u_ext == '<')
 | 
						|
			return 1;
 | 
						|
		if ( a->u_ext == '>')
 | 
						|
			return 1;
 | 
						|
		if ( b->u_ext == '>')
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * For other boundary types, consider # of significant digits first.
 | 
						|
	 * Note result here is converse of the lower-boundary case.
 | 
						|
	 */
 | 
						|
	if ( a->u_sigd < b->u_sigd ) /* (a) is blurred and is likely to include (b) */
 | 
						|
		return 1;
 | 
						|
	if ( a->u_sigd > b->u_sigd ) /* (a) is less blurred and is likely to be included in (b) */
 | 
						|
		return -1;
 | 
						|
	/*
 | 
						|
	 * For same # of digits, an approximate boundary is more blurred than
 | 
						|
	 * exact.  Again, result is converse of lower-boundary case.
 | 
						|
	 */
 | 
						|
	if ( a->u_ext != b->u_ext )
 | 
						|
	{
 | 
						|
		if ( a->u_ext == '~' ) /* (a) is approximate, while (b) is exact */
 | 
						|
			return 1;
 | 
						|
		if ( b->u_ext == '~' )
 | 
						|
			return -1;
 | 
						|
		/* can't get here unless data is corrupt */
 | 
						|
		elog(ERROR, "seg_cmp: bogus upper boundary types %d %d",
 | 
						|
			 (int) a->u_ext, (int) b->u_ext);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_lt(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
  return seg_cmp(a, b) < 0;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_le(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
  return seg_cmp(a, b) <= 0;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_gt(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
  return seg_cmp(a, b) > 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool
 | 
						|
seg_ge(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
  return seg_cmp(a, b) >= 0;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_different(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
  return seg_cmp(a, b) != 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 *                 Auxiliary functions
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
/* The purpose of this routine is to print the floating point
 | 
						|
 * value with exact number of significant digits. Its behaviour
 | 
						|
 * is similar to %.ng except it prints 8.00 where %.ng would
 | 
						|
 * print 8
 | 
						|
 */
 | 
						|
static int restore ( char * result, float val, int n )
 | 
						|
{
 | 
						|
  static char efmt[8] = {'%', '-', '1', '5', '.', '#', 'e', 0};
 | 
						|
  char buf[25] = {
 | 
						|
    '0', '0', '0', '0', '0',
 | 
						|
    '0', '0', '0', '0', '0',
 | 
						|
    '0', '0', '0', '0', '0',
 | 
						|
    '0', '0', '0', '0', '0',
 | 
						|
    '0', '0', '0', '0', '\0'
 | 
						|
  };
 | 
						|
  char *p;
 | 
						|
  char *mant;
 | 
						|
  int exp;
 | 
						|
  int i, dp, sign;
 | 
						|
 
 | 
						|
  /* put a cap on the number of siugnificant digits to avoid
 | 
						|
     nonsense in the output */
 | 
						|
  n = min(n, FLT_DIG);
 | 
						|
 | 
						|
  /* remember the sign */
 | 
						|
  sign = ( val < 0 ? 1 : 0 );
 | 
						|
 | 
						|
  efmt[5] = '0' + (n-1)%10; /* makes %-15.(n-1)e -- this format guarantees that 
 | 
						|
			     the exponent is always present */
 | 
						|
 | 
						|
  sprintf(result, efmt, val);
 | 
						|
 | 
						|
  /* trim the spaces left by the %e */
 | 
						|
  for( p = result; *p != ' '; p++ ); *p = '\0';
 | 
						|
 | 
						|
  /* get the exponent */
 | 
						|
  mant = (char *)strtok( strdup(result), "e" );
 | 
						|
  exp = atoi(strtok( NULL, "e" ));
 | 
						|
 | 
						|
  if ( exp == 0 ) {
 | 
						|
    /* use the supplied mantyssa with sign */
 | 
						|
    strcpy((char *)index(result, 'e'), "");
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    if ( abs( exp ) <= 4 ) {
 | 
						|
      /* remove the decimal point from the mantyssa and write the digits to the buf array */
 | 
						|
      for( p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++ ) {
 | 
						|
	buf[i] = *p;
 | 
						|
	if( *p == '.' ) {
 | 
						|
	  dp = i--; /* skip the decimal point */
 | 
						|
	}
 | 
						|
      }
 | 
						|
      if (dp == 0) dp = i--; /* no decimal point was found in the above for() loop */
 | 
						|
  
 | 
						|
      if ( exp > 0 ) {
 | 
						|
	if ( dp - 10 + exp >= n ) { 
 | 
						|
	  /* 
 | 
						|
	     the decimal point is behind the last significant digit;
 | 
						|
	     the digits in between must be converted to the exponent
 | 
						|
	     and the decimal point placed after the first digit
 | 
						|
	   */
 | 
						|
	  exp = dp - 10 + exp - n;
 | 
						|
	  buf[10+n] = '\0'; 
 | 
						|
	  
 | 
						|
	  /* insert the decimal point */
 | 
						|
	  if ( n > 1 ) {
 | 
						|
	    dp = 11;
 | 
						|
	    for ( i = 23; i > dp; i-- ) {
 | 
						|
	      buf[i] = buf[i-1];
 | 
						|
	    }
 | 
						|
	    buf[dp] = '.';
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  /* adjust the exponent by the number of digits after the decimal point */
 | 
						|
	  if ( n > 1 ) {
 | 
						|
	    sprintf(&buf[11+n], "e%d", exp + n - 1);
 | 
						|
	  }
 | 
						|
	  else {
 | 
						|
	    sprintf(&buf[11], "e%d", exp + n - 1);
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  if ( sign ) {
 | 
						|
	    buf[9] = '-'; 
 | 
						|
	    strcpy(result, &buf[9]);
 | 
						|
	  }
 | 
						|
	  else {
 | 
						|
	    strcpy(result, &buf[10]);
 | 
						|
	  }
 | 
						|
	}
 | 
						|
	else { /* insert the decimal point */
 | 
						|
	  dp += exp;
 | 
						|
	  for ( i = 23; i > dp; i-- ) {
 | 
						|
	    buf[i] = buf[i-1];
 | 
						|
	  }
 | 
						|
	  buf[11+n] = '\0';
 | 
						|
	  buf[dp] = '.';
 | 
						|
	  if ( sign ) {
 | 
						|
	    buf[9] = '-';
 | 
						|
	    strcpy(result, &buf[9]);
 | 
						|
	  }
 | 
						|
	  else {
 | 
						|
	    strcpy(result, &buf[10]);
 | 
						|
	  }
 | 
						|
	}
 | 
						|
      }
 | 
						|
      else { /* exp <= 0 */
 | 
						|
	dp += exp - 1;
 | 
						|
	buf[10+n] = '\0'; 
 | 
						|
	buf[dp] = '.'; 
 | 
						|
	if ( sign ) {
 | 
						|
	  buf[dp-2] = '-'; 
 | 
						|
	  strcpy(result, &buf[dp-2]);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	  strcpy(result, &buf[dp-1]);
 | 
						|
	}   
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* do nothing for abs(exp) > 4; %e must be OK */
 | 
						|
    /* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */
 | 
						|
    
 | 
						|
    /* ... this is not done yet. */
 | 
						|
  }
 | 
						|
  return ( strlen ( result ) );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Miscellany
 | 
						|
*/
 | 
						|
 | 
						|
bool
 | 
						|
seg_contains_int(SEG *a, int *b)
 | 
						|
{
 | 
						|
  return ( (a->lower <= *b) && (a->upper >= *b) );
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_contains_float4(SEG *a, float4 *b)
 | 
						|
{
 | 
						|
  return ( (a->lower <= *b) && (a->upper >= *b) );
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_contains_float8(SEG *a, float8 *b)
 | 
						|
{
 | 
						|
  return ( (a->lower <= *b) && (a->upper >= *b) );
 | 
						|
}
 | 
						|
 | 
						|
/* find out the number of significant digits in a string representing 
 | 
						|
 * a floating point number
 | 
						|
 */
 | 
						|
int significant_digits ( char* s )
 | 
						|
{
 | 
						|
  char * p = s;
 | 
						|
  int n, c, zeroes;
 | 
						|
 | 
						|
  zeroes = 1;
 | 
						|
  /* skip leading zeroes and sign */
 | 
						|
  for ( c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p) );
 | 
						|
 | 
						|
  /* skip decimal point and following zeroes */
 | 
						|
  for ( c = *p; (c == '0' || c == '.' ) && c != 0; c = *(++p) ) {
 | 
						|
    if ( c != '.') zeroes++;
 | 
						|
  }
 | 
						|
 | 
						|
  /* count significant digits (n) */
 | 
						|
  for ( c = *p, n = 0; c != 0; c = *(++p) ) {
 | 
						|
    if ( !( (c >= '0' && c <= '9') || (c == '.') ) ) break;
 | 
						|
    if ( c != '.') n++;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!n) return ( zeroes );
 | 
						|
 | 
						|
  return( n );
 | 
						|
}
 |