mirror of
				https://github.com/postgres/postgres.git
				synced 2025-10-29 22:49:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			1175 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1175 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /******************************************************************************
 | |
|   This file contains routines that can be bound to a Postgres backend and
 | |
|   called by the backend in the process of processing queries.  The calling
 | |
|   format for these routines is dictated by Postgres architecture.
 | |
| ******************************************************************************/
 | |
| 
 | |
| #include "postgres.h"
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| #include "access/gist.h"
 | |
| #include "access/rtree.h"
 | |
| #include "utils/elog.h"
 | |
| #include "utils/palloc.h"
 | |
| #include "utils/builtins.h"
 | |
| 
 | |
| #include "cubedata.h"
 | |
| 
 | |
| #define max(a,b)		((a) >	(b) ? (a) : (b))
 | |
| #define min(a,b)		((a) <= (b) ? (a) : (b))
 | |
| #define abs(a)			((a) <	(0) ? (-a) : (a))
 | |
| 
 | |
| extern void set_parse_buffer(char *str);
 | |
| extern int	cube_yyparse();
 | |
| 
 | |
| /*
 | |
| ** Input/Output routines
 | |
| */
 | |
| NDBOX	   *cube_in(char *str);
 | |
| char	   *cube_out(NDBOX * cube);
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** GiST support methods
 | |
| */
 | |
| bool		g_cube_consistent(GISTENTRY *entry, NDBOX * query, StrategyNumber strategy);
 | |
| GISTENTRY  *g_cube_compress(GISTENTRY *entry);
 | |
| GISTENTRY  *g_cube_decompress(GISTENTRY *entry);
 | |
| float	   *g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
 | |
| GIST_SPLITVEC *g_cube_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
 | |
| bool		g_cube_leaf_consistent(NDBOX * key, NDBOX * query, StrategyNumber strategy);
 | |
| bool		g_cube_internal_consistent(NDBOX * key, NDBOX * query, StrategyNumber strategy);
 | |
| NDBOX	   *g_cube_union(bytea *entryvec, int *sizep);
 | |
| NDBOX	   *g_cube_binary_union(NDBOX * r1, NDBOX * r2, int *sizep);
 | |
| bool	   *g_cube_same(NDBOX * b1, NDBOX * b2, bool *result);
 | |
| 
 | |
| /*
 | |
| ** R-tree support functions
 | |
| */
 | |
| bool		cube_same(NDBOX * a, NDBOX * b);
 | |
| bool		cube_different(NDBOX * a, NDBOX * b);
 | |
| bool		cube_contains(NDBOX * a, NDBOX * b);
 | |
| bool		cube_contained(NDBOX * a, NDBOX * b);
 | |
| bool		cube_overlap(NDBOX * a, NDBOX * b);
 | |
| NDBOX	   *cube_union(NDBOX * a, NDBOX * b);
 | |
| NDBOX	   *cube_inter(NDBOX * a, NDBOX * b);
 | |
| float	   *cube_size(NDBOX * a);
 | |
| void		rt_cube_size(NDBOX * a, float *sz);
 | |
| 
 | |
| /*
 | |
| ** These make no sense for this type, but R-tree wants them
 | |
| */
 | |
| bool		cube_over_left(NDBOX * a, NDBOX * b);
 | |
| bool		cube_over_right(NDBOX * a, NDBOX * b);
 | |
| bool		cube_left(NDBOX * a, NDBOX * b);
 | |
| bool		cube_right(NDBOX * a, NDBOX * b);
 | |
| 
 | |
| /*
 | |
| ** miscellaneous
 | |
| */
 | |
| bool		cube_lt(NDBOX * a, NDBOX * b);
 | |
| bool		cube_gt(NDBOX * a, NDBOX * b);
 | |
| float	   *cube_distance(NDBOX * a, NDBOX * b);
 | |
| 
 | |
| /*
 | |
| ** Auxiliary funxtions
 | |
| */
 | |
| static float distance_1D(float a1, float a2, float b1, float b2);
 | |
| static NDBOX *swap_corners(NDBOX * a);
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Input/Output functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /* NdBox = [(lowerleft),(upperright)] */
 | |
| /* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
 | |
| NDBOX *
 | |
| cube_in(char *str)
 | |
| {
 | |
| 	void	   *result;
 | |
| 
 | |
| 	set_parse_buffer(str);
 | |
| 
 | |
| 	if (cube_yyparse(&result) != 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return ((NDBOX *) result);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * You might have noticed a slight inconsistency between the following
 | |
|  * declaration and the SQL definition:
 | |
|  *	   CREATE FUNCTION cube_out(opaque) RETURNS opaque ...
 | |
|  * The reason is that the argument pass into cube_out is really just a
 | |
|  * pointer. POSTGRES thinks all output functions are:
 | |
|  *	   char *out_func(char *);
 | |
|  */
 | |
| char *
 | |
| cube_out(NDBOX * cube)
 | |
| {
 | |
| 	char	   *result;
 | |
| 	char	   *p;
 | |
| 	int			equal = 1;
 | |
| 	int			dim = cube->dim;
 | |
| 	int			i;
 | |
| 
 | |
| 	if (cube == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	p = result = (char *) palloc(100);
 | |
| 
 | |
| 	/*
 | |
| 	 * while printing the first (LL) corner, check if it is equal to the
 | |
| 	 * scond one
 | |
| 	 */
 | |
| 	p += sprintf(p, "(");
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 	{
 | |
| 		p += sprintf(p, "%g", cube->x[i]);
 | |
| 		p += sprintf(p, ", ");
 | |
| 		if (cube->x[i] != cube->x[i + dim])
 | |
| 			equal = 0;
 | |
| 	}
 | |
| 	p -= 2;						/* get rid of the last ", " */
 | |
| 	p += sprintf(p, ")");
 | |
| 
 | |
| 	if (!equal)
 | |
| 	{
 | |
| 		p += sprintf(p, ",(");
 | |
| 		for (i = dim; i < dim * 2; i++)
 | |
| 		{
 | |
| 			p += sprintf(p, "%g", cube->x[i]);
 | |
| 			p += sprintf(p, ", ");
 | |
| 		}
 | |
| 		p -= 2;
 | |
| 		p += sprintf(p, ")");
 | |
| 	}
 | |
| 
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *						   GiST functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /*
 | |
| ** The GiST Consistent method for boxes
 | |
| ** Should return false if for all data items x below entry,
 | |
| ** the predicate x op query == FALSE, where op is the oper
 | |
| ** corresponding to strategy in the pg_amop table.
 | |
| */
 | |
| bool
 | |
| g_cube_consistent(GISTENTRY *entry,
 | |
| 				  NDBOX * query,
 | |
| 				  StrategyNumber strategy)
 | |
| {
 | |
| 	/*
 | |
| 	 * if entry is not leaf, use g_cube_internal_consistent, else use
 | |
| 	 * g_cube_leaf_consistent
 | |
| 	 */
 | |
| 	if (GIST_LEAF(entry))
 | |
| 		return g_cube_leaf_consistent((NDBOX *) DatumGetPointer(entry->key),
 | |
| 									  query, strategy);
 | |
| 	else
 | |
| 		return g_cube_internal_consistent((NDBOX *) DatumGetPointer(entry->key),
 | |
| 										  query, strategy);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The GiST Union method for boxes
 | |
| ** returns the minimal bounding box that encloses all the entries in entryvec
 | |
| */
 | |
| NDBOX *
 | |
| g_cube_union(bytea *entryvec, int *sizep)
 | |
| {
 | |
| 	int			numranges,
 | |
| 				i;
 | |
| 	NDBOX	   *out = (NDBOX *) NULL;
 | |
| 	NDBOX	   *tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * fprintf(stderr, "union\n");
 | |
| 	 */
 | |
| 	numranges = (VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY);
 | |
| 	tmp = (NDBOX *) DatumGetPointer((((GISTENTRY *) (VARDATA(entryvec)))[0]).key);
 | |
| 
 | |
| 	/*
 | |
| 	 * sizep = sizeof(NDBOX); -- NDBOX has variable size
 | |
| 	 */
 | |
| 	*sizep = tmp->size;
 | |
| 
 | |
| 	for (i = 1; i < numranges; i++)
 | |
| 	{
 | |
| 		out = g_cube_binary_union(tmp, (NDBOX *)
 | |
| 		   DatumGetPointer((((GISTENTRY *) (VARDATA(entryvec)))[i]).key),
 | |
| 								  sizep);
 | |
| 		if (i > 1)
 | |
| 			pfree(tmp);
 | |
| 		tmp = out;
 | |
| 	}
 | |
| 
 | |
| 	return (out);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** GiST Compress and Decompress methods for boxes
 | |
| ** do not do anything.
 | |
| */
 | |
| GISTENTRY *
 | |
| g_cube_compress(GISTENTRY *entry)
 | |
| {
 | |
| 	return (entry);
 | |
| }
 | |
| 
 | |
| GISTENTRY *
 | |
| g_cube_decompress(GISTENTRY *entry)
 | |
| {
 | |
| 	return (entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The GiST Penalty method for boxes
 | |
| ** As in the R-tree paper, we use change in area as our penalty metric
 | |
| */
 | |
| float *
 | |
| g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
 | |
| {
 | |
| 	NDBOX	   *ud;
 | |
| 	float		tmp1,
 | |
| 				tmp2;
 | |
| 
 | |
| 	ud = cube_union((NDBOX *) DatumGetPointer(origentry->key),
 | |
| 					(NDBOX *) DatumGetPointer(newentry->key));
 | |
| 	rt_cube_size(ud, &tmp1);
 | |
| 	rt_cube_size((NDBOX *) DatumGetPointer(origentry->key), &tmp2);
 | |
| 	*result = tmp1 - tmp2;
 | |
| 	pfree(ud);
 | |
| 
 | |
| 	/*
 | |
| 	 * fprintf(stderr, "penalty\n"); fprintf(stderr, "\t%g\n", *result);
 | |
| 	 */
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The GiST PickSplit method for boxes
 | |
| ** We use Guttman's poly time split algorithm
 | |
| */
 | |
| GIST_SPLITVEC *
 | |
| g_cube_picksplit(bytea *entryvec,
 | |
| 				 GIST_SPLITVEC *v)
 | |
| {
 | |
| 	OffsetNumber i,
 | |
| 				j;
 | |
| 	NDBOX	   *datum_alpha,
 | |
| 			   *datum_beta;
 | |
| 	NDBOX	   *datum_l,
 | |
| 			   *datum_r;
 | |
| 	NDBOX	   *union_d,
 | |
| 			   *union_dl,
 | |
| 			   *union_dr;
 | |
| 	NDBOX	   *inter_d;
 | |
| 	bool		firsttime;
 | |
| 	float		size_alpha,
 | |
| 				size_beta,
 | |
| 				size_union,
 | |
| 				size_inter;
 | |
| 	float		size_waste,
 | |
| 				waste;
 | |
| 	float		size_l,
 | |
| 				size_r;
 | |
| 	int			nbytes;
 | |
| 	OffsetNumber seed_1 = 0,
 | |
| 				seed_2 = 0;
 | |
| 	OffsetNumber *left,
 | |
| 			   *right;
 | |
| 	OffsetNumber maxoff;
 | |
| 
 | |
| 	/*
 | |
| 	 * fprintf(stderr, "picksplit\n");
 | |
| 	 */
 | |
| 	maxoff = ((VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY)) - 2;
 | |
| 	nbytes = (maxoff + 2) * sizeof(OffsetNumber);
 | |
| 	v->spl_left = (OffsetNumber *) palloc(nbytes);
 | |
| 	v->spl_right = (OffsetNumber *) palloc(nbytes);
 | |
| 
 | |
| 	firsttime = true;
 | |
| 	waste = 0.0;
 | |
| 
 | |
| 	for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
 | |
| 	{
 | |
| 		datum_alpha = (NDBOX *) DatumGetPointer(((GISTENTRY *) (VARDATA(entryvec)))[i].key);
 | |
| 		for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
 | |
| 		{
 | |
| 			datum_beta = (NDBOX *) DatumGetPointer(((GISTENTRY *) (VARDATA(entryvec)))[j].key);
 | |
| 
 | |
| 			/* compute the wasted space by unioning these guys */
 | |
| 			/* size_waste = size_union - size_inter; */
 | |
| 			union_d = cube_union(datum_alpha, datum_beta);
 | |
| 			rt_cube_size(union_d, &size_union);
 | |
| 			inter_d = cube_inter(datum_alpha, datum_beta);
 | |
| 			rt_cube_size(inter_d, &size_inter);
 | |
| 			size_waste = size_union - size_inter;
 | |
| 
 | |
| 			pfree(union_d);
 | |
| 
 | |
| 			if (inter_d != (NDBOX *) NULL)
 | |
| 				pfree(inter_d);
 | |
| 
 | |
| 			/*
 | |
| 			 * are these a more promising split than what we've already
 | |
| 			 * seen?
 | |
| 			 */
 | |
| 
 | |
| 			if (size_waste > waste || firsttime)
 | |
| 			{
 | |
| 				waste = size_waste;
 | |
| 				seed_1 = i;
 | |
| 				seed_2 = j;
 | |
| 				firsttime = false;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	left = v->spl_left;
 | |
| 	v->spl_nleft = 0;
 | |
| 	right = v->spl_right;
 | |
| 	v->spl_nright = 0;
 | |
| 
 | |
| 	datum_alpha = (NDBOX *) DatumGetPointer(((GISTENTRY *) (VARDATA(entryvec)))[seed_1].key);
 | |
| 	datum_l = cube_union(datum_alpha, datum_alpha);
 | |
| 	rt_cube_size(datum_l, &size_l);
 | |
| 	datum_beta = (NDBOX *) DatumGetPointer(((GISTENTRY *) (VARDATA(entryvec)))[seed_2].key);
 | |
| 	datum_r = cube_union(datum_beta, datum_beta);
 | |
| 	rt_cube_size(datum_r, &size_r);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now split up the regions between the two seeds.	An important
 | |
| 	 * property of this split algorithm is that the split vector v has the
 | |
| 	 * indices of items to be split in order in its left and right
 | |
| 	 * vectors.  We exploit this property by doing a merge in the code
 | |
| 	 * that actually splits the page.
 | |
| 	 *
 | |
| 	 * For efficiency, we also place the new index tuple in this loop. This
 | |
| 	 * is handled at the very end, when we have placed all the existing
 | |
| 	 * tuples and i == maxoff + 1.
 | |
| 	 */
 | |
| 
 | |
| 	maxoff = OffsetNumberNext(maxoff);
 | |
| 	for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
 | |
| 	{
 | |
| 		/*
 | |
| 		 * If we've already decided where to place this item, just put it
 | |
| 		 * on the right list.  Otherwise, we need to figure out which page
 | |
| 		 * needs the least enlargement in order to store the item.
 | |
| 		 */
 | |
| 
 | |
| 		if (i == seed_1)
 | |
| 		{
 | |
| 			*left++ = i;
 | |
| 			v->spl_nleft++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		else if (i == seed_2)
 | |
| 		{
 | |
| 			*right++ = i;
 | |
| 			v->spl_nright++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* okay, which page needs least enlargement? */
 | |
| 		datum_alpha = (NDBOX *) DatumGetPointer(((GISTENTRY *) (VARDATA(entryvec)))[i].key);
 | |
| 		union_dl = cube_union(datum_l, datum_alpha);
 | |
| 		union_dr = cube_union(datum_r, datum_alpha);
 | |
| 		rt_cube_size(union_dl, &size_alpha);
 | |
| 		rt_cube_size(union_dr, &size_beta);
 | |
| 
 | |
| 		/* pick which page to add it to */
 | |
| 		if (size_alpha - size_l < size_beta - size_r)
 | |
| 		{
 | |
| 			pfree(datum_l);
 | |
| 			pfree(union_dr);
 | |
| 			datum_l = union_dl;
 | |
| 			size_l = size_alpha;
 | |
| 			*left++ = i;
 | |
| 			v->spl_nleft++;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			pfree(datum_r);
 | |
| 			pfree(union_dl);
 | |
| 			datum_r = union_dr;
 | |
| 			size_r = size_alpha;
 | |
| 			*right++ = i;
 | |
| 			v->spl_nright++;
 | |
| 		}
 | |
| 	}
 | |
| 	*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
 | |
| 
 | |
| 	v->spl_ldatum = PointerGetDatum(datum_l);
 | |
| 	v->spl_rdatum = PointerGetDatum(datum_r);
 | |
| 
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Equality method
 | |
| */
 | |
| bool *
 | |
| g_cube_same(NDBOX * b1, NDBOX * b2, bool *result)
 | |
| {
 | |
| 	if (cube_same(b1, b2))
 | |
| 		*result = TRUE;
 | |
| 	else
 | |
| 		*result = FALSE;
 | |
| 
 | |
| 	/*
 | |
| 	 * fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
 | |
| 	 */
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** SUPPORT ROUTINES
 | |
| */
 | |
| bool
 | |
| g_cube_leaf_consistent(NDBOX * key,
 | |
| 					   NDBOX * query,
 | |
| 					   StrategyNumber strategy)
 | |
| {
 | |
| 	bool		retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * fprintf(stderr, "leaf_consistent, %d\n", strategy);
 | |
| 	 */
 | |
| 	switch (strategy)
 | |
| 	{
 | |
| 		case RTLeftStrategyNumber:
 | |
| 			retval = (bool) cube_left(key, query);
 | |
| 			break;
 | |
| 		case RTOverLeftStrategyNumber:
 | |
| 			retval = (bool) cube_over_left(key, query);
 | |
| 			break;
 | |
| 		case RTOverlapStrategyNumber:
 | |
| 			retval = (bool) cube_overlap(key, query);
 | |
| 			break;
 | |
| 		case RTOverRightStrategyNumber:
 | |
| 			retval = (bool) cube_over_right(key, query);
 | |
| 			break;
 | |
| 		case RTRightStrategyNumber:
 | |
| 			retval = (bool) cube_right(key, query);
 | |
| 			break;
 | |
| 		case RTSameStrategyNumber:
 | |
| 			retval = (bool) cube_same(key, query);
 | |
| 			break;
 | |
| 		case RTContainsStrategyNumber:
 | |
| 			retval = (bool) cube_contains(key, query);
 | |
| 			break;
 | |
| 		case RTContainedByStrategyNumber:
 | |
| 			retval = (bool) cube_contained(key, query);
 | |
| 			break;
 | |
| 		default:
 | |
| 			retval = FALSE;
 | |
| 	}
 | |
| 	return (retval);
 | |
| }
 | |
| 
 | |
| bool
 | |
| g_cube_internal_consistent(NDBOX * key,
 | |
| 						   NDBOX * query,
 | |
| 						   StrategyNumber strategy)
 | |
| {
 | |
| 	bool		retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * fprintf(stderr, "internal_consistent, %d\n", strategy);
 | |
| 	 */
 | |
| 	switch (strategy)
 | |
| 	{
 | |
| 		case RTLeftStrategyNumber:
 | |
| 		case RTOverLeftStrategyNumber:
 | |
| 			retval = (bool) cube_over_left(key, query);
 | |
| 			break;
 | |
| 		case RTOverlapStrategyNumber:
 | |
| 			retval = (bool) cube_overlap(key, query);
 | |
| 			break;
 | |
| 		case RTOverRightStrategyNumber:
 | |
| 		case RTRightStrategyNumber:
 | |
| 			retval = (bool) cube_right(key, query);
 | |
| 			break;
 | |
| 		case RTSameStrategyNumber:
 | |
| 		case RTContainsStrategyNumber:
 | |
| 			retval = (bool) cube_contains(key, query);
 | |
| 			break;
 | |
| 		case RTContainedByStrategyNumber:
 | |
| 			retval = (bool) cube_overlap(key, query);
 | |
| 			break;
 | |
| 		default:
 | |
| 			retval = FALSE;
 | |
| 	}
 | |
| 	return (retval);
 | |
| }
 | |
| 
 | |
| NDBOX *
 | |
| g_cube_binary_union(NDBOX * r1, NDBOX * r2, int *sizep)
 | |
| {
 | |
| 	NDBOX	   *retval;
 | |
| 
 | |
| 	retval = cube_union(r1, r2);
 | |
| 	*sizep = retval->size;
 | |
| 
 | |
| 	return (retval);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* cube_union */
 | |
| NDBOX *
 | |
| cube_union(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	int			i;
 | |
| 	NDBOX	   *result;
 | |
| 	NDBOX	   *a = swap_corners(box_a);
 | |
| 	NDBOX	   *b = swap_corners(box_b);
 | |
| 
 | |
| 	if (a->dim >= b->dim)
 | |
| 	{
 | |
| 		result = palloc(a->size);
 | |
| 		result->size = a->size;
 | |
| 		result->dim = a->dim;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		result = palloc(b->size);
 | |
| 		result->size = b->size;
 | |
| 		result->dim = b->dim;
 | |
| 	}
 | |
| 
 | |
| 	/* swap the box pointers if needed */
 | |
| 	if (a->dim < b->dim)
 | |
| 	{
 | |
| 		NDBOX	   *tmp = b;
 | |
| 
 | |
| 		b = a;
 | |
| 		a = tmp;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * use the potentially smaller of the two boxes (b) to fill in the
 | |
| 	 * result, padding absent dimensions with zeroes
 | |
| 	 */
 | |
| 	for (i = 0; i < b->dim; i++)
 | |
| 	{
 | |
| 		result->x[i] = b->x[i];
 | |
| 		result->x[i + a->dim] = b->x[i + b->dim];
 | |
| 	}
 | |
| 	for (i = b->dim; i < a->dim; i++)
 | |
| 	{
 | |
| 		result->x[i] = 0;
 | |
| 		result->x[i + a->dim] = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* compute the union */
 | |
| 	for (i = 0; i < a->dim; i++)
 | |
| 		result->x[i] = min(a->x[i], result->x[i]);
 | |
| 	for (i = a->dim; i < a->dim * 2; i++)
 | |
| 		result->x[i] = max(a->x[i], result->x[i]);
 | |
| 
 | |
| 	pfree(a);
 | |
| 	pfree(b);
 | |
| 
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| /* cube_inter */
 | |
| NDBOX *
 | |
| cube_inter(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	int			i;
 | |
| 	NDBOX	   *result;
 | |
| 	NDBOX	   *a = swap_corners(box_a);
 | |
| 	NDBOX	   *b = swap_corners(box_b);
 | |
| 
 | |
| 	if (a->dim >= b->dim)
 | |
| 	{
 | |
| 		result = palloc(a->size);
 | |
| 		result->size = a->size;
 | |
| 		result->dim = a->dim;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		result = palloc(b->size);
 | |
| 		result->size = b->size;
 | |
| 		result->dim = b->dim;
 | |
| 	}
 | |
| 
 | |
| 	/* swap the box pointers if needed */
 | |
| 	if (a->dim < b->dim)
 | |
| 	{
 | |
| 		NDBOX	   *tmp = b;
 | |
| 
 | |
| 		b = a;
 | |
| 		a = tmp;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * use the potentially	smaller of the two boxes (b) to fill in the
 | |
| 	 * result, padding absent dimensions with zeroes
 | |
| 	 */
 | |
| 	for (i = 0; i < b->dim; i++)
 | |
| 	{
 | |
| 		result->x[i] = b->x[i];
 | |
| 		result->x[i + a->dim] = b->x[i + b->dim];
 | |
| 	}
 | |
| 	for (i = b->dim; i < a->dim; i++)
 | |
| 	{
 | |
| 		result->x[i] = 0;
 | |
| 		result->x[i + a->dim] = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* compute the intersection */
 | |
| 	for (i = 0; i < a->dim; i++)
 | |
| 		result->x[i] = max(a->x[i], result->x[i]);
 | |
| 	for (i = a->dim; i < a->dim * 2; i++)
 | |
| 		result->x[i] = min(a->x[i], result->x[i]);
 | |
| 
 | |
| 	pfree(a);
 | |
| 	pfree(b);
 | |
| 
 | |
| 	/*
 | |
| 	 * Is it OK to return a non-null intersection for non-overlapping
 | |
| 	 * boxes?
 | |
| 	 */
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| /* cube_size */
 | |
| float *
 | |
| cube_size(NDBOX * a)
 | |
| {
 | |
| 	int			i,
 | |
| 				j;
 | |
| 	float	   *result;
 | |
| 
 | |
| 	result = (float *) palloc(sizeof(float));
 | |
| 
 | |
| 	*result = 1.0;
 | |
| 	for (i = 0, j = a->dim; i < a->dim; i++, j++)
 | |
| 		*result = (*result) * abs((a->x[j] - a->x[i]));
 | |
| 
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| void
 | |
| rt_cube_size(NDBOX * a, float *size)
 | |
| {
 | |
| 	int			i,
 | |
| 				j;
 | |
| 
 | |
| 	if (a == (NDBOX *) NULL)
 | |
| 		*size = 0.0;
 | |
| 	else
 | |
| 	{
 | |
| 		*size = 1.0;
 | |
| 		for (i = 0, j = a->dim; i < a->dim; i++, j++)
 | |
| 			*size = (*size) * abs((a->x[j] - a->x[i]));
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /* The following four methods compare the projections of the boxes
 | |
|    onto the 0-th coordinate axis. These methods are useless for dimensions
 | |
|    larger than 2, but it seems that R-tree requires all its strategies
 | |
|    map to real functions that return something */
 | |
| 
 | |
| /*	is the right edge of (a) located to the left of
 | |
| 	the right edge of (b)? */
 | |
| bool
 | |
| cube_over_left(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	NDBOX	   *a;
 | |
| 	NDBOX	   *b;
 | |
| 
 | |
| 	if ((box_a == NULL) || (box_b == NULL))
 | |
| 		return (FALSE);
 | |
| 
 | |
| 	a = swap_corners(box_a);
 | |
| 	b = swap_corners(box_b);
 | |
| 
 | |
| 	return (a->x[a->dim - 1] <= b->x[b->dim - 1] && !cube_left(a, b) && !cube_right(a, b));
 | |
| }
 | |
| 
 | |
| /*	is the left edge of (a) located to the right of
 | |
| 	the left edge of (b)? */
 | |
| bool
 | |
| cube_over_right(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	NDBOX	   *a;
 | |
| 	NDBOX	   *b;
 | |
| 
 | |
| 	if ((box_a == NULL) || (box_b == NULL))
 | |
| 		return (FALSE);
 | |
| 
 | |
| 	a = swap_corners(box_a);
 | |
| 	b = swap_corners(box_b);
 | |
| 
 | |
| 	return (a->x[a->dim - 1] >= b->x[b->dim - 1] && !cube_left(a, b) && !cube_right(a, b));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* return 'true' if the projection of 'a' is
 | |
|    entirely on the left of the projection of 'b' */
 | |
| bool
 | |
| cube_left(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	NDBOX	   *a;
 | |
| 	NDBOX	   *b;
 | |
| 
 | |
| 	if ((box_a == NULL) || (box_b == NULL))
 | |
| 		return (FALSE);
 | |
| 
 | |
| 	a = swap_corners(box_a);
 | |
| 	b = swap_corners(box_b);
 | |
| 
 | |
| 	return (a->x[a->dim - 1] < b->x[0]);
 | |
| }
 | |
| 
 | |
| /* return 'true' if the projection of 'a' is
 | |
|    entirely on the right  of the projection of 'b' */
 | |
| bool
 | |
| cube_right(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	NDBOX	   *a;
 | |
| 	NDBOX	   *b;
 | |
| 
 | |
| 	if ((box_a == NULL) || (box_b == NULL))
 | |
| 		return (FALSE);
 | |
| 
 | |
| 	a = swap_corners(box_a);
 | |
| 	b = swap_corners(box_b);
 | |
| 
 | |
| 	return (a->x[0] > b->x[b->dim - 1]);
 | |
| }
 | |
| 
 | |
| /* make up a metric in which one box will be 'lower' than the other
 | |
|    -- this can be useful for srting and to determine uniqueness */
 | |
| bool
 | |
| cube_lt(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	int			i;
 | |
| 	int			dim;
 | |
| 	NDBOX	   *a;
 | |
| 	NDBOX	   *b;
 | |
| 
 | |
| 	if ((box_a == NULL) || (box_b == NULL))
 | |
| 		return (FALSE);
 | |
| 
 | |
| 	a = swap_corners(box_a);
 | |
| 	b = swap_corners(box_b);
 | |
| 	dim = min(a->dim, b->dim);
 | |
| 
 | |
| 	/*
 | |
| 	 * if all common dimensions are equal, the cube with more dimensions
 | |
| 	 * wins
 | |
| 	 */
 | |
| 	if (cube_same(a, b))
 | |
| 	{
 | |
| 		if (a->dim < b->dim)
 | |
| 			return (TRUE);
 | |
| 		else
 | |
| 			return (FALSE);
 | |
| 	}
 | |
| 
 | |
| 	/* compare the common dimensions */
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 	{
 | |
| 		if (a->x[i] > b->x[i])
 | |
| 			return (FALSE);
 | |
| 		if (a->x[i] < b->x[i])
 | |
| 			return (TRUE);
 | |
| 	}
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 	{
 | |
| 		if (a->x[i + a->dim] > b->x[i + b->dim])
 | |
| 			return (FALSE);
 | |
| 		if (a->x[i + a->dim] < b->x[i + b->dim])
 | |
| 			return (TRUE);
 | |
| 	}
 | |
| 
 | |
| 	/* compare extra dimensions to zero */
 | |
| 	if (a->dim > b->dim)
 | |
| 	{
 | |
| 		for (i = dim; i < a->dim; i++)
 | |
| 		{
 | |
| 			if (a->x[i] > 0)
 | |
| 				return (FALSE);
 | |
| 			if (a->x[i] < 0)
 | |
| 				return (TRUE);
 | |
| 		}
 | |
| 		for (i = 0; i < dim; i++)
 | |
| 		{
 | |
| 			if (a->x[i + a->dim] > 0)
 | |
| 				return (FALSE);
 | |
| 			if (a->x[i + a->dim] < 0)
 | |
| 				return (TRUE);
 | |
| 		}
 | |
| 	}
 | |
| 	if (a->dim < b->dim)
 | |
| 	{
 | |
| 		for (i = dim; i < b->dim; i++)
 | |
| 		{
 | |
| 			if (b->x[i] > 0)
 | |
| 				return (TRUE);
 | |
| 			if (b->x[i] < 0)
 | |
| 				return (FALSE);
 | |
| 		}
 | |
| 		for (i = 0; i < dim; i++)
 | |
| 		{
 | |
| 			if (b->x[i + b->dim] > 0)
 | |
| 				return (TRUE);
 | |
| 			if (b->x[i + b->dim] < 0)
 | |
| 				return (FALSE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (FALSE);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool
 | |
| cube_gt(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	int			i;
 | |
| 	int			dim;
 | |
| 	NDBOX	   *a;
 | |
| 	NDBOX	   *b;
 | |
| 
 | |
| 	if ((box_a == NULL) || (box_b == NULL))
 | |
| 		return (FALSE);
 | |
| 
 | |
| 	a = swap_corners(box_a);
 | |
| 	b = swap_corners(box_b);
 | |
| 	dim = min(a->dim, b->dim);
 | |
| 
 | |
| 	/*
 | |
| 	 * if all common dimensions are equal, the cube with more dimensions
 | |
| 	 * wins
 | |
| 	 */
 | |
| 	if (cube_same(a, b))
 | |
| 	{
 | |
| 		if (a->dim > b->dim)
 | |
| 			return (TRUE);
 | |
| 		else
 | |
| 			return (FALSE);
 | |
| 	}
 | |
| 
 | |
| 	/* compare the common dimensions */
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 	{
 | |
| 		if (a->x[i] < b->x[i])
 | |
| 			return (FALSE);
 | |
| 		if (a->x[i] > b->x[i])
 | |
| 			return (TRUE);
 | |
| 	}
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 	{
 | |
| 		if (a->x[i + a->dim] < b->x[i + b->dim])
 | |
| 			return (FALSE);
 | |
| 		if (a->x[i + a->dim] > b->x[i + b->dim])
 | |
| 			return (TRUE);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* compare extra dimensions to zero */
 | |
| 	if (a->dim > b->dim)
 | |
| 	{
 | |
| 		for (i = dim; i < a->dim; i++)
 | |
| 		{
 | |
| 			if (a->x[i] < 0)
 | |
| 				return (FALSE);
 | |
| 			if (a->x[i] > 0)
 | |
| 				return (TRUE);
 | |
| 		}
 | |
| 		for (i = 0; i < dim; i++)
 | |
| 		{
 | |
| 			if (a->x[i + a->dim] < 0)
 | |
| 				return (FALSE);
 | |
| 			if (a->x[i + a->dim] > 0)
 | |
| 				return (TRUE);
 | |
| 		}
 | |
| 	}
 | |
| 	if (a->dim < b->dim)
 | |
| 	{
 | |
| 		for (i = dim; i < b->dim; i++)
 | |
| 		{
 | |
| 			if (b->x[i] < 0)
 | |
| 				return (TRUE);
 | |
| 			if (b->x[i] > 0)
 | |
| 				return (FALSE);
 | |
| 		}
 | |
| 		for (i = 0; i < dim; i++)
 | |
| 		{
 | |
| 			if (b->x[i + b->dim] < 0)
 | |
| 				return (TRUE);
 | |
| 			if (b->x[i + b->dim] > 0)
 | |
| 				return (FALSE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (FALSE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Equal */
 | |
| bool
 | |
| cube_same(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	int			i;
 | |
| 	NDBOX	   *a;
 | |
| 	NDBOX	   *b;
 | |
| 
 | |
| 	if ((box_a == NULL) || (box_b == NULL))
 | |
| 		return (FALSE);
 | |
| 
 | |
| 	a = swap_corners(box_a);
 | |
| 	b = swap_corners(box_b);
 | |
| 
 | |
| 	/* swap the box pointers if necessary */
 | |
| 	if (a->dim < b->dim)
 | |
| 	{
 | |
| 		NDBOX	   *tmp = b;
 | |
| 
 | |
| 		b = a;
 | |
| 		a = tmp;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < b->dim; i++)
 | |
| 	{
 | |
| 		if (a->x[i] != b->x[i])
 | |
| 			return (FALSE);
 | |
| 		if (a->x[i + a->dim] != b->x[i + b->dim])
 | |
| 			return (FALSE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * all dimensions of (b) are compared to those of (a); instead of
 | |
| 	 * those in (a) absent in (b), compare (a) to zero
 | |
| 	 */
 | |
| 	for (i = b->dim; i < a->dim; i++)
 | |
| 	{
 | |
| 		if (a->x[i] != 0)
 | |
| 			return (FALSE);
 | |
| 		if (a->x[i + a->dim] != 0)
 | |
| 			return (FALSE);
 | |
| 	}
 | |
| 
 | |
| 	pfree(a);
 | |
| 	pfree(b);
 | |
| 
 | |
| 	return (TRUE);
 | |
| }
 | |
| 
 | |
| /* Different */
 | |
| bool
 | |
| cube_different(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	return (!cube_same(box_a, box_b));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Contains */
 | |
| /* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */
 | |
| bool
 | |
| cube_contains(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	int			i;
 | |
| 	NDBOX	   *a;
 | |
| 	NDBOX	   *b;
 | |
| 
 | |
| 	if ((box_a == NULL) || (box_b == NULL))
 | |
| 		return (FALSE);
 | |
| 
 | |
| 	a = swap_corners(box_a);
 | |
| 	b = swap_corners(box_b);
 | |
| 
 | |
| 	if (a->dim < b->dim)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * the further comparisons will make sense if the excess
 | |
| 		 * dimensions of (b) were zeroes
 | |
| 		 */
 | |
| 		for (i = a->dim; i < b->dim; i++)
 | |
| 		{
 | |
| 			if (b->x[i] != 0)
 | |
| 				return (FALSE);
 | |
| 			if (b->x[i + b->dim] != 0)
 | |
| 				return (FALSE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Can't care less about the excess dimensions of (a), if any */
 | |
| 	for (i = 0; i < min(a->dim, b->dim); i++)
 | |
| 	{
 | |
| 		if (a->x[i] > b->x[i])
 | |
| 			return (FALSE);
 | |
| 		if (a->x[i + a->dim] < b->x[i + b->dim])
 | |
| 			return (FALSE);
 | |
| 	}
 | |
| 
 | |
| 	pfree(a);
 | |
| 	pfree(b);
 | |
| 
 | |
| 	return (TRUE);
 | |
| }
 | |
| 
 | |
| /* Contained */
 | |
| /* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */
 | |
| bool
 | |
| cube_contained(NDBOX * a, NDBOX * b)
 | |
| {
 | |
| 	if (cube_contains(b, a) == TRUE)
 | |
| 		return (TRUE);
 | |
| 	else
 | |
| 		return (FALSE);
 | |
| }
 | |
| 
 | |
| /* Overlap */
 | |
| /* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */
 | |
| bool
 | |
| cube_overlap(NDBOX * box_a, NDBOX * box_b)
 | |
| {
 | |
| 	int			i;
 | |
| 	NDBOX	   *a;
 | |
| 	NDBOX	   *b;
 | |
| 
 | |
| 	/*
 | |
| 	 * This *very bad* error was found in the source: if ( (a==NULL) ||
 | |
| 	 * (b=NULL) ) return(FALSE);
 | |
| 	 */
 | |
| 	if ((box_a == NULL) || (box_b == NULL))
 | |
| 		return (FALSE);
 | |
| 
 | |
| 	a = swap_corners(box_a);
 | |
| 	b = swap_corners(box_b);
 | |
| 
 | |
| 	/* swap the box pointers if needed */
 | |
| 	if (a->dim < b->dim)
 | |
| 	{
 | |
| 		NDBOX	   *tmp = b;
 | |
| 
 | |
| 		b = a;
 | |
| 		a = tmp;
 | |
| 	}
 | |
| 
 | |
| 	/* compare within the dimensions of (b) */
 | |
| 	for (i = 0; i < b->dim; i++)
 | |
| 	{
 | |
| 		if (a->x[i] > b->x[i + b->dim])
 | |
| 			return (FALSE);
 | |
| 		if (a->x[i + a->dim] < b->x[i])
 | |
| 			return (FALSE);
 | |
| 	}
 | |
| 
 | |
| 	/* compare to zero those dimensions in (a) absent in (b) */
 | |
| 	for (i = b->dim; i < a->dim; i++)
 | |
| 	{
 | |
| 		if (a->x[i] > 0)
 | |
| 			return (FALSE);
 | |
| 		if (a->x[i + a->dim] < 0)
 | |
| 			return (FALSE);
 | |
| 	}
 | |
| 
 | |
| 	pfree(a);
 | |
| 	pfree(b);
 | |
| 
 | |
| 	return (TRUE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Distance */
 | |
| /* The distance is computed as a per axis sum of the squared distances
 | |
|    between 1D projections of the boxes onto Cartesian axes. Assuming zero
 | |
|    distance between overlapping projections, this metric coincides with the
 | |
|    "common sense" geometric distance */
 | |
| float *
 | |
| cube_distance(NDBOX * a, NDBOX * b)
 | |
| {
 | |
| 	int			i;
 | |
| 	double		d,
 | |
| 				distance;
 | |
| 	float	   *result;
 | |
| 
 | |
| 	result = (float *) palloc(sizeof(float));
 | |
| 
 | |
| 	/* swap the box pointers if needed */
 | |
| 	if (a->dim < b->dim)
 | |
| 	{
 | |
| 		NDBOX	   *tmp = b;
 | |
| 
 | |
| 		b = a;
 | |
| 		a = tmp;
 | |
| 	}
 | |
| 
 | |
| 	distance = 0.0;
 | |
| 	/* compute within the dimensions of (b) */
 | |
| 	for (i = 0; i < b->dim; i++)
 | |
| 	{
 | |
| 		d = distance_1D(a->x[i], a->x[i + a->dim], b->x[i], b->x[i + b->dim]);
 | |
| 		distance += d * d;
 | |
| 	}
 | |
| 
 | |
| 	/* compute distance to zero for those dimensions in (a) absent in (b) */
 | |
| 	for (i = b->dim; i < a->dim; i++)
 | |
| 	{
 | |
| 		d = distance_1D(a->x[i], a->x[i + a->dim], 0.0, 0.0);
 | |
| 		distance += d * d;
 | |
| 	}
 | |
| 
 | |
| 	*result = (float) sqrt(distance);
 | |
| 
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| static float
 | |
| distance_1D(float a1, float a2, float b1, float b2)
 | |
| {
 | |
| 	/* interval (a) is entirely on the left of (b) */
 | |
| 	if ((a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2))
 | |
| 		return (min(b1, b2) - max(a1, a2));
 | |
| 
 | |
| 	/* interval (a) is entirely on the right of (b) */
 | |
| 	if ((a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2))
 | |
| 		return (min(a1, a2) - max(b1, b2));
 | |
| 
 | |
| 	/* the rest are all sorts of intersections */
 | |
| 	return (0.0);
 | |
| }
 | |
| 
 | |
| /* normalize the box's co-ordinates by placing min(xLL,xUR) to LL
 | |
|    and max(xLL,xUR) to UR
 | |
| */
 | |
| static NDBOX *
 | |
| swap_corners(NDBOX * a)
 | |
| {
 | |
| 	int			i,
 | |
| 				j;
 | |
| 	NDBOX	   *result;
 | |
| 
 | |
| 	result = palloc(a->size);
 | |
| 	result->size = a->size;
 | |
| 	result->dim = a->dim;
 | |
| 
 | |
| 	for (i = 0, j = a->dim; i < a->dim; i++, j++)
 | |
| 	{
 | |
| 		result->x[i] = min(a->x[i], a->x[j]);
 | |
| 		result->x[j] = max(a->x[i], a->x[j]);
 | |
| 	}
 | |
| 
 | |
| 	return (result);
 | |
| }
 |