mirror of
https://github.com/postgres/postgres.git
synced 2025-11-07 19:06:32 +03:00
Previously, a PostgreSQL-specific callback checked by the regex engine had a way to trigger a special error code REG_CANCEL if it detected that the next call to CHECK_FOR_INTERRUPTS() would certainly throw via ereport(). A later proposed bugfix aims to move some complex logic out of signal handlers, so that it won't run until the next CHECK_FOR_INTERRUPTS(), which makes the above design impossible unless we split CHECK_FOR_INTERRUPTS() into two phases, one to run logic and another to ereport(). We may develop such a system in the future, but for the regex code it is no longer necessary. An earlier commit moved regex memory management over to our MemoryContext system. Given that the purpose of the two-phase interrupt checking was to free memory before throwing, something we don't need to worry about anymore, it seems simpler to inject CHECK_FOR_INTERRUPTS() directly into cancelation points, and just let it throw. Since the plan is to keep PostgreSQL-specific concerns separate from the main regex engine code (with a view to bein able to stay in sync with other projects), do this with a new macro INTERRUPT(), customizable in regcustom.h and defaulting to nothing. Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://postgr.es/m/CA%2BhUKGK3PGKwcKqzoosamn36YW-fsuTdOPPF1i_rtEO%3DnEYKSg%40mail.gmail.com
1515 lines
39 KiB
C
1515 lines
39 KiB
C
/*
|
|
* re_*exec and friends - match REs
|
|
*
|
|
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
|
|
*
|
|
* Development of this software was funded, in part, by Cray Research Inc.,
|
|
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
|
|
* Corporation, none of whom are responsible for the results. The author
|
|
* thanks all of them.
|
|
*
|
|
* Redistribution and use in source and binary forms -- with or without
|
|
* modification -- are permitted for any purpose, provided that
|
|
* redistributions in source form retain this entire copyright notice and
|
|
* indicate the origin and nature of any modifications.
|
|
*
|
|
* I'd appreciate being given credit for this package in the documentation
|
|
* of software which uses it, but that is not a requirement.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* src/backend/regex/regexec.c
|
|
*
|
|
*/
|
|
|
|
#include "regex/regguts.h"
|
|
|
|
|
|
|
|
/* lazy-DFA representation */
|
|
struct arcp
|
|
{ /* "pointer" to an outarc */
|
|
struct sset *ss;
|
|
color co;
|
|
};
|
|
|
|
struct sset
|
|
{ /* state set */
|
|
unsigned *states; /* pointer to bitvector */
|
|
unsigned hash; /* hash of bitvector */
|
|
#define HASH(bv, nw) (((nw) == 1) ? *(bv) : hash(bv, nw))
|
|
#define HIT(h,bv,ss,nw) ((ss)->hash == (h) && ((nw) == 1 || \
|
|
memcmp(VS(bv), VS((ss)->states), (nw)*sizeof(unsigned)) == 0))
|
|
int flags;
|
|
#define STARTER 01 /* the initial state set */
|
|
#define POSTSTATE 02 /* includes the goal state */
|
|
#define LOCKED 04 /* locked in cache */
|
|
#define NOPROGRESS 010 /* zero-progress state set */
|
|
struct arcp ins; /* chain of inarcs pointing here */
|
|
chr *lastseen; /* last entered on arrival here */
|
|
struct sset **outs; /* outarc vector indexed by color */
|
|
struct arcp *inchain; /* chain-pointer vector for outarcs */
|
|
};
|
|
|
|
struct dfa
|
|
{
|
|
int nssets; /* size of cache */
|
|
int nssused; /* how many entries occupied yet */
|
|
int nstates; /* number of states */
|
|
int ncolors; /* length of outarc and inchain vectors */
|
|
int wordsper; /* length of state-set bitvectors */
|
|
struct sset *ssets; /* state-set cache */
|
|
unsigned *statesarea; /* bitvector storage */
|
|
unsigned *work; /* pointer to work area within statesarea */
|
|
struct sset **outsarea; /* outarc-vector storage */
|
|
struct arcp *incarea; /* inchain storage */
|
|
struct cnfa *cnfa;
|
|
struct colormap *cm;
|
|
chr *lastpost; /* location of last cache-flushed success */
|
|
chr *lastnopr; /* location of last cache-flushed NOPROGRESS */
|
|
struct sset *search; /* replacement-search-pointer memory */
|
|
int backno; /* if DFA for a backref, subno it refers to */
|
|
short backmin; /* min repetitions for backref */
|
|
short backmax; /* max repetitions for backref */
|
|
bool ismalloced; /* should this struct dfa be freed? */
|
|
bool arraysmalloced; /* should its subsidiary arrays be freed? */
|
|
};
|
|
|
|
#define WORK 1 /* number of work bitvectors needed */
|
|
|
|
/* setup for non-malloc allocation for small cases */
|
|
#define FEWSTATES 20 /* must be less than UBITS */
|
|
#define FEWCOLORS 15
|
|
struct smalldfa
|
|
{
|
|
struct dfa dfa; /* must be first */
|
|
struct sset ssets[FEWSTATES * 2];
|
|
unsigned statesarea[FEWSTATES * 2 + WORK];
|
|
struct sset *outsarea[FEWSTATES * 2 * FEWCOLORS];
|
|
struct arcp incarea[FEWSTATES * 2 * FEWCOLORS];
|
|
};
|
|
|
|
#define DOMALLOC ((struct smalldfa *)NULL) /* force malloc */
|
|
|
|
|
|
|
|
/* internal variables, bundled for easy passing around */
|
|
struct vars
|
|
{
|
|
regex_t *re;
|
|
struct guts *g;
|
|
int eflags; /* copies of arguments */
|
|
size_t nmatch;
|
|
regmatch_t *pmatch;
|
|
rm_detail_t *details;
|
|
chr *start; /* start of string */
|
|
chr *search_start; /* search start of string */
|
|
chr *stop; /* just past end of string */
|
|
int err; /* error code if any (0 none) */
|
|
struct dfa **subdfas; /* per-tree-subre DFAs */
|
|
struct dfa **ladfas; /* per-lacon-subre DFAs */
|
|
struct sset **lblastcss; /* per-lacon-subre lookbehind restart data */
|
|
chr **lblastcp; /* per-lacon-subre lookbehind restart data */
|
|
struct smalldfa dfa1;
|
|
struct smalldfa dfa2;
|
|
};
|
|
|
|
#define VISERR(vv) ((vv)->err != 0) /* have we seen an error yet? */
|
|
#define ISERR() VISERR(v)
|
|
#define VERR(vv,e) ((vv)->err = ((vv)->err ? (vv)->err : (e)))
|
|
#define ERR(e) VERR(v, e) /* record an error */
|
|
#define NOERR() {if (ISERR()) return v->err;} /* if error seen, return it */
|
|
#define OFF(p) ((p) - v->start)
|
|
#define LOFF(p) ((long)OFF(p))
|
|
|
|
|
|
|
|
/*
|
|
* forward declarations
|
|
*/
|
|
/* === regexec.c === */
|
|
static struct dfa *getsubdfa(struct vars *v, struct subre *t);
|
|
static struct dfa *getladfa(struct vars *v, int n);
|
|
static int find(struct vars *v, struct cnfa *cnfa, struct colormap *cm);
|
|
static int cfind(struct vars *v, struct cnfa *cnfa, struct colormap *cm);
|
|
static int cfindloop(struct vars *v, struct cnfa *cnfa, struct colormap *cm,
|
|
struct dfa *d, struct dfa *s, chr **coldp);
|
|
static void zapallsubs(regmatch_t *p, size_t n);
|
|
static void zaptreesubs(struct vars *v, struct subre *t);
|
|
static void subset(struct vars *v, struct subre *sub, chr *begin, chr *end);
|
|
static int cdissect(struct vars *v, struct subre *t, chr *begin, chr *end);
|
|
static int ccondissect(struct vars *v, struct subre *t, chr *begin, chr *end);
|
|
static int crevcondissect(struct vars *v, struct subre *t, chr *begin, chr *end);
|
|
static int cbrdissect(struct vars *v, struct subre *t, chr *begin, chr *end);
|
|
static int caltdissect(struct vars *v, struct subre *t, chr *begin, chr *end);
|
|
static int citerdissect(struct vars *v, struct subre *t, chr *begin, chr *end);
|
|
static int creviterdissect(struct vars *v, struct subre *t, chr *begin, chr *end);
|
|
|
|
/* === rege_dfa.c === */
|
|
static chr *longest(struct vars *v, struct dfa *d,
|
|
chr *start, chr *stop, int *hitstopp);
|
|
static chr *shortest(struct vars *v, struct dfa *d, chr *start, chr *min,
|
|
chr *max, chr **coldp, int *hitstopp);
|
|
static int matchuntil(struct vars *v, struct dfa *d, chr *probe,
|
|
struct sset **lastcss, chr **lastcp);
|
|
static chr *dfa_backref(struct vars *v, struct dfa *d, chr *start,
|
|
chr *min, chr *max, bool shortest);
|
|
static chr *lastcold(struct vars *v, struct dfa *d);
|
|
static struct dfa *newdfa(struct vars *v, struct cnfa *cnfa,
|
|
struct colormap *cm, struct smalldfa *sml);
|
|
static void freedfa(struct dfa *d);
|
|
static unsigned hash(unsigned *uv, int n);
|
|
static struct sset *initialize(struct vars *v, struct dfa *d, chr *start);
|
|
static struct sset *miss(struct vars *v, struct dfa *d, struct sset *css,
|
|
color co, chr *cp, chr *start);
|
|
static int lacon(struct vars *v, struct cnfa *pcnfa, chr *cp, color co);
|
|
static struct sset *getvacant(struct vars *v, struct dfa *d, chr *cp,
|
|
chr *start);
|
|
static struct sset *pickss(struct vars *v, struct dfa *d, chr *cp,
|
|
chr *start);
|
|
|
|
|
|
/*
|
|
* pg_regexec - match regular expression
|
|
*/
|
|
int
|
|
pg_regexec(regex_t *re,
|
|
const chr *string,
|
|
size_t len,
|
|
size_t search_start,
|
|
rm_detail_t *details,
|
|
size_t nmatch,
|
|
regmatch_t pmatch[],
|
|
int flags)
|
|
{
|
|
struct vars var;
|
|
struct vars *v = &var;
|
|
int st;
|
|
size_t n;
|
|
size_t i;
|
|
int backref;
|
|
|
|
#define LOCALMAT 20
|
|
regmatch_t mat[LOCALMAT];
|
|
|
|
#define LOCALDFAS 40
|
|
struct dfa *subdfas[LOCALDFAS];
|
|
|
|
/* sanity checks */
|
|
if (re == NULL || string == NULL || re->re_magic != REMAGIC)
|
|
return REG_INVARG;
|
|
if (re->re_csize != sizeof(chr))
|
|
return REG_MIXED;
|
|
if (search_start > len)
|
|
return REG_NOMATCH;
|
|
|
|
/* Initialize locale-dependent support */
|
|
pg_set_regex_collation(re->re_collation);
|
|
|
|
/* setup */
|
|
v->re = re;
|
|
v->g = (struct guts *) re->re_guts;
|
|
if ((v->g->cflags & REG_EXPECT) && details == NULL)
|
|
return REG_INVARG;
|
|
if (v->g->info & REG_UIMPOSSIBLE)
|
|
return REG_NOMATCH;
|
|
backref = (v->g->info & REG_UBACKREF) ? 1 : 0;
|
|
v->eflags = flags;
|
|
if (backref && nmatch <= v->g->nsub)
|
|
{
|
|
/* need larger work area */
|
|
v->nmatch = v->g->nsub + 1;
|
|
if (v->nmatch <= LOCALMAT)
|
|
v->pmatch = mat;
|
|
else
|
|
v->pmatch = (regmatch_t *) MALLOC(v->nmatch * sizeof(regmatch_t));
|
|
if (v->pmatch == NULL)
|
|
return REG_ESPACE;
|
|
zapallsubs(v->pmatch, v->nmatch);
|
|
}
|
|
else
|
|
{
|
|
/* we can store results directly in caller's array */
|
|
v->pmatch = pmatch;
|
|
/* ensure any extra entries in caller's array are filled with -1 */
|
|
if (nmatch > 0)
|
|
zapallsubs(pmatch, nmatch);
|
|
/* then forget about extra entries, to avoid useless work in find() */
|
|
if (nmatch > v->g->nsub + 1)
|
|
nmatch = v->g->nsub + 1;
|
|
v->nmatch = nmatch;
|
|
}
|
|
v->details = details;
|
|
v->start = (chr *) string;
|
|
v->search_start = (chr *) string + search_start;
|
|
v->stop = (chr *) string + len;
|
|
v->err = 0;
|
|
v->subdfas = NULL;
|
|
v->ladfas = NULL;
|
|
v->lblastcss = NULL;
|
|
v->lblastcp = NULL;
|
|
/* below this point, "goto cleanup" will behave sanely */
|
|
|
|
assert(v->g->ntree >= 0);
|
|
n = (size_t) v->g->ntree;
|
|
if (n <= LOCALDFAS)
|
|
v->subdfas = subdfas;
|
|
else
|
|
{
|
|
v->subdfas = (struct dfa **) MALLOC(n * sizeof(struct dfa *));
|
|
if (v->subdfas == NULL)
|
|
{
|
|
st = REG_ESPACE;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
for (i = 0; i < n; i++)
|
|
v->subdfas[i] = NULL;
|
|
|
|
assert(v->g->nlacons >= 0);
|
|
n = (size_t) v->g->nlacons;
|
|
if (n > 0)
|
|
{
|
|
v->ladfas = (struct dfa **) MALLOC(n * sizeof(struct dfa *));
|
|
if (v->ladfas == NULL)
|
|
{
|
|
st = REG_ESPACE;
|
|
goto cleanup;
|
|
}
|
|
for (i = 0; i < n; i++)
|
|
v->ladfas[i] = NULL;
|
|
v->lblastcss = (struct sset **) MALLOC(n * sizeof(struct sset *));
|
|
v->lblastcp = (chr **) MALLOC(n * sizeof(chr *));
|
|
if (v->lblastcss == NULL || v->lblastcp == NULL)
|
|
{
|
|
st = REG_ESPACE;
|
|
goto cleanup;
|
|
}
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
v->lblastcss[i] = NULL;
|
|
v->lblastcp[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* do it */
|
|
assert(v->g->tree != NULL);
|
|
if (backref)
|
|
st = cfind(v, &v->g->tree->cnfa, &v->g->cmap);
|
|
else
|
|
st = find(v, &v->g->tree->cnfa, &v->g->cmap);
|
|
|
|
/* on success, ensure caller's match vector is filled correctly */
|
|
if (st == REG_OKAY && nmatch > 0)
|
|
{
|
|
if (v->pmatch != pmatch)
|
|
{
|
|
/* copy portion of match vector over from (larger) work area */
|
|
assert(nmatch <= v->nmatch);
|
|
memcpy(VS(pmatch), VS(v->pmatch), nmatch * sizeof(regmatch_t));
|
|
}
|
|
if (v->g->cflags & REG_NOSUB)
|
|
{
|
|
/* don't expose possibly-partial sub-match results to caller */
|
|
zapallsubs(pmatch, nmatch);
|
|
}
|
|
}
|
|
|
|
/* clean up */
|
|
cleanup:
|
|
if (v->pmatch != pmatch && v->pmatch != mat)
|
|
FREE(v->pmatch);
|
|
if (v->subdfas != NULL)
|
|
{
|
|
n = (size_t) v->g->ntree;
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (v->subdfas[i] != NULL)
|
|
freedfa(v->subdfas[i]);
|
|
}
|
|
if (v->subdfas != subdfas)
|
|
FREE(v->subdfas);
|
|
}
|
|
if (v->ladfas != NULL)
|
|
{
|
|
n = (size_t) v->g->nlacons;
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (v->ladfas[i] != NULL)
|
|
freedfa(v->ladfas[i]);
|
|
}
|
|
FREE(v->ladfas);
|
|
}
|
|
if (v->lblastcss != NULL)
|
|
FREE(v->lblastcss);
|
|
if (v->lblastcp != NULL)
|
|
FREE(v->lblastcp);
|
|
|
|
#ifdef REG_DEBUG
|
|
if (v->eflags & (REG_FTRACE | REG_MTRACE))
|
|
fflush(stdout);
|
|
#endif
|
|
|
|
return st;
|
|
}
|
|
|
|
/*
|
|
* getsubdfa - create or re-fetch the DFA for a tree subre node
|
|
*
|
|
* We only need to create the DFA once per overall regex execution.
|
|
* The DFA will be freed by the cleanup step in pg_regexec().
|
|
*/
|
|
static struct dfa *
|
|
getsubdfa(struct vars *v,
|
|
struct subre *t)
|
|
{
|
|
struct dfa *d = v->subdfas[t->id];
|
|
|
|
if (d == NULL)
|
|
{
|
|
d = newdfa(v, &t->cnfa, &v->g->cmap, DOMALLOC);
|
|
if (d == NULL)
|
|
return NULL;
|
|
/* set up additional info if this is a backref node */
|
|
if (t->op == 'b')
|
|
{
|
|
d->backno = t->backno;
|
|
d->backmin = t->min;
|
|
d->backmax = t->max;
|
|
}
|
|
v->subdfas[t->id] = d;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
* getladfa - create or re-fetch the DFA for a LACON subre node
|
|
*
|
|
* Same as above, but for LACONs.
|
|
*/
|
|
static struct dfa *
|
|
getladfa(struct vars *v,
|
|
int n)
|
|
{
|
|
assert(n > 0 && n < v->g->nlacons && v->g->lacons != NULL);
|
|
|
|
if (v->ladfas[n] == NULL)
|
|
{
|
|
struct subre *sub = &v->g->lacons[n];
|
|
|
|
v->ladfas[n] = newdfa(v, &sub->cnfa, &v->g->cmap, DOMALLOC);
|
|
/* a LACON can't contain a backref, so nothing else to do */
|
|
}
|
|
return v->ladfas[n];
|
|
}
|
|
|
|
/*
|
|
* find - find a match for the main NFA (no-complications case)
|
|
*/
|
|
static int
|
|
find(struct vars *v,
|
|
struct cnfa *cnfa,
|
|
struct colormap *cm)
|
|
{
|
|
struct dfa *s;
|
|
struct dfa *d;
|
|
chr *begin;
|
|
chr *end = NULL;
|
|
chr *cold;
|
|
chr *open; /* open and close of range of possible starts */
|
|
chr *close;
|
|
int hitend;
|
|
int shorter = (v->g->tree->flags & SHORTER) ? 1 : 0;
|
|
|
|
/* first, a shot with the search RE */
|
|
s = newdfa(v, &v->g->search, cm, &v->dfa1);
|
|
if (s == NULL)
|
|
return v->err;
|
|
MDEBUG(("\nsearch at %ld\n", LOFF(v->start)));
|
|
cold = NULL;
|
|
close = shortest(v, s, v->search_start, v->search_start, v->stop,
|
|
&cold, (int *) NULL);
|
|
freedfa(s);
|
|
NOERR();
|
|
if (v->g->cflags & REG_EXPECT)
|
|
{
|
|
assert(v->details != NULL);
|
|
if (cold != NULL)
|
|
v->details->rm_extend.rm_so = OFF(cold);
|
|
else
|
|
v->details->rm_extend.rm_so = OFF(v->stop);
|
|
v->details->rm_extend.rm_eo = OFF(v->stop); /* unknown */
|
|
}
|
|
if (close == NULL) /* not found */
|
|
return REG_NOMATCH;
|
|
if (v->nmatch == 0) /* found, don't need exact location */
|
|
return REG_OKAY;
|
|
|
|
/* find starting point and match */
|
|
assert(cold != NULL);
|
|
open = cold;
|
|
cold = NULL;
|
|
MDEBUG(("between %ld and %ld\n", LOFF(open), LOFF(close)));
|
|
d = newdfa(v, cnfa, cm, &v->dfa1);
|
|
if (d == NULL)
|
|
return v->err;
|
|
for (begin = open; begin <= close; begin++)
|
|
{
|
|
MDEBUG(("\nfind trying at %ld\n", LOFF(begin)));
|
|
if (shorter)
|
|
end = shortest(v, d, begin, begin, v->stop,
|
|
(chr **) NULL, &hitend);
|
|
else
|
|
end = longest(v, d, begin, v->stop, &hitend);
|
|
if (ISERR())
|
|
{
|
|
freedfa(d);
|
|
return v->err;
|
|
}
|
|
if (hitend && cold == NULL)
|
|
cold = begin;
|
|
if (end != NULL)
|
|
break; /* NOTE BREAK OUT */
|
|
}
|
|
assert(end != NULL); /* search RE succeeded so loop should */
|
|
freedfa(d);
|
|
|
|
/* and pin down details */
|
|
assert(v->nmatch > 0);
|
|
v->pmatch[0].rm_so = OFF(begin);
|
|
v->pmatch[0].rm_eo = OFF(end);
|
|
if (v->g->cflags & REG_EXPECT)
|
|
{
|
|
if (cold != NULL)
|
|
v->details->rm_extend.rm_so = OFF(cold);
|
|
else
|
|
v->details->rm_extend.rm_so = OFF(v->stop);
|
|
v->details->rm_extend.rm_eo = OFF(v->stop); /* unknown */
|
|
}
|
|
if (v->nmatch == 1) /* no need for submatches */
|
|
return REG_OKAY;
|
|
|
|
/* find submatches */
|
|
return cdissect(v, v->g->tree, begin, end);
|
|
}
|
|
|
|
/*
|
|
* cfind - find a match for the main NFA (with complications)
|
|
*/
|
|
static int
|
|
cfind(struct vars *v,
|
|
struct cnfa *cnfa,
|
|
struct colormap *cm)
|
|
{
|
|
struct dfa *s;
|
|
struct dfa *d;
|
|
chr *cold;
|
|
int ret;
|
|
|
|
s = newdfa(v, &v->g->search, cm, &v->dfa1);
|
|
if (s == NULL)
|
|
return v->err;
|
|
d = newdfa(v, cnfa, cm, &v->dfa2);
|
|
if (d == NULL)
|
|
{
|
|
freedfa(s);
|
|
return v->err;
|
|
}
|
|
|
|
ret = cfindloop(v, cnfa, cm, d, s, &cold);
|
|
|
|
freedfa(d);
|
|
freedfa(s);
|
|
NOERR();
|
|
if (v->g->cflags & REG_EXPECT)
|
|
{
|
|
assert(v->details != NULL);
|
|
if (cold != NULL)
|
|
v->details->rm_extend.rm_so = OFF(cold);
|
|
else
|
|
v->details->rm_extend.rm_so = OFF(v->stop);
|
|
v->details->rm_extend.rm_eo = OFF(v->stop); /* unknown */
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* cfindloop - the heart of cfind
|
|
*/
|
|
static int
|
|
cfindloop(struct vars *v,
|
|
struct cnfa *cnfa,
|
|
struct colormap *cm,
|
|
struct dfa *d,
|
|
struct dfa *s,
|
|
chr **coldp) /* where to put coldstart pointer */
|
|
{
|
|
chr *begin;
|
|
chr *end;
|
|
chr *cold;
|
|
chr *open; /* open and close of range of possible starts */
|
|
chr *close;
|
|
chr *estart;
|
|
chr *estop;
|
|
int er;
|
|
int shorter = v->g->tree->flags & SHORTER;
|
|
int hitend;
|
|
|
|
assert(d != NULL && s != NULL);
|
|
cold = NULL;
|
|
close = v->search_start;
|
|
do
|
|
{
|
|
/* Search with the search RE for match range at/beyond "close" */
|
|
MDEBUG(("\ncsearch at %ld\n", LOFF(close)));
|
|
close = shortest(v, s, close, close, v->stop, &cold, (int *) NULL);
|
|
if (ISERR())
|
|
{
|
|
*coldp = cold;
|
|
return v->err;
|
|
}
|
|
if (close == NULL)
|
|
break; /* no more possible match anywhere */
|
|
assert(cold != NULL);
|
|
open = cold;
|
|
cold = NULL;
|
|
/* Search for matches starting between "open" and "close" inclusive */
|
|
MDEBUG(("cbetween %ld and %ld\n", LOFF(open), LOFF(close)));
|
|
for (begin = open; begin <= close; begin++)
|
|
{
|
|
MDEBUG(("\ncfind trying at %ld\n", LOFF(begin)));
|
|
estart = begin;
|
|
estop = v->stop;
|
|
for (;;)
|
|
{
|
|
/* Here we use the top node's detailed RE */
|
|
if (shorter)
|
|
end = shortest(v, d, begin, estart,
|
|
estop, (chr **) NULL, &hitend);
|
|
else
|
|
end = longest(v, d, begin, estop,
|
|
&hitend);
|
|
if (ISERR())
|
|
{
|
|
*coldp = cold;
|
|
return v->err;
|
|
}
|
|
if (hitend && cold == NULL)
|
|
cold = begin;
|
|
if (end == NULL)
|
|
break; /* no match with this begin point, try next */
|
|
MDEBUG(("tentative end %ld\n", LOFF(end)));
|
|
/* Dissect the potential match to see if it really matches */
|
|
er = cdissect(v, v->g->tree, begin, end);
|
|
if (er == REG_OKAY)
|
|
{
|
|
if (v->nmatch > 0)
|
|
{
|
|
v->pmatch[0].rm_so = OFF(begin);
|
|
v->pmatch[0].rm_eo = OFF(end);
|
|
}
|
|
*coldp = cold;
|
|
return REG_OKAY;
|
|
}
|
|
if (er != REG_NOMATCH)
|
|
{
|
|
ERR(er);
|
|
*coldp = cold;
|
|
return er;
|
|
}
|
|
/* Try next longer/shorter match with same begin point */
|
|
if (shorter)
|
|
{
|
|
if (end == estop)
|
|
break; /* no more, so try next begin point */
|
|
estart = end + 1;
|
|
}
|
|
else
|
|
{
|
|
if (end == begin)
|
|
break; /* no more, so try next begin point */
|
|
estop = end - 1;
|
|
}
|
|
} /* end loop over endpoint positions */
|
|
} /* end loop over beginning positions */
|
|
|
|
/*
|
|
* If we get here, there is no possible match starting at or before
|
|
* "close", so consider matches beyond that. We'll do a fresh search
|
|
* with the search RE to find a new promising match range.
|
|
*/
|
|
close++;
|
|
} while (close < v->stop);
|
|
|
|
*coldp = cold;
|
|
return REG_NOMATCH;
|
|
}
|
|
|
|
/*
|
|
* zapallsubs - initialize all subexpression matches to "no match"
|
|
*
|
|
* Note that p[0], the overall-match location, is not touched.
|
|
*/
|
|
static void
|
|
zapallsubs(regmatch_t *p,
|
|
size_t n)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = n - 1; i > 0; i--)
|
|
{
|
|
p[i].rm_so = -1;
|
|
p[i].rm_eo = -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* zaptreesubs - initialize subexpressions within subtree to "no match"
|
|
*/
|
|
static void
|
|
zaptreesubs(struct vars *v,
|
|
struct subre *t)
|
|
{
|
|
int n = t->capno;
|
|
struct subre *t2;
|
|
|
|
if (n > 0)
|
|
{
|
|
if ((size_t) n < v->nmatch)
|
|
{
|
|
v->pmatch[n].rm_so = -1;
|
|
v->pmatch[n].rm_eo = -1;
|
|
}
|
|
}
|
|
|
|
for (t2 = t->child; t2 != NULL; t2 = t2->sibling)
|
|
zaptreesubs(v, t2);
|
|
}
|
|
|
|
/*
|
|
* subset - set subexpression match data for a successful subre
|
|
*/
|
|
static void
|
|
subset(struct vars *v,
|
|
struct subre *sub,
|
|
chr *begin,
|
|
chr *end)
|
|
{
|
|
int n = sub->capno;
|
|
|
|
assert(n > 0);
|
|
if ((size_t) n >= v->nmatch)
|
|
return;
|
|
|
|
MDEBUG(("%d: setting %d = %ld-%ld\n", sub->id, n, LOFF(begin), LOFF(end)));
|
|
v->pmatch[n].rm_so = OFF(begin);
|
|
v->pmatch[n].rm_eo = OFF(end);
|
|
}
|
|
|
|
/*
|
|
* cdissect - check backrefs and determine subexpression matches
|
|
*
|
|
* cdissect recursively processes a subre tree to check matching of backrefs
|
|
* and/or identify submatch boundaries for capture nodes. The proposed match
|
|
* runs from "begin" to "end" (not including "end"), and we are basically
|
|
* "dissecting" it to see where the submatches are.
|
|
*
|
|
* Before calling any level of cdissect, the caller must have run the node's
|
|
* DFA and found that the proposed substring satisfies the DFA. (We make
|
|
* the caller do that because in concatenation and iteration nodes, it's
|
|
* much faster to check all the substrings against the child DFAs before we
|
|
* recurse.)
|
|
*
|
|
* A side-effect of a successful match is to save match locations for
|
|
* capturing subexpressions in v->pmatch[]. This is a little bit tricky,
|
|
* so we make the following rules:
|
|
* 1. Before initial entry to cdissect, all match data must have been
|
|
* cleared (this is seen to by zapallsubs).
|
|
* 2. Before any recursive entry to cdissect, the match data for that
|
|
* subexpression tree must be guaranteed clear (see zaptreesubs).
|
|
* 3. When returning REG_OKAY, each level of cdissect will have saved
|
|
* any relevant match locations.
|
|
* 4. When returning REG_NOMATCH, each level of cdissect will guarantee
|
|
* that its subexpression match locations are again clear.
|
|
* 5. No guarantees are made for error cases (i.e., other result codes).
|
|
* 6. When a level of cdissect abandons a successful sub-match, it will
|
|
* clear that subtree's match locations with zaptreesubs before trying
|
|
* any new DFA match or cdissect call for that subtree or any subtree
|
|
* to its right (that is, any subtree that could have a backref into the
|
|
* abandoned match).
|
|
* This may seem overly complicated, but it's difficult to simplify it
|
|
* because of the provision that match locations must be reset before
|
|
* any fresh DFA match (a rule that is needed to make dfa_backref safe).
|
|
* That means it won't work to just reset relevant match locations at the
|
|
* start of each cdissect level.
|
|
*/
|
|
static int /* regexec return code */
|
|
cdissect(struct vars *v,
|
|
struct subre *t,
|
|
chr *begin, /* beginning of relevant substring */
|
|
chr *end) /* end of same */
|
|
{
|
|
int er;
|
|
|
|
assert(t != NULL);
|
|
MDEBUG(("%d: cdissect %c %ld-%ld\n", t->id, t->op, LOFF(begin), LOFF(end)));
|
|
|
|
/* handy place to check for operation cancel */
|
|
INTERRUPT(v->re);
|
|
/* ... and stack overrun */
|
|
if (STACK_TOO_DEEP(v->re))
|
|
return REG_ETOOBIG;
|
|
|
|
switch (t->op)
|
|
{
|
|
case '=': /* terminal node */
|
|
assert(t->child == NULL);
|
|
er = REG_OKAY; /* no action, parent did the work */
|
|
break;
|
|
case 'b': /* back reference */
|
|
assert(t->child == NULL);
|
|
er = cbrdissect(v, t, begin, end);
|
|
break;
|
|
case '.': /* concatenation */
|
|
assert(t->child != NULL);
|
|
if (t->child->flags & SHORTER) /* reverse scan */
|
|
er = crevcondissect(v, t, begin, end);
|
|
else
|
|
er = ccondissect(v, t, begin, end);
|
|
break;
|
|
case '|': /* alternation */
|
|
assert(t->child != NULL);
|
|
er = caltdissect(v, t, begin, end);
|
|
break;
|
|
case '*': /* iteration */
|
|
assert(t->child != NULL);
|
|
if (t->child->flags & SHORTER) /* reverse scan */
|
|
er = creviterdissect(v, t, begin, end);
|
|
else
|
|
er = citerdissect(v, t, begin, end);
|
|
break;
|
|
case '(': /* no-op capture node */
|
|
assert(t->child != NULL);
|
|
er = cdissect(v, t->child, begin, end);
|
|
break;
|
|
default:
|
|
er = REG_ASSERT;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We should never have a match failure unless backrefs lurk below;
|
|
* otherwise, either caller failed to check the DFA, or there's some
|
|
* inconsistency between the DFA and the node's innards.
|
|
*/
|
|
assert(er != REG_NOMATCH || (t->flags & BACKR));
|
|
|
|
/*
|
|
* If this node is marked as capturing, save successful match's location.
|
|
*/
|
|
if (t->capno > 0 && er == REG_OKAY)
|
|
subset(v, t, begin, end);
|
|
|
|
return er;
|
|
}
|
|
|
|
/*
|
|
* ccondissect - dissect match for concatenation node
|
|
*/
|
|
static int /* regexec return code */
|
|
ccondissect(struct vars *v,
|
|
struct subre *t,
|
|
chr *begin, /* beginning of relevant substring */
|
|
chr *end) /* end of same */
|
|
{
|
|
struct subre *left = t->child;
|
|
struct subre *right = left->sibling;
|
|
struct dfa *d;
|
|
struct dfa *d2;
|
|
chr *mid;
|
|
int er;
|
|
|
|
assert(t->op == '.');
|
|
assert(left != NULL && left->cnfa.nstates > 0);
|
|
assert(right != NULL && right->cnfa.nstates > 0);
|
|
assert(right->sibling == NULL);
|
|
assert(!(left->flags & SHORTER));
|
|
|
|
d = getsubdfa(v, left);
|
|
NOERR();
|
|
d2 = getsubdfa(v, right);
|
|
NOERR();
|
|
MDEBUG(("%d: ccondissect %ld-%ld\n", t->id, LOFF(begin), LOFF(end)));
|
|
|
|
/* pick a tentative midpoint */
|
|
mid = longest(v, d, begin, end, (int *) NULL);
|
|
NOERR();
|
|
if (mid == NULL)
|
|
return REG_NOMATCH;
|
|
MDEBUG(("%d: tentative midpoint %ld\n", t->id, LOFF(mid)));
|
|
|
|
/* iterate until satisfaction or failure */
|
|
for (;;)
|
|
{
|
|
/* try this midpoint on for size */
|
|
if (longest(v, d2, mid, end, (int *) NULL) == end)
|
|
{
|
|
er = cdissect(v, left, begin, mid);
|
|
if (er == REG_OKAY)
|
|
{
|
|
er = cdissect(v, right, mid, end);
|
|
if (er == REG_OKAY)
|
|
{
|
|
/* satisfaction */
|
|
MDEBUG(("%d: successful\n", t->id));
|
|
return REG_OKAY;
|
|
}
|
|
/* Reset left's matches (right should have done so itself) */
|
|
zaptreesubs(v, left);
|
|
}
|
|
if (er != REG_NOMATCH)
|
|
return er;
|
|
}
|
|
NOERR();
|
|
|
|
/* that midpoint didn't work, find a new one */
|
|
if (mid == begin)
|
|
{
|
|
/* all possibilities exhausted */
|
|
MDEBUG(("%d: no midpoint\n", t->id));
|
|
return REG_NOMATCH;
|
|
}
|
|
mid = longest(v, d, begin, mid - 1, (int *) NULL);
|
|
NOERR();
|
|
if (mid == NULL)
|
|
{
|
|
/* failed to find a new one */
|
|
MDEBUG(("%d: failed midpoint\n", t->id));
|
|
return REG_NOMATCH;
|
|
}
|
|
MDEBUG(("%d: new midpoint %ld\n", t->id, LOFF(mid)));
|
|
}
|
|
|
|
/* can't get here */
|
|
return REG_ASSERT;
|
|
}
|
|
|
|
/*
|
|
* crevcondissect - dissect match for concatenation node, shortest-first
|
|
*/
|
|
static int /* regexec return code */
|
|
crevcondissect(struct vars *v,
|
|
struct subre *t,
|
|
chr *begin, /* beginning of relevant substring */
|
|
chr *end) /* end of same */
|
|
{
|
|
struct subre *left = t->child;
|
|
struct subre *right = left->sibling;
|
|
struct dfa *d;
|
|
struct dfa *d2;
|
|
chr *mid;
|
|
int er;
|
|
|
|
assert(t->op == '.');
|
|
assert(left != NULL && left->cnfa.nstates > 0);
|
|
assert(right != NULL && right->cnfa.nstates > 0);
|
|
assert(right->sibling == NULL);
|
|
assert(left->flags & SHORTER);
|
|
|
|
d = getsubdfa(v, left);
|
|
NOERR();
|
|
d2 = getsubdfa(v, right);
|
|
NOERR();
|
|
MDEBUG(("%d: crevcondissect %ld-%ld\n", t->id, LOFF(begin), LOFF(end)));
|
|
|
|
/* pick a tentative midpoint */
|
|
mid = shortest(v, d, begin, begin, end, (chr **) NULL, (int *) NULL);
|
|
NOERR();
|
|
if (mid == NULL)
|
|
return REG_NOMATCH;
|
|
MDEBUG(("%d: tentative midpoint %ld\n", t->id, LOFF(mid)));
|
|
|
|
/* iterate until satisfaction or failure */
|
|
for (;;)
|
|
{
|
|
/* try this midpoint on for size */
|
|
if (longest(v, d2, mid, end, (int *) NULL) == end)
|
|
{
|
|
er = cdissect(v, left, begin, mid);
|
|
if (er == REG_OKAY)
|
|
{
|
|
er = cdissect(v, right, mid, end);
|
|
if (er == REG_OKAY)
|
|
{
|
|
/* satisfaction */
|
|
MDEBUG(("%d: successful\n", t->id));
|
|
return REG_OKAY;
|
|
}
|
|
/* Reset left's matches (right should have done so itself) */
|
|
zaptreesubs(v, left);
|
|
}
|
|
if (er != REG_NOMATCH)
|
|
return er;
|
|
}
|
|
NOERR();
|
|
|
|
/* that midpoint didn't work, find a new one */
|
|
if (mid == end)
|
|
{
|
|
/* all possibilities exhausted */
|
|
MDEBUG(("%d: no midpoint\n", t->id));
|
|
return REG_NOMATCH;
|
|
}
|
|
mid = shortest(v, d, begin, mid + 1, end, (chr **) NULL, (int *) NULL);
|
|
NOERR();
|
|
if (mid == NULL)
|
|
{
|
|
/* failed to find a new one */
|
|
MDEBUG(("%d: failed midpoint\n", t->id));
|
|
return REG_NOMATCH;
|
|
}
|
|
MDEBUG(("%d: new midpoint %ld\n", t->id, LOFF(mid)));
|
|
}
|
|
|
|
/* can't get here */
|
|
return REG_ASSERT;
|
|
}
|
|
|
|
/*
|
|
* cbrdissect - dissect match for backref node
|
|
*
|
|
* The backref match might already have been verified by dfa_backref(),
|
|
* but we don't know that for sure so must check it here.
|
|
*/
|
|
static int /* regexec return code */
|
|
cbrdissect(struct vars *v,
|
|
struct subre *t,
|
|
chr *begin, /* beginning of relevant substring */
|
|
chr *end) /* end of same */
|
|
{
|
|
int n = t->backno;
|
|
size_t numreps;
|
|
size_t tlen;
|
|
size_t brlen;
|
|
chr *brstring;
|
|
chr *p;
|
|
int min = t->min;
|
|
int max = t->max;
|
|
|
|
assert(t != NULL);
|
|
assert(t->op == 'b');
|
|
assert(n >= 0);
|
|
assert((size_t) n < v->nmatch);
|
|
|
|
MDEBUG(("%d: cbrdissect %d{%d-%d} %ld-%ld\n", t->id, n, min, max,
|
|
LOFF(begin), LOFF(end)));
|
|
|
|
/* get the backreferenced string */
|
|
if (v->pmatch[n].rm_so == -1)
|
|
return REG_NOMATCH;
|
|
brstring = v->start + v->pmatch[n].rm_so;
|
|
brlen = v->pmatch[n].rm_eo - v->pmatch[n].rm_so;
|
|
|
|
/* special cases for zero-length strings */
|
|
if (brlen == 0)
|
|
{
|
|
/*
|
|
* matches only if target is zero length, but any number of
|
|
* repetitions can be considered to be present
|
|
*/
|
|
if (begin == end && min <= max)
|
|
{
|
|
MDEBUG(("%d: backref matched trivially\n", t->id));
|
|
return REG_OKAY;
|
|
}
|
|
return REG_NOMATCH;
|
|
}
|
|
if (begin == end)
|
|
{
|
|
/* matches only if zero repetitions are okay */
|
|
if (min == 0)
|
|
{
|
|
MDEBUG(("%d: backref matched trivially\n", t->id));
|
|
return REG_OKAY;
|
|
}
|
|
return REG_NOMATCH;
|
|
}
|
|
|
|
/*
|
|
* check target length to see if it could possibly be an allowed number of
|
|
* repetitions of brstring
|
|
*/
|
|
assert(end > begin);
|
|
tlen = end - begin;
|
|
if (tlen % brlen != 0)
|
|
return REG_NOMATCH;
|
|
numreps = tlen / brlen;
|
|
if (numreps < min || (numreps > max && max != DUPINF))
|
|
return REG_NOMATCH;
|
|
|
|
/* okay, compare the actual string contents */
|
|
p = begin;
|
|
while (numreps-- > 0)
|
|
{
|
|
if ((*v->g->compare) (brstring, p, brlen) != 0)
|
|
return REG_NOMATCH;
|
|
p += brlen;
|
|
}
|
|
|
|
MDEBUG(("%d: backref matched\n", t->id));
|
|
return REG_OKAY;
|
|
}
|
|
|
|
/*
|
|
* caltdissect - dissect match for alternation node
|
|
*/
|
|
static int /* regexec return code */
|
|
caltdissect(struct vars *v,
|
|
struct subre *t,
|
|
chr *begin, /* beginning of relevant substring */
|
|
chr *end) /* end of same */
|
|
{
|
|
struct dfa *d;
|
|
int er;
|
|
|
|
assert(t->op == '|');
|
|
|
|
t = t->child;
|
|
/* there should be at least 2 alternatives */
|
|
assert(t != NULL && t->sibling != NULL);
|
|
|
|
while (t != NULL)
|
|
{
|
|
assert(t->cnfa.nstates > 0);
|
|
|
|
MDEBUG(("%d: caltdissect %ld-%ld\n", t->id, LOFF(begin), LOFF(end)));
|
|
|
|
d = getsubdfa(v, t);
|
|
NOERR();
|
|
if (longest(v, d, begin, end, (int *) NULL) == end)
|
|
{
|
|
MDEBUG(("%d: caltdissect matched\n", t->id));
|
|
er = cdissect(v, t, begin, end);
|
|
if (er != REG_NOMATCH)
|
|
return er;
|
|
}
|
|
NOERR();
|
|
|
|
t = t->sibling;
|
|
}
|
|
|
|
return REG_NOMATCH;
|
|
}
|
|
|
|
/*
|
|
* citerdissect - dissect match for iteration node
|
|
*/
|
|
static int /* regexec return code */
|
|
citerdissect(struct vars *v,
|
|
struct subre *t,
|
|
chr *begin, /* beginning of relevant substring */
|
|
chr *end) /* end of same */
|
|
{
|
|
struct dfa *d;
|
|
chr **endpts;
|
|
chr *limit;
|
|
int min_matches;
|
|
size_t max_matches;
|
|
int nverified;
|
|
int k;
|
|
int i;
|
|
int er;
|
|
|
|
assert(t->op == '*');
|
|
assert(t->child != NULL && t->child->cnfa.nstates > 0);
|
|
assert(!(t->child->flags & SHORTER));
|
|
assert(begin <= end);
|
|
|
|
MDEBUG(("%d: citerdissect %ld-%ld\n", t->id, LOFF(begin), LOFF(end)));
|
|
|
|
/*
|
|
* For the moment, assume the minimum number of matches is 1. If zero
|
|
* matches are allowed, and the target string is empty, we are allowed to
|
|
* match regardless of the contents of the iter node --- but we would
|
|
* prefer to match once, so that capturing parens get set. (An example of
|
|
* the concern here is a pattern like "()*\1", which historically this
|
|
* code has allowed to succeed.) Therefore, we deal with the zero-matches
|
|
* case at the bottom, after failing to find any other way to match.
|
|
*/
|
|
min_matches = t->min;
|
|
if (min_matches <= 0)
|
|
min_matches = 1;
|
|
|
|
/*
|
|
* We need workspace to track the endpoints of each sub-match. Normally
|
|
* we consider only nonzero-length sub-matches, so there can be at most
|
|
* end-begin of them. However, if min is larger than that, we will also
|
|
* consider zero-length sub-matches in order to find enough matches.
|
|
*
|
|
* For convenience, endpts[0] contains the "begin" pointer and we store
|
|
* sub-match endpoints in endpts[1..max_matches].
|
|
*/
|
|
max_matches = end - begin;
|
|
if (max_matches > t->max && t->max != DUPINF)
|
|
max_matches = t->max;
|
|
if (max_matches < min_matches)
|
|
max_matches = min_matches;
|
|
endpts = (chr **) MALLOC((max_matches + 1) * sizeof(chr *));
|
|
if (endpts == NULL)
|
|
return REG_ESPACE;
|
|
endpts[0] = begin;
|
|
|
|
d = getsubdfa(v, t->child);
|
|
if (ISERR())
|
|
{
|
|
FREE(endpts);
|
|
return v->err;
|
|
}
|
|
|
|
/*
|
|
* Our strategy is to first find a set of sub-match endpoints that are
|
|
* valid according to the child node's DFA, and then recursively dissect
|
|
* each sub-match to confirm validity. If any validity check fails,
|
|
* backtrack that sub-match and try again. And, when we next try for a
|
|
* validity check, we need not recheck any successfully verified
|
|
* sub-matches that we didn't move the endpoints of. nverified remembers
|
|
* how many sub-matches are currently known okay.
|
|
*/
|
|
|
|
/* initialize to consider first sub-match */
|
|
nverified = 0;
|
|
k = 1;
|
|
limit = end;
|
|
|
|
/* iterate until satisfaction or failure */
|
|
while (k > 0)
|
|
{
|
|
/* try to find an endpoint for the k'th sub-match */
|
|
endpts[k] = longest(v, d, endpts[k - 1], limit, (int *) NULL);
|
|
if (ISERR())
|
|
{
|
|
FREE(endpts);
|
|
return v->err;
|
|
}
|
|
if (endpts[k] == NULL)
|
|
{
|
|
/* no match possible, so see if we can shorten previous one */
|
|
k--;
|
|
goto backtrack;
|
|
}
|
|
MDEBUG(("%d: working endpoint %d: %ld\n",
|
|
t->id, k, LOFF(endpts[k])));
|
|
|
|
/* k'th sub-match can no longer be considered verified */
|
|
if (nverified >= k)
|
|
nverified = k - 1;
|
|
|
|
if (endpts[k] != end)
|
|
{
|
|
/* haven't reached end yet, try another iteration if allowed */
|
|
if (k >= max_matches)
|
|
{
|
|
/* must try to shorten some previous match */
|
|
k--;
|
|
goto backtrack;
|
|
}
|
|
|
|
/* reject zero-length match unless necessary to achieve min */
|
|
if (endpts[k] == endpts[k - 1] &&
|
|
(k >= min_matches || min_matches - k < end - endpts[k]))
|
|
goto backtrack;
|
|
|
|
k++;
|
|
limit = end;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We've identified a way to divide the string into k sub-matches that
|
|
* works so far as the child DFA can tell. If k is an allowed number
|
|
* of matches, start the slow part: recurse to verify each sub-match.
|
|
* We always have k <= max_matches, needn't check that.
|
|
*/
|
|
if (k < min_matches)
|
|
goto backtrack;
|
|
|
|
MDEBUG(("%d: verifying %d..%d\n", t->id, nverified + 1, k));
|
|
|
|
for (i = nverified + 1; i <= k; i++)
|
|
{
|
|
/* zap any match data from a non-last iteration */
|
|
zaptreesubs(v, t->child);
|
|
er = cdissect(v, t->child, endpts[i - 1], endpts[i]);
|
|
if (er == REG_OKAY)
|
|
{
|
|
nverified = i;
|
|
continue;
|
|
}
|
|
if (er == REG_NOMATCH)
|
|
break;
|
|
/* oops, something failed */
|
|
FREE(endpts);
|
|
return er;
|
|
}
|
|
|
|
if (i > k)
|
|
{
|
|
/* satisfaction */
|
|
MDEBUG(("%d: successful\n", t->id));
|
|
FREE(endpts);
|
|
return REG_OKAY;
|
|
}
|
|
|
|
/* i'th match failed to verify, so backtrack it */
|
|
k = i;
|
|
|
|
backtrack:
|
|
|
|
/*
|
|
* Must consider shorter versions of the k'th sub-match. However,
|
|
* we'll only ask for a zero-length match if necessary.
|
|
*/
|
|
while (k > 0)
|
|
{
|
|
chr *prev_end = endpts[k - 1];
|
|
|
|
if (endpts[k] > prev_end)
|
|
{
|
|
limit = endpts[k] - 1;
|
|
if (limit > prev_end ||
|
|
(k < min_matches && min_matches - k >= end - prev_end))
|
|
{
|
|
/* break out of backtrack loop, continue the outer one */
|
|
break;
|
|
}
|
|
}
|
|
/* can't shorten k'th sub-match any more, consider previous one */
|
|
k--;
|
|
}
|
|
}
|
|
|
|
/* all possibilities exhausted */
|
|
FREE(endpts);
|
|
|
|
/*
|
|
* Now consider the possibility that we can match to a zero-length string
|
|
* by using zero repetitions.
|
|
*/
|
|
if (t->min == 0 && begin == end)
|
|
{
|
|
MDEBUG(("%d: allowing zero matches\n", t->id));
|
|
return REG_OKAY;
|
|
}
|
|
|
|
MDEBUG(("%d: failed\n", t->id));
|
|
return REG_NOMATCH;
|
|
}
|
|
|
|
/*
|
|
* creviterdissect - dissect match for iteration node, shortest-first
|
|
*/
|
|
static int /* regexec return code */
|
|
creviterdissect(struct vars *v,
|
|
struct subre *t,
|
|
chr *begin, /* beginning of relevant substring */
|
|
chr *end) /* end of same */
|
|
{
|
|
struct dfa *d;
|
|
chr **endpts;
|
|
chr *limit;
|
|
int min_matches;
|
|
size_t max_matches;
|
|
int nverified;
|
|
int k;
|
|
int i;
|
|
int er;
|
|
|
|
assert(t->op == '*');
|
|
assert(t->child != NULL && t->child->cnfa.nstates > 0);
|
|
assert(t->child->flags & SHORTER);
|
|
assert(begin <= end);
|
|
|
|
MDEBUG(("%d: creviterdissect %ld-%ld\n", t->id, LOFF(begin), LOFF(end)));
|
|
|
|
/*
|
|
* If zero matches are allowed, and target string is empty, just declare
|
|
* victory. OTOH, if target string isn't empty, zero matches can't work
|
|
* so we pretend the min is 1.
|
|
*/
|
|
min_matches = t->min;
|
|
if (min_matches <= 0)
|
|
{
|
|
if (begin == end)
|
|
{
|
|
MDEBUG(("%d: allowing zero matches\n", t->id));
|
|
return REG_OKAY;
|
|
}
|
|
min_matches = 1;
|
|
}
|
|
|
|
/*
|
|
* We need workspace to track the endpoints of each sub-match. Normally
|
|
* we consider only nonzero-length sub-matches, so there can be at most
|
|
* end-begin of them. However, if min is larger than that, we will also
|
|
* consider zero-length sub-matches in order to find enough matches.
|
|
*
|
|
* For convenience, endpts[0] contains the "begin" pointer and we store
|
|
* sub-match endpoints in endpts[1..max_matches].
|
|
*/
|
|
max_matches = end - begin;
|
|
if (max_matches > t->max && t->max != DUPINF)
|
|
max_matches = t->max;
|
|
if (max_matches < min_matches)
|
|
max_matches = min_matches;
|
|
endpts = (chr **) MALLOC((max_matches + 1) * sizeof(chr *));
|
|
if (endpts == NULL)
|
|
return REG_ESPACE;
|
|
endpts[0] = begin;
|
|
|
|
d = getsubdfa(v, t->child);
|
|
if (ISERR())
|
|
{
|
|
FREE(endpts);
|
|
return v->err;
|
|
}
|
|
|
|
/*
|
|
* Our strategy is to first find a set of sub-match endpoints that are
|
|
* valid according to the child node's DFA, and then recursively dissect
|
|
* each sub-match to confirm validity. If any validity check fails,
|
|
* backtrack that sub-match and try again. And, when we next try for a
|
|
* validity check, we need not recheck any successfully verified
|
|
* sub-matches that we didn't move the endpoints of. nverified remembers
|
|
* how many sub-matches are currently known okay.
|
|
*/
|
|
|
|
/* initialize to consider first sub-match */
|
|
nverified = 0;
|
|
k = 1;
|
|
limit = begin;
|
|
|
|
/* iterate until satisfaction or failure */
|
|
while (k > 0)
|
|
{
|
|
/* disallow zero-length match unless necessary to achieve min */
|
|
if (limit == endpts[k - 1] &&
|
|
limit != end &&
|
|
(k >= min_matches || min_matches - k < end - limit))
|
|
limit++;
|
|
|
|
/* if this is the last allowed sub-match, it must reach to the end */
|
|
if (k >= max_matches)
|
|
limit = end;
|
|
|
|
/* try to find an endpoint for the k'th sub-match */
|
|
endpts[k] = shortest(v, d, endpts[k - 1], limit, end,
|
|
(chr **) NULL, (int *) NULL);
|
|
if (ISERR())
|
|
{
|
|
FREE(endpts);
|
|
return v->err;
|
|
}
|
|
if (endpts[k] == NULL)
|
|
{
|
|
/* no match possible, so see if we can lengthen previous one */
|
|
k--;
|
|
goto backtrack;
|
|
}
|
|
MDEBUG(("%d: working endpoint %d: %ld\n",
|
|
t->id, k, LOFF(endpts[k])));
|
|
|
|
/* k'th sub-match can no longer be considered verified */
|
|
if (nverified >= k)
|
|
nverified = k - 1;
|
|
|
|
if (endpts[k] != end)
|
|
{
|
|
/* haven't reached end yet, try another iteration if allowed */
|
|
if (k >= max_matches)
|
|
{
|
|
/* must try to lengthen some previous match */
|
|
k--;
|
|
goto backtrack;
|
|
}
|
|
|
|
k++;
|
|
limit = endpts[k - 1];
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We've identified a way to divide the string into k sub-matches that
|
|
* works so far as the child DFA can tell. If k is an allowed number
|
|
* of matches, start the slow part: recurse to verify each sub-match.
|
|
* We always have k <= max_matches, needn't check that.
|
|
*/
|
|
if (k < min_matches)
|
|
goto backtrack;
|
|
|
|
MDEBUG(("%d: verifying %d..%d\n", t->id, nverified + 1, k));
|
|
|
|
for (i = nverified + 1; i <= k; i++)
|
|
{
|
|
/* zap any match data from a non-last iteration */
|
|
zaptreesubs(v, t->child);
|
|
er = cdissect(v, t->child, endpts[i - 1], endpts[i]);
|
|
if (er == REG_OKAY)
|
|
{
|
|
nverified = i;
|
|
continue;
|
|
}
|
|
if (er == REG_NOMATCH)
|
|
break;
|
|
/* oops, something failed */
|
|
FREE(endpts);
|
|
return er;
|
|
}
|
|
|
|
if (i > k)
|
|
{
|
|
/* satisfaction */
|
|
MDEBUG(("%d: successful\n", t->id));
|
|
FREE(endpts);
|
|
return REG_OKAY;
|
|
}
|
|
|
|
/* i'th match failed to verify, so backtrack it */
|
|
k = i;
|
|
|
|
backtrack:
|
|
|
|
/*
|
|
* Must consider longer versions of the k'th sub-match.
|
|
*/
|
|
while (k > 0)
|
|
{
|
|
if (endpts[k] < end)
|
|
{
|
|
limit = endpts[k] + 1;
|
|
/* break out of backtrack loop, continue the outer one */
|
|
break;
|
|
}
|
|
/* can't lengthen k'th sub-match any more, consider previous one */
|
|
k--;
|
|
}
|
|
}
|
|
|
|
/* all possibilities exhausted */
|
|
MDEBUG(("%d: failed\n", t->id));
|
|
FREE(endpts);
|
|
return REG_NOMATCH;
|
|
}
|
|
|
|
|
|
|
|
#include "rege_dfa.c"
|