mirror of
https://github.com/postgres/postgres.git
synced 2025-04-24 10:47:04 +03:00
keeping private state in each backend that has inserted and deleted the same tuple during its current top-level transaction. This is sufficient since there is no need to be able to determine the cmin/cmax from any other transaction. This gets us back down to 23-byte headers, removing a penalty paid in 8.0 to support subtransactions. Patch by Heikki Linnakangas, with minor revisions by moi, following a design hashed out awhile back on the pghackers list.
1747 lines
44 KiB
C
1747 lines
44 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* heaptuple.c
|
|
* This file contains heap tuple accessor and mutator routines, as well
|
|
* as various tuple utilities.
|
|
*
|
|
* NOTE: there is massive duplication of code in this module to
|
|
* support both the convention that a null is marked by a bool TRUE,
|
|
* and the convention that a null is marked by a char 'n'. The latter
|
|
* convention is deprecated but it'll probably be a long time before
|
|
* we can get rid of it entirely.
|
|
*
|
|
*
|
|
* Portions Copyright (c) 1996-2007, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/access/common/heaptuple.c,v 1.115 2007/02/09 03:35:33 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/heapam.h"
|
|
#include "access/tuptoaster.h"
|
|
#include "executor/tuptable.h"
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* misc support routines
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* heap_compute_data_size
|
|
* Determine size of the data area of a tuple to be constructed
|
|
*/
|
|
Size
|
|
heap_compute_data_size(TupleDesc tupleDesc,
|
|
Datum *values,
|
|
bool *isnull)
|
|
{
|
|
Size data_length = 0;
|
|
int i;
|
|
int numberOfAttributes = tupleDesc->natts;
|
|
Form_pg_attribute *att = tupleDesc->attrs;
|
|
|
|
for (i = 0; i < numberOfAttributes; i++)
|
|
{
|
|
if (isnull[i])
|
|
continue;
|
|
|
|
data_length = att_align(data_length, att[i]->attalign);
|
|
data_length = att_addlength(data_length, att[i]->attlen, values[i]);
|
|
}
|
|
|
|
return data_length;
|
|
}
|
|
|
|
/* ----------------
|
|
* ComputeDataSize
|
|
*
|
|
* Determine size of the data area of a tuple to be constructed
|
|
*
|
|
* OLD API with char 'n'/' ' convention for indicating nulls
|
|
* ----------------
|
|
*/
|
|
static Size
|
|
ComputeDataSize(TupleDesc tupleDesc,
|
|
Datum *values,
|
|
char *nulls)
|
|
{
|
|
Size data_length = 0;
|
|
int i;
|
|
int numberOfAttributes = tupleDesc->natts;
|
|
Form_pg_attribute *att = tupleDesc->attrs;
|
|
|
|
for (i = 0; i < numberOfAttributes; i++)
|
|
{
|
|
if (nulls[i] != ' ')
|
|
continue;
|
|
|
|
data_length = att_align(data_length, att[i]->attalign);
|
|
data_length = att_addlength(data_length, att[i]->attlen, values[i]);
|
|
}
|
|
|
|
return data_length;
|
|
}
|
|
|
|
/*
|
|
* heap_fill_tuple
|
|
* Load data portion of a tuple from values/isnull arrays
|
|
*
|
|
* We also fill the null bitmap (if any) and set the infomask bits
|
|
* that reflect the tuple's data contents.
|
|
*/
|
|
void
|
|
heap_fill_tuple(TupleDesc tupleDesc,
|
|
Datum *values, bool *isnull,
|
|
char *data, uint16 *infomask, bits8 *bit)
|
|
{
|
|
bits8 *bitP;
|
|
int bitmask;
|
|
int i;
|
|
int numberOfAttributes = tupleDesc->natts;
|
|
Form_pg_attribute *att = tupleDesc->attrs;
|
|
|
|
if (bit != NULL)
|
|
{
|
|
bitP = &bit[-1];
|
|
bitmask = HIGHBIT;
|
|
}
|
|
else
|
|
{
|
|
/* just to keep compiler quiet */
|
|
bitP = NULL;
|
|
bitmask = 0;
|
|
}
|
|
|
|
*infomask &= ~(HEAP_HASNULL | HEAP_HASVARWIDTH | HEAP_HASEXTENDED);
|
|
|
|
for (i = 0; i < numberOfAttributes; i++)
|
|
{
|
|
Size data_length;
|
|
|
|
if (bit != NULL)
|
|
{
|
|
if (bitmask != HIGHBIT)
|
|
bitmask <<= 1;
|
|
else
|
|
{
|
|
bitP += 1;
|
|
*bitP = 0x0;
|
|
bitmask = 1;
|
|
}
|
|
|
|
if (isnull[i])
|
|
{
|
|
*infomask |= HEAP_HASNULL;
|
|
continue;
|
|
}
|
|
|
|
*bitP |= bitmask;
|
|
}
|
|
|
|
/* XXX we are aligning the pointer itself, not the offset */
|
|
data = (char *) att_align((long) data, att[i]->attalign);
|
|
|
|
if (att[i]->attbyval)
|
|
{
|
|
/* pass-by-value */
|
|
store_att_byval(data, values[i], att[i]->attlen);
|
|
data_length = att[i]->attlen;
|
|
}
|
|
else if (att[i]->attlen == -1)
|
|
{
|
|
/* varlena */
|
|
*infomask |= HEAP_HASVARWIDTH;
|
|
if (VARATT_IS_EXTERNAL(values[i]))
|
|
*infomask |= HEAP_HASEXTERNAL;
|
|
if (VARATT_IS_COMPRESSED(values[i]))
|
|
*infomask |= HEAP_HASCOMPRESSED;
|
|
data_length = VARATT_SIZE(DatumGetPointer(values[i]));
|
|
memcpy(data, DatumGetPointer(values[i]), data_length);
|
|
}
|
|
else if (att[i]->attlen == -2)
|
|
{
|
|
/* cstring */
|
|
*infomask |= HEAP_HASVARWIDTH;
|
|
data_length = strlen(DatumGetCString(values[i])) + 1;
|
|
memcpy(data, DatumGetPointer(values[i]), data_length);
|
|
}
|
|
else
|
|
{
|
|
/* fixed-length pass-by-reference */
|
|
Assert(att[i]->attlen > 0);
|
|
data_length = att[i]->attlen;
|
|
memcpy(data, DatumGetPointer(values[i]), data_length);
|
|
}
|
|
|
|
data += data_length;
|
|
}
|
|
}
|
|
|
|
/* ----------------
|
|
* DataFill
|
|
*
|
|
* Load data portion of a tuple from values/nulls arrays
|
|
*
|
|
* OLD API with char 'n'/' ' convention for indicating nulls
|
|
* ----------------
|
|
*/
|
|
static void
|
|
DataFill(char *data,
|
|
TupleDesc tupleDesc,
|
|
Datum *values,
|
|
char *nulls,
|
|
uint16 *infomask,
|
|
bits8 *bit)
|
|
{
|
|
bits8 *bitP;
|
|
int bitmask;
|
|
int i;
|
|
int numberOfAttributes = tupleDesc->natts;
|
|
Form_pg_attribute *att = tupleDesc->attrs;
|
|
|
|
if (bit != NULL)
|
|
{
|
|
bitP = &bit[-1];
|
|
bitmask = HIGHBIT;
|
|
}
|
|
else
|
|
{
|
|
/* just to keep compiler quiet */
|
|
bitP = NULL;
|
|
bitmask = 0;
|
|
}
|
|
|
|
*infomask &= ~(HEAP_HASNULL | HEAP_HASVARWIDTH | HEAP_HASEXTENDED);
|
|
|
|
for (i = 0; i < numberOfAttributes; i++)
|
|
{
|
|
Size data_length;
|
|
|
|
if (bit != NULL)
|
|
{
|
|
if (bitmask != HIGHBIT)
|
|
bitmask <<= 1;
|
|
else
|
|
{
|
|
bitP += 1;
|
|
*bitP = 0x0;
|
|
bitmask = 1;
|
|
}
|
|
|
|
if (nulls[i] == 'n')
|
|
{
|
|
*infomask |= HEAP_HASNULL;
|
|
continue;
|
|
}
|
|
|
|
*bitP |= bitmask;
|
|
}
|
|
|
|
/* XXX we are aligning the pointer itself, not the offset */
|
|
data = (char *) att_align((long) data, att[i]->attalign);
|
|
|
|
if (att[i]->attbyval)
|
|
{
|
|
/* pass-by-value */
|
|
store_att_byval(data, values[i], att[i]->attlen);
|
|
data_length = att[i]->attlen;
|
|
}
|
|
else if (att[i]->attlen == -1)
|
|
{
|
|
/* varlena */
|
|
*infomask |= HEAP_HASVARWIDTH;
|
|
if (VARATT_IS_EXTERNAL(values[i]))
|
|
*infomask |= HEAP_HASEXTERNAL;
|
|
if (VARATT_IS_COMPRESSED(values[i]))
|
|
*infomask |= HEAP_HASCOMPRESSED;
|
|
data_length = VARATT_SIZE(DatumGetPointer(values[i]));
|
|
memcpy(data, DatumGetPointer(values[i]), data_length);
|
|
}
|
|
else if (att[i]->attlen == -2)
|
|
{
|
|
/* cstring */
|
|
*infomask |= HEAP_HASVARWIDTH;
|
|
data_length = strlen(DatumGetCString(values[i])) + 1;
|
|
memcpy(data, DatumGetPointer(values[i]), data_length);
|
|
}
|
|
else
|
|
{
|
|
/* fixed-length pass-by-reference */
|
|
Assert(att[i]->attlen > 0);
|
|
data_length = att[i]->attlen;
|
|
memcpy(data, DatumGetPointer(values[i]), data_length);
|
|
}
|
|
|
|
data += data_length;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* heap tuple interface
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
/* ----------------
|
|
* heap_attisnull - returns TRUE iff tuple attribute is not present
|
|
* ----------------
|
|
*/
|
|
bool
|
|
heap_attisnull(HeapTuple tup, int attnum)
|
|
{
|
|
if (attnum > (int) HeapTupleHeaderGetNatts(tup->t_data))
|
|
return true;
|
|
|
|
if (attnum > 0)
|
|
{
|
|
if (HeapTupleNoNulls(tup))
|
|
return false;
|
|
return att_isnull(attnum - 1, tup->t_data->t_bits);
|
|
}
|
|
|
|
switch (attnum)
|
|
{
|
|
case TableOidAttributeNumber:
|
|
case SelfItemPointerAttributeNumber:
|
|
case ObjectIdAttributeNumber:
|
|
case MinTransactionIdAttributeNumber:
|
|
case MinCommandIdAttributeNumber:
|
|
case MaxTransactionIdAttributeNumber:
|
|
case MaxCommandIdAttributeNumber:
|
|
/* these are never null */
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "invalid attnum: %d", attnum);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* ----------------
|
|
* nocachegetattr
|
|
*
|
|
* This only gets called from fastgetattr() macro, in cases where
|
|
* we can't use a cacheoffset and the value is not null.
|
|
*
|
|
* This caches attribute offsets in the attribute descriptor.
|
|
*
|
|
* An alternate way to speed things up would be to cache offsets
|
|
* with the tuple, but that seems more difficult unless you take
|
|
* the storage hit of actually putting those offsets into the
|
|
* tuple you send to disk. Yuck.
|
|
*
|
|
* This scheme will be slightly slower than that, but should
|
|
* perform well for queries which hit large #'s of tuples. After
|
|
* you cache the offsets once, examining all the other tuples using
|
|
* the same attribute descriptor will go much quicker. -cim 5/4/91
|
|
*
|
|
* NOTE: if you need to change this code, see also heap_deform_tuple.
|
|
* ----------------
|
|
*/
|
|
Datum
|
|
nocachegetattr(HeapTuple tuple,
|
|
int attnum,
|
|
TupleDesc tupleDesc,
|
|
bool *isnull)
|
|
{
|
|
HeapTupleHeader tup = tuple->t_data;
|
|
Form_pg_attribute *att = tupleDesc->attrs;
|
|
char *tp; /* ptr to att in tuple */
|
|
bits8 *bp = tup->t_bits; /* ptr to null bitmap in tuple */
|
|
bool slow = false; /* do we have to walk nulls? */
|
|
|
|
(void) isnull; /* not used */
|
|
#ifdef IN_MACRO
|
|
/* This is handled in the macro */
|
|
Assert(attnum > 0);
|
|
|
|
if (isnull)
|
|
*isnull = false;
|
|
#endif
|
|
|
|
attnum--;
|
|
|
|
/* ----------------
|
|
* Three cases:
|
|
*
|
|
* 1: No nulls and no variable-width attributes.
|
|
* 2: Has a null or a var-width AFTER att.
|
|
* 3: Has nulls or var-widths BEFORE att.
|
|
* ----------------
|
|
*/
|
|
|
|
if (HeapTupleNoNulls(tuple))
|
|
{
|
|
#ifdef IN_MACRO
|
|
/* This is handled in the macro */
|
|
if (att[attnum]->attcacheoff != -1)
|
|
{
|
|
return fetchatt(att[attnum],
|
|
(char *) tup + tup->t_hoff +
|
|
att[attnum]->attcacheoff);
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* there's a null somewhere in the tuple
|
|
*
|
|
* check to see if desired att is null
|
|
*/
|
|
|
|
#ifdef IN_MACRO
|
|
/* This is handled in the macro */
|
|
if (att_isnull(attnum, bp))
|
|
{
|
|
if (isnull)
|
|
*isnull = true;
|
|
return (Datum) NULL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Now check to see if any preceding bits are null...
|
|
*/
|
|
{
|
|
int byte = attnum >> 3;
|
|
int finalbit = attnum & 0x07;
|
|
|
|
/* check for nulls "before" final bit of last byte */
|
|
if ((~bp[byte]) & ((1 << finalbit) - 1))
|
|
slow = true;
|
|
else
|
|
{
|
|
/* check for nulls in any "earlier" bytes */
|
|
int i;
|
|
|
|
for (i = 0; i < byte; i++)
|
|
{
|
|
if (bp[i] != 0xFF)
|
|
{
|
|
slow = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
tp = (char *) tup + tup->t_hoff;
|
|
|
|
/*
|
|
* now check for any non-fixed length attrs before our attribute
|
|
*/
|
|
if (!slow)
|
|
{
|
|
if (att[attnum]->attcacheoff != -1)
|
|
{
|
|
return fetchatt(att[attnum],
|
|
tp + att[attnum]->attcacheoff);
|
|
}
|
|
else if (HeapTupleHasVarWidth(tuple))
|
|
{
|
|
int j;
|
|
|
|
/*
|
|
* In for(), we test <= and not < because we want to see if we can
|
|
* go past it in initializing offsets.
|
|
*/
|
|
for (j = 0; j <= attnum; j++)
|
|
{
|
|
if (att[j]->attlen <= 0)
|
|
{
|
|
slow = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If slow is false, and we got here, we know that we have a tuple with no
|
|
* nulls or var-widths before the target attribute. If possible, we also
|
|
* want to initialize the remainder of the attribute cached offset values.
|
|
*/
|
|
if (!slow)
|
|
{
|
|
int j = 1;
|
|
long off;
|
|
int natts = HeapTupleHeaderGetNatts(tup);
|
|
|
|
/*
|
|
* need to set cache for some atts
|
|
*/
|
|
|
|
att[0]->attcacheoff = 0;
|
|
|
|
while (j < attnum && att[j]->attcacheoff > 0)
|
|
j++;
|
|
|
|
off = att[j - 1]->attcacheoff + att[j - 1]->attlen;
|
|
|
|
for (; j <= attnum ||
|
|
/* Can we compute more? We will probably need them */
|
|
(j < natts &&
|
|
att[j]->attcacheoff == -1 &&
|
|
(HeapTupleNoNulls(tuple) || !att_isnull(j, bp)) &&
|
|
(HeapTupleAllFixed(tuple) || att[j]->attlen > 0)); j++)
|
|
{
|
|
off = att_align(off, att[j]->attalign);
|
|
|
|
att[j]->attcacheoff = off;
|
|
|
|
off = att_addlength(off, att[j]->attlen, tp + off);
|
|
}
|
|
|
|
return fetchatt(att[attnum], tp + att[attnum]->attcacheoff);
|
|
}
|
|
else
|
|
{
|
|
bool usecache = true;
|
|
int off = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Now we know that we have to walk the tuple CAREFULLY.
|
|
*
|
|
* Note - This loop is a little tricky. For each non-null attribute,
|
|
* we have to first account for alignment padding before the attr,
|
|
* then advance over the attr based on its length. Nulls have no
|
|
* storage and no alignment padding either. We can use/set
|
|
* attcacheoff until we pass either a null or a var-width attribute.
|
|
*/
|
|
|
|
for (i = 0; i < attnum; i++)
|
|
{
|
|
if (HeapTupleHasNulls(tuple) && att_isnull(i, bp))
|
|
{
|
|
usecache = false;
|
|
continue;
|
|
}
|
|
|
|
/* If we know the next offset, we can skip the alignment calc */
|
|
if (usecache && att[i]->attcacheoff != -1)
|
|
off = att[i]->attcacheoff;
|
|
else
|
|
{
|
|
off = att_align(off, att[i]->attalign);
|
|
|
|
if (usecache)
|
|
att[i]->attcacheoff = off;
|
|
}
|
|
|
|
off = att_addlength(off, att[i]->attlen, tp + off);
|
|
|
|
if (usecache && att[i]->attlen <= 0)
|
|
usecache = false;
|
|
}
|
|
|
|
off = att_align(off, att[attnum]->attalign);
|
|
|
|
return fetchatt(att[attnum], tp + off);
|
|
}
|
|
}
|
|
|
|
/* ----------------
|
|
* heap_getsysattr
|
|
*
|
|
* Fetch the value of a system attribute for a tuple.
|
|
*
|
|
* This is a support routine for the heap_getattr macro. The macro
|
|
* has already determined that the attnum refers to a system attribute.
|
|
* ----------------
|
|
*/
|
|
Datum
|
|
heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
|
|
{
|
|
Datum result;
|
|
|
|
Assert(tup);
|
|
|
|
/* Currently, no sys attribute ever reads as NULL. */
|
|
if (isnull)
|
|
*isnull = false;
|
|
|
|
switch (attnum)
|
|
{
|
|
case SelfItemPointerAttributeNumber:
|
|
/* pass-by-reference datatype */
|
|
result = PointerGetDatum(&(tup->t_self));
|
|
break;
|
|
case ObjectIdAttributeNumber:
|
|
result = ObjectIdGetDatum(HeapTupleGetOid(tup));
|
|
break;
|
|
case MinTransactionIdAttributeNumber:
|
|
result = TransactionIdGetDatum(HeapTupleHeaderGetXmin(tup->t_data));
|
|
break;
|
|
case MaxTransactionIdAttributeNumber:
|
|
result = TransactionIdGetDatum(HeapTupleHeaderGetXmax(tup->t_data));
|
|
break;
|
|
case MinCommandIdAttributeNumber:
|
|
case MaxCommandIdAttributeNumber:
|
|
/*
|
|
* cmin and cmax are now both aliases for the same field,
|
|
* which can in fact also be a combo command id. XXX perhaps we
|
|
* should return the "real" cmin or cmax if possible, that is
|
|
* if we are inside the originating transaction?
|
|
*/
|
|
result = CommandIdGetDatum(HeapTupleHeaderGetRawCommandId(tup->t_data));
|
|
break;
|
|
case TableOidAttributeNumber:
|
|
result = ObjectIdGetDatum(tup->t_tableOid);
|
|
break;
|
|
default:
|
|
elog(ERROR, "invalid attnum: %d", attnum);
|
|
result = 0; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* ----------------
|
|
* heap_copytuple
|
|
*
|
|
* returns a copy of an entire tuple
|
|
*
|
|
* The HeapTuple struct, tuple header, and tuple data are all allocated
|
|
* as a single palloc() block.
|
|
* ----------------
|
|
*/
|
|
HeapTuple
|
|
heap_copytuple(HeapTuple tuple)
|
|
{
|
|
HeapTuple newTuple;
|
|
|
|
if (!HeapTupleIsValid(tuple) || tuple->t_data == NULL)
|
|
return NULL;
|
|
|
|
newTuple = (HeapTuple) palloc(HEAPTUPLESIZE + tuple->t_len);
|
|
newTuple->t_len = tuple->t_len;
|
|
newTuple->t_self = tuple->t_self;
|
|
newTuple->t_tableOid = tuple->t_tableOid;
|
|
newTuple->t_data = (HeapTupleHeader) ((char *) newTuple + HEAPTUPLESIZE);
|
|
memcpy((char *) newTuple->t_data, (char *) tuple->t_data, tuple->t_len);
|
|
return newTuple;
|
|
}
|
|
|
|
/* ----------------
|
|
* heap_copytuple_with_tuple
|
|
*
|
|
* copy a tuple into a caller-supplied HeapTuple management struct
|
|
*
|
|
* Note that after calling this function, the "dest" HeapTuple will not be
|
|
* allocated as a single palloc() block (unlike with heap_copytuple()).
|
|
* ----------------
|
|
*/
|
|
void
|
|
heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest)
|
|
{
|
|
if (!HeapTupleIsValid(src) || src->t_data == NULL)
|
|
{
|
|
dest->t_data = NULL;
|
|
return;
|
|
}
|
|
|
|
dest->t_len = src->t_len;
|
|
dest->t_self = src->t_self;
|
|
dest->t_tableOid = src->t_tableOid;
|
|
dest->t_data = (HeapTupleHeader) palloc(src->t_len);
|
|
memcpy((char *) dest->t_data, (char *) src->t_data, src->t_len);
|
|
}
|
|
|
|
/*
|
|
* heap_form_tuple
|
|
* construct a tuple from the given values[] and isnull[] arrays,
|
|
* which are of the length indicated by tupleDescriptor->natts
|
|
*
|
|
* The result is allocated in the current memory context.
|
|
*/
|
|
HeapTuple
|
|
heap_form_tuple(TupleDesc tupleDescriptor,
|
|
Datum *values,
|
|
bool *isnull)
|
|
{
|
|
HeapTuple tuple; /* return tuple */
|
|
HeapTupleHeader td; /* tuple data */
|
|
unsigned long len;
|
|
int hoff;
|
|
bool hasnull = false;
|
|
Form_pg_attribute *att = tupleDescriptor->attrs;
|
|
int numberOfAttributes = tupleDescriptor->natts;
|
|
int i;
|
|
|
|
if (numberOfAttributes > MaxTupleAttributeNumber)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_TOO_MANY_COLUMNS),
|
|
errmsg("number of columns (%d) exceeds limit (%d)",
|
|
numberOfAttributes, MaxTupleAttributeNumber)));
|
|
|
|
/*
|
|
* Check for nulls and embedded tuples; expand any toasted attributes in
|
|
* embedded tuples. This preserves the invariant that toasting can only
|
|
* go one level deep.
|
|
*
|
|
* We can skip calling toast_flatten_tuple_attribute() if the attribute
|
|
* couldn't possibly be of composite type. All composite datums are
|
|
* varlena and have alignment 'd'; furthermore they aren't arrays. Also,
|
|
* if an attribute is already toasted, it must have been sent to disk
|
|
* already and so cannot contain toasted attributes.
|
|
*/
|
|
for (i = 0; i < numberOfAttributes; i++)
|
|
{
|
|
if (isnull[i])
|
|
hasnull = true;
|
|
else if (att[i]->attlen == -1 &&
|
|
att[i]->attalign == 'd' &&
|
|
att[i]->attndims == 0 &&
|
|
!VARATT_IS_EXTENDED(values[i]))
|
|
{
|
|
values[i] = toast_flatten_tuple_attribute(values[i],
|
|
att[i]->atttypid,
|
|
att[i]->atttypmod);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine total space needed
|
|
*/
|
|
len = offsetof(HeapTupleHeaderData, t_bits);
|
|
|
|
if (hasnull)
|
|
len += BITMAPLEN(numberOfAttributes);
|
|
|
|
if (tupleDescriptor->tdhasoid)
|
|
len += sizeof(Oid);
|
|
|
|
hoff = len = MAXALIGN(len); /* align user data safely */
|
|
|
|
len += heap_compute_data_size(tupleDescriptor, values, isnull);
|
|
|
|
/*
|
|
* Allocate and zero the space needed. Note that the tuple body and
|
|
* HeapTupleData management structure are allocated in one chunk.
|
|
*/
|
|
tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + len);
|
|
tuple->t_data = td = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);
|
|
|
|
/*
|
|
* And fill in the information. Note we fill the Datum fields even though
|
|
* this tuple may never become a Datum.
|
|
*/
|
|
tuple->t_len = len;
|
|
ItemPointerSetInvalid(&(tuple->t_self));
|
|
tuple->t_tableOid = InvalidOid;
|
|
|
|
HeapTupleHeaderSetDatumLength(td, len);
|
|
HeapTupleHeaderSetTypeId(td, tupleDescriptor->tdtypeid);
|
|
HeapTupleHeaderSetTypMod(td, tupleDescriptor->tdtypmod);
|
|
|
|
HeapTupleHeaderSetNatts(td, numberOfAttributes);
|
|
td->t_hoff = hoff;
|
|
|
|
if (tupleDescriptor->tdhasoid) /* else leave infomask = 0 */
|
|
td->t_infomask = HEAP_HASOID;
|
|
|
|
heap_fill_tuple(tupleDescriptor,
|
|
values,
|
|
isnull,
|
|
(char *) td + hoff,
|
|
&td->t_infomask,
|
|
(hasnull ? td->t_bits : NULL));
|
|
|
|
return tuple;
|
|
}
|
|
|
|
/* ----------------
|
|
* heap_formtuple
|
|
*
|
|
* construct a tuple from the given values[] and nulls[] arrays
|
|
*
|
|
* Null attributes are indicated by a 'n' in the appropriate byte
|
|
* of nulls[]. Non-null attributes are indicated by a ' ' (space).
|
|
*
|
|
* OLD API with char 'n'/' ' convention for indicating nulls
|
|
* ----------------
|
|
*/
|
|
HeapTuple
|
|
heap_formtuple(TupleDesc tupleDescriptor,
|
|
Datum *values,
|
|
char *nulls)
|
|
{
|
|
HeapTuple tuple; /* return tuple */
|
|
HeapTupleHeader td; /* tuple data */
|
|
unsigned long len;
|
|
int hoff;
|
|
bool hasnull = false;
|
|
Form_pg_attribute *att = tupleDescriptor->attrs;
|
|
int numberOfAttributes = tupleDescriptor->natts;
|
|
int i;
|
|
|
|
if (numberOfAttributes > MaxTupleAttributeNumber)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_TOO_MANY_COLUMNS),
|
|
errmsg("number of columns (%d) exceeds limit (%d)",
|
|
numberOfAttributes, MaxTupleAttributeNumber)));
|
|
|
|
/*
|
|
* Check for nulls and embedded tuples; expand any toasted attributes in
|
|
* embedded tuples. This preserves the invariant that toasting can only
|
|
* go one level deep.
|
|
*
|
|
* We can skip calling toast_flatten_tuple_attribute() if the attribute
|
|
* couldn't possibly be of composite type. All composite datums are
|
|
* varlena and have alignment 'd'; furthermore they aren't arrays. Also,
|
|
* if an attribute is already toasted, it must have been sent to disk
|
|
* already and so cannot contain toasted attributes.
|
|
*/
|
|
for (i = 0; i < numberOfAttributes; i++)
|
|
{
|
|
if (nulls[i] != ' ')
|
|
hasnull = true;
|
|
else if (att[i]->attlen == -1 &&
|
|
att[i]->attalign == 'd' &&
|
|
att[i]->attndims == 0 &&
|
|
!VARATT_IS_EXTENDED(values[i]))
|
|
{
|
|
values[i] = toast_flatten_tuple_attribute(values[i],
|
|
att[i]->atttypid,
|
|
att[i]->atttypmod);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine total space needed
|
|
*/
|
|
len = offsetof(HeapTupleHeaderData, t_bits);
|
|
|
|
if (hasnull)
|
|
len += BITMAPLEN(numberOfAttributes);
|
|
|
|
if (tupleDescriptor->tdhasoid)
|
|
len += sizeof(Oid);
|
|
|
|
hoff = len = MAXALIGN(len); /* align user data safely */
|
|
|
|
len += ComputeDataSize(tupleDescriptor, values, nulls);
|
|
|
|
/*
|
|
* Allocate and zero the space needed. Note that the tuple body and
|
|
* HeapTupleData management structure are allocated in one chunk.
|
|
*/
|
|
tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + len);
|
|
tuple->t_data = td = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);
|
|
|
|
/*
|
|
* And fill in the information. Note we fill the Datum fields even though
|
|
* this tuple may never become a Datum.
|
|
*/
|
|
tuple->t_len = len;
|
|
ItemPointerSetInvalid(&(tuple->t_self));
|
|
tuple->t_tableOid = InvalidOid;
|
|
|
|
HeapTupleHeaderSetDatumLength(td, len);
|
|
HeapTupleHeaderSetTypeId(td, tupleDescriptor->tdtypeid);
|
|
HeapTupleHeaderSetTypMod(td, tupleDescriptor->tdtypmod);
|
|
|
|
HeapTupleHeaderSetNatts(td, numberOfAttributes);
|
|
td->t_hoff = hoff;
|
|
|
|
if (tupleDescriptor->tdhasoid) /* else leave infomask = 0 */
|
|
td->t_infomask = HEAP_HASOID;
|
|
|
|
DataFill((char *) td + hoff,
|
|
tupleDescriptor,
|
|
values,
|
|
nulls,
|
|
&td->t_infomask,
|
|
(hasnull ? td->t_bits : NULL));
|
|
|
|
return tuple;
|
|
}
|
|
|
|
/*
|
|
* heap_modify_tuple
|
|
* form a new tuple from an old tuple and a set of replacement values.
|
|
*
|
|
* The replValues, replIsnull, and doReplace arrays must be of the length
|
|
* indicated by tupleDesc->natts. The new tuple is constructed using the data
|
|
* from replValues/replIsnull at columns where doReplace is true, and using
|
|
* the data from the old tuple at columns where doReplace is false.
|
|
*
|
|
* The result is allocated in the current memory context.
|
|
*/
|
|
HeapTuple
|
|
heap_modify_tuple(HeapTuple tuple,
|
|
TupleDesc tupleDesc,
|
|
Datum *replValues,
|
|
bool *replIsnull,
|
|
bool *doReplace)
|
|
{
|
|
int numberOfAttributes = tupleDesc->natts;
|
|
int attoff;
|
|
Datum *values;
|
|
bool *isnull;
|
|
HeapTuple newTuple;
|
|
|
|
/*
|
|
* allocate and fill values and isnull arrays from either the tuple or the
|
|
* repl information, as appropriate.
|
|
*
|
|
* NOTE: it's debatable whether to use heap_deform_tuple() here or just
|
|
* heap_getattr() only the non-replaced colums. The latter could win if
|
|
* there are many replaced columns and few non-replaced ones. However,
|
|
* heap_deform_tuple costs only O(N) while the heap_getattr way would cost
|
|
* O(N^2) if there are many non-replaced columns, so it seems better to
|
|
* err on the side of linear cost.
|
|
*/
|
|
values = (Datum *) palloc(numberOfAttributes * sizeof(Datum));
|
|
isnull = (bool *) palloc(numberOfAttributes * sizeof(bool));
|
|
|
|
heap_deform_tuple(tuple, tupleDesc, values, isnull);
|
|
|
|
for (attoff = 0; attoff < numberOfAttributes; attoff++)
|
|
{
|
|
if (doReplace[attoff])
|
|
{
|
|
values[attoff] = replValues[attoff];
|
|
isnull[attoff] = replIsnull[attoff];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* create a new tuple from the values and isnull arrays
|
|
*/
|
|
newTuple = heap_form_tuple(tupleDesc, values, isnull);
|
|
|
|
pfree(values);
|
|
pfree(isnull);
|
|
|
|
/*
|
|
* copy the identification info of the old tuple: t_ctid, t_self, and OID
|
|
* (if any)
|
|
*/
|
|
newTuple->t_data->t_ctid = tuple->t_data->t_ctid;
|
|
newTuple->t_self = tuple->t_self;
|
|
newTuple->t_tableOid = tuple->t_tableOid;
|
|
if (tupleDesc->tdhasoid)
|
|
HeapTupleSetOid(newTuple, HeapTupleGetOid(tuple));
|
|
|
|
return newTuple;
|
|
}
|
|
|
|
/* ----------------
|
|
* heap_modifytuple
|
|
*
|
|
* forms a new tuple from an old tuple and a set of replacement values.
|
|
* returns a new palloc'ed tuple.
|
|
*
|
|
* OLD API with char 'n'/' ' convention for indicating nulls, and
|
|
* char 'r'/' ' convention for indicating whether to replace columns.
|
|
* ----------------
|
|
*/
|
|
HeapTuple
|
|
heap_modifytuple(HeapTuple tuple,
|
|
TupleDesc tupleDesc,
|
|
Datum *replValues,
|
|
char *replNulls,
|
|
char *replActions)
|
|
{
|
|
int numberOfAttributes = tupleDesc->natts;
|
|
int attoff;
|
|
Datum *values;
|
|
char *nulls;
|
|
HeapTuple newTuple;
|
|
|
|
/*
|
|
* allocate and fill values and nulls arrays from either the tuple or the
|
|
* repl information, as appropriate.
|
|
*
|
|
* NOTE: it's debatable whether to use heap_deformtuple() here or just
|
|
* heap_getattr() only the non-replaced colums. The latter could win if
|
|
* there are many replaced columns and few non-replaced ones. However,
|
|
* heap_deformtuple costs only O(N) while the heap_getattr way would cost
|
|
* O(N^2) if there are many non-replaced columns, so it seems better to
|
|
* err on the side of linear cost.
|
|
*/
|
|
values = (Datum *) palloc(numberOfAttributes * sizeof(Datum));
|
|
nulls = (char *) palloc(numberOfAttributes * sizeof(char));
|
|
|
|
heap_deformtuple(tuple, tupleDesc, values, nulls);
|
|
|
|
for (attoff = 0; attoff < numberOfAttributes; attoff++)
|
|
{
|
|
if (replActions[attoff] == 'r')
|
|
{
|
|
values[attoff] = replValues[attoff];
|
|
nulls[attoff] = replNulls[attoff];
|
|
}
|
|
else if (replActions[attoff] != ' ')
|
|
elog(ERROR, "unrecognized replace flag: %d",
|
|
(int) replActions[attoff]);
|
|
}
|
|
|
|
/*
|
|
* create a new tuple from the values and nulls arrays
|
|
*/
|
|
newTuple = heap_formtuple(tupleDesc, values, nulls);
|
|
|
|
pfree(values);
|
|
pfree(nulls);
|
|
|
|
/*
|
|
* copy the identification info of the old tuple: t_ctid, t_self, and OID
|
|
* (if any)
|
|
*/
|
|
newTuple->t_data->t_ctid = tuple->t_data->t_ctid;
|
|
newTuple->t_self = tuple->t_self;
|
|
newTuple->t_tableOid = tuple->t_tableOid;
|
|
if (tupleDesc->tdhasoid)
|
|
HeapTupleSetOid(newTuple, HeapTupleGetOid(tuple));
|
|
|
|
return newTuple;
|
|
}
|
|
|
|
/*
|
|
* heap_deform_tuple
|
|
* Given a tuple, extract data into values/isnull arrays; this is
|
|
* the inverse of heap_form_tuple.
|
|
*
|
|
* Storage for the values/isnull arrays is provided by the caller;
|
|
* it should be sized according to tupleDesc->natts not tuple->t_natts.
|
|
*
|
|
* Note that for pass-by-reference datatypes, the pointer placed
|
|
* in the Datum will point into the given tuple.
|
|
*
|
|
* When all or most of a tuple's fields need to be extracted,
|
|
* this routine will be significantly quicker than a loop around
|
|
* heap_getattr; the loop will become O(N^2) as soon as any
|
|
* noncacheable attribute offsets are involved.
|
|
*/
|
|
void
|
|
heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc,
|
|
Datum *values, bool *isnull)
|
|
{
|
|
HeapTupleHeader tup = tuple->t_data;
|
|
bool hasnulls = HeapTupleHasNulls(tuple);
|
|
Form_pg_attribute *att = tupleDesc->attrs;
|
|
int tdesc_natts = tupleDesc->natts;
|
|
int natts; /* number of atts to extract */
|
|
int attnum;
|
|
char *tp; /* ptr to tuple data */
|
|
long off; /* offset in tuple data */
|
|
bits8 *bp = tup->t_bits; /* ptr to null bitmap in tuple */
|
|
bool slow = false; /* can we use/set attcacheoff? */
|
|
|
|
natts = HeapTupleHeaderGetNatts(tup);
|
|
|
|
/*
|
|
* In inheritance situations, it is possible that the given tuple actually
|
|
* has more fields than the caller is expecting. Don't run off the end of
|
|
* the caller's arrays.
|
|
*/
|
|
natts = Min(natts, tdesc_natts);
|
|
|
|
tp = (char *) tup + tup->t_hoff;
|
|
|
|
off = 0;
|
|
|
|
for (attnum = 0; attnum < natts; attnum++)
|
|
{
|
|
Form_pg_attribute thisatt = att[attnum];
|
|
|
|
if (hasnulls && att_isnull(attnum, bp))
|
|
{
|
|
values[attnum] = (Datum) 0;
|
|
isnull[attnum] = true;
|
|
slow = true; /* can't use attcacheoff anymore */
|
|
continue;
|
|
}
|
|
|
|
isnull[attnum] = false;
|
|
|
|
if (!slow && thisatt->attcacheoff >= 0)
|
|
off = thisatt->attcacheoff;
|
|
else
|
|
{
|
|
off = att_align(off, thisatt->attalign);
|
|
|
|
if (!slow)
|
|
thisatt->attcacheoff = off;
|
|
}
|
|
|
|
values[attnum] = fetchatt(thisatt, tp + off);
|
|
|
|
off = att_addlength(off, thisatt->attlen, tp + off);
|
|
|
|
if (thisatt->attlen <= 0)
|
|
slow = true; /* can't use attcacheoff anymore */
|
|
}
|
|
|
|
/*
|
|
* If tuple doesn't have all the atts indicated by tupleDesc, read the
|
|
* rest as null
|
|
*/
|
|
for (; attnum < tdesc_natts; attnum++)
|
|
{
|
|
values[attnum] = (Datum) 0;
|
|
isnull[attnum] = true;
|
|
}
|
|
}
|
|
|
|
/* ----------------
|
|
* heap_deformtuple
|
|
*
|
|
* Given a tuple, extract data into values/nulls arrays; this is
|
|
* the inverse of heap_formtuple.
|
|
*
|
|
* Storage for the values/nulls arrays is provided by the caller;
|
|
* it should be sized according to tupleDesc->natts not tuple->t_natts.
|
|
*
|
|
* Note that for pass-by-reference datatypes, the pointer placed
|
|
* in the Datum will point into the given tuple.
|
|
*
|
|
* When all or most of a tuple's fields need to be extracted,
|
|
* this routine will be significantly quicker than a loop around
|
|
* heap_getattr; the loop will become O(N^2) as soon as any
|
|
* noncacheable attribute offsets are involved.
|
|
*
|
|
* OLD API with char 'n'/' ' convention for indicating nulls
|
|
* ----------------
|
|
*/
|
|
void
|
|
heap_deformtuple(HeapTuple tuple,
|
|
TupleDesc tupleDesc,
|
|
Datum *values,
|
|
char *nulls)
|
|
{
|
|
HeapTupleHeader tup = tuple->t_data;
|
|
bool hasnulls = HeapTupleHasNulls(tuple);
|
|
Form_pg_attribute *att = tupleDesc->attrs;
|
|
int tdesc_natts = tupleDesc->natts;
|
|
int natts; /* number of atts to extract */
|
|
int attnum;
|
|
char *tp; /* ptr to tuple data */
|
|
long off; /* offset in tuple data */
|
|
bits8 *bp = tup->t_bits; /* ptr to null bitmap in tuple */
|
|
bool slow = false; /* can we use/set attcacheoff? */
|
|
|
|
natts = HeapTupleHeaderGetNatts(tup);
|
|
|
|
/*
|
|
* In inheritance situations, it is possible that the given tuple actually
|
|
* has more fields than the caller is expecting. Don't run off the end of
|
|
* the caller's arrays.
|
|
*/
|
|
natts = Min(natts, tdesc_natts);
|
|
|
|
tp = (char *) tup + tup->t_hoff;
|
|
|
|
off = 0;
|
|
|
|
for (attnum = 0; attnum < natts; attnum++)
|
|
{
|
|
Form_pg_attribute thisatt = att[attnum];
|
|
|
|
if (hasnulls && att_isnull(attnum, bp))
|
|
{
|
|
values[attnum] = (Datum) 0;
|
|
nulls[attnum] = 'n';
|
|
slow = true; /* can't use attcacheoff anymore */
|
|
continue;
|
|
}
|
|
|
|
nulls[attnum] = ' ';
|
|
|
|
if (!slow && thisatt->attcacheoff >= 0)
|
|
off = thisatt->attcacheoff;
|
|
else
|
|
{
|
|
off = att_align(off, thisatt->attalign);
|
|
|
|
if (!slow)
|
|
thisatt->attcacheoff = off;
|
|
}
|
|
|
|
values[attnum] = fetchatt(thisatt, tp + off);
|
|
|
|
off = att_addlength(off, thisatt->attlen, tp + off);
|
|
|
|
if (thisatt->attlen <= 0)
|
|
slow = true; /* can't use attcacheoff anymore */
|
|
}
|
|
|
|
/*
|
|
* If tuple doesn't have all the atts indicated by tupleDesc, read the
|
|
* rest as null
|
|
*/
|
|
for (; attnum < tdesc_natts; attnum++)
|
|
{
|
|
values[attnum] = (Datum) 0;
|
|
nulls[attnum] = 'n';
|
|
}
|
|
}
|
|
|
|
/*
|
|
* slot_deform_tuple
|
|
* Given a TupleTableSlot, extract data from the slot's physical tuple
|
|
* into its Datum/isnull arrays. Data is extracted up through the
|
|
* natts'th column (caller must ensure this is a legal column number).
|
|
*
|
|
* This is essentially an incremental version of heap_deform_tuple:
|
|
* on each call we extract attributes up to the one needed, without
|
|
* re-computing information about previously extracted attributes.
|
|
* slot->tts_nvalid is the number of attributes already extracted.
|
|
*/
|
|
static void
|
|
slot_deform_tuple(TupleTableSlot *slot, int natts)
|
|
{
|
|
HeapTuple tuple = slot->tts_tuple;
|
|
TupleDesc tupleDesc = slot->tts_tupleDescriptor;
|
|
Datum *values = slot->tts_values;
|
|
bool *isnull = slot->tts_isnull;
|
|
HeapTupleHeader tup = tuple->t_data;
|
|
bool hasnulls = HeapTupleHasNulls(tuple);
|
|
Form_pg_attribute *att = tupleDesc->attrs;
|
|
int attnum;
|
|
char *tp; /* ptr to tuple data */
|
|
long off; /* offset in tuple data */
|
|
bits8 *bp = tup->t_bits; /* ptr to null bitmap in tuple */
|
|
bool slow; /* can we use/set attcacheoff? */
|
|
|
|
/*
|
|
* Check whether the first call for this tuple, and initialize or restore
|
|
* loop state.
|
|
*/
|
|
attnum = slot->tts_nvalid;
|
|
if (attnum == 0)
|
|
{
|
|
/* Start from the first attribute */
|
|
off = 0;
|
|
slow = false;
|
|
}
|
|
else
|
|
{
|
|
/* Restore state from previous execution */
|
|
off = slot->tts_off;
|
|
slow = slot->tts_slow;
|
|
}
|
|
|
|
tp = (char *) tup + tup->t_hoff;
|
|
|
|
for (; attnum < natts; attnum++)
|
|
{
|
|
Form_pg_attribute thisatt = att[attnum];
|
|
|
|
if (hasnulls && att_isnull(attnum, bp))
|
|
{
|
|
values[attnum] = (Datum) 0;
|
|
isnull[attnum] = true;
|
|
slow = true; /* can't use attcacheoff anymore */
|
|
continue;
|
|
}
|
|
|
|
isnull[attnum] = false;
|
|
|
|
if (!slow && thisatt->attcacheoff >= 0)
|
|
off = thisatt->attcacheoff;
|
|
else
|
|
{
|
|
off = att_align(off, thisatt->attalign);
|
|
|
|
if (!slow)
|
|
thisatt->attcacheoff = off;
|
|
}
|
|
|
|
values[attnum] = fetchatt(thisatt, tp + off);
|
|
|
|
off = att_addlength(off, thisatt->attlen, tp + off);
|
|
|
|
if (thisatt->attlen <= 0)
|
|
slow = true; /* can't use attcacheoff anymore */
|
|
}
|
|
|
|
/*
|
|
* Save state for next execution
|
|
*/
|
|
slot->tts_nvalid = attnum;
|
|
slot->tts_off = off;
|
|
slot->tts_slow = slow;
|
|
}
|
|
|
|
/*
|
|
* slot_getattr
|
|
* This function fetches an attribute of the slot's current tuple.
|
|
* It is functionally equivalent to heap_getattr, but fetches of
|
|
* multiple attributes of the same tuple will be optimized better,
|
|
* because we avoid O(N^2) behavior from multiple calls of
|
|
* nocachegetattr(), even when attcacheoff isn't usable.
|
|
*
|
|
* A difference from raw heap_getattr is that attnums beyond the
|
|
* slot's tupdesc's last attribute will be considered NULL even
|
|
* when the physical tuple is longer than the tupdesc.
|
|
*/
|
|
Datum
|
|
slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
|
|
{
|
|
HeapTuple tuple = slot->tts_tuple;
|
|
TupleDesc tupleDesc = slot->tts_tupleDescriptor;
|
|
HeapTupleHeader tup;
|
|
|
|
/*
|
|
* system attributes are handled by heap_getsysattr
|
|
*/
|
|
if (attnum <= 0)
|
|
{
|
|
if (tuple == NULL) /* internal error */
|
|
elog(ERROR, "cannot extract system attribute from virtual tuple");
|
|
if (slot->tts_mintuple) /* internal error */
|
|
elog(ERROR, "cannot extract system attribute from minimal tuple");
|
|
return heap_getsysattr(tuple, attnum, tupleDesc, isnull);
|
|
}
|
|
|
|
/*
|
|
* fast path if desired attribute already cached
|
|
*/
|
|
if (attnum <= slot->tts_nvalid)
|
|
{
|
|
*isnull = slot->tts_isnull[attnum - 1];
|
|
return slot->tts_values[attnum - 1];
|
|
}
|
|
|
|
/*
|
|
* return NULL if attnum is out of range according to the tupdesc
|
|
*/
|
|
if (attnum > tupleDesc->natts)
|
|
{
|
|
*isnull = true;
|
|
return (Datum) 0;
|
|
}
|
|
|
|
/*
|
|
* otherwise we had better have a physical tuple (tts_nvalid should equal
|
|
* natts in all virtual-tuple cases)
|
|
*/
|
|
if (tuple == NULL) /* internal error */
|
|
elog(ERROR, "cannot extract attribute from empty tuple slot");
|
|
|
|
/*
|
|
* return NULL if attnum is out of range according to the tuple
|
|
*
|
|
* (We have to check this separately because of various inheritance and
|
|
* table-alteration scenarios: the tuple could be either longer or shorter
|
|
* than the tupdesc.)
|
|
*/
|
|
tup = tuple->t_data;
|
|
if (attnum > HeapTupleHeaderGetNatts(tup))
|
|
{
|
|
*isnull = true;
|
|
return (Datum) 0;
|
|
}
|
|
|
|
/*
|
|
* check if target attribute is null: no point in groveling through tuple
|
|
*/
|
|
if (HeapTupleHasNulls(tuple) && att_isnull(attnum - 1, tup->t_bits))
|
|
{
|
|
*isnull = true;
|
|
return (Datum) 0;
|
|
}
|
|
|
|
/*
|
|
* If the attribute's column has been dropped, we force a NULL result.
|
|
* This case should not happen in normal use, but it could happen if we
|
|
* are executing a plan cached before the column was dropped.
|
|
*/
|
|
if (tupleDesc->attrs[attnum - 1]->attisdropped)
|
|
{
|
|
*isnull = true;
|
|
return (Datum) 0;
|
|
}
|
|
|
|
/*
|
|
* Extract the attribute, along with any preceding attributes.
|
|
*/
|
|
slot_deform_tuple(slot, attnum);
|
|
|
|
/*
|
|
* The result is acquired from tts_values array.
|
|
*/
|
|
*isnull = slot->tts_isnull[attnum - 1];
|
|
return slot->tts_values[attnum - 1];
|
|
}
|
|
|
|
/*
|
|
* slot_getallattrs
|
|
* This function forces all the entries of the slot's Datum/isnull
|
|
* arrays to be valid. The caller may then extract data directly
|
|
* from those arrays instead of using slot_getattr.
|
|
*/
|
|
void
|
|
slot_getallattrs(TupleTableSlot *slot)
|
|
{
|
|
int tdesc_natts = slot->tts_tupleDescriptor->natts;
|
|
int attnum;
|
|
HeapTuple tuple;
|
|
|
|
/* Quick out if we have 'em all already */
|
|
if (slot->tts_nvalid == tdesc_natts)
|
|
return;
|
|
|
|
/*
|
|
* otherwise we had better have a physical tuple (tts_nvalid should equal
|
|
* natts in all virtual-tuple cases)
|
|
*/
|
|
tuple = slot->tts_tuple;
|
|
if (tuple == NULL) /* internal error */
|
|
elog(ERROR, "cannot extract attribute from empty tuple slot");
|
|
|
|
/*
|
|
* load up any slots available from physical tuple
|
|
*/
|
|
attnum = HeapTupleHeaderGetNatts(tuple->t_data);
|
|
attnum = Min(attnum, tdesc_natts);
|
|
|
|
slot_deform_tuple(slot, attnum);
|
|
|
|
/*
|
|
* If tuple doesn't have all the atts indicated by tupleDesc, read the
|
|
* rest as null
|
|
*/
|
|
for (; attnum < tdesc_natts; attnum++)
|
|
{
|
|
slot->tts_values[attnum] = (Datum) 0;
|
|
slot->tts_isnull[attnum] = true;
|
|
}
|
|
slot->tts_nvalid = tdesc_natts;
|
|
}
|
|
|
|
/*
|
|
* slot_getsomeattrs
|
|
* This function forces the entries of the slot's Datum/isnull
|
|
* arrays to be valid at least up through the attnum'th entry.
|
|
*/
|
|
void
|
|
slot_getsomeattrs(TupleTableSlot *slot, int attnum)
|
|
{
|
|
HeapTuple tuple;
|
|
int attno;
|
|
|
|
/* Quick out if we have 'em all already */
|
|
if (slot->tts_nvalid >= attnum)
|
|
return;
|
|
|
|
/* Check for caller error */
|
|
if (attnum <= 0 || attnum > slot->tts_tupleDescriptor->natts)
|
|
elog(ERROR, "invalid attribute number %d", attnum);
|
|
|
|
/*
|
|
* otherwise we had better have a physical tuple (tts_nvalid should equal
|
|
* natts in all virtual-tuple cases)
|
|
*/
|
|
tuple = slot->tts_tuple;
|
|
if (tuple == NULL) /* internal error */
|
|
elog(ERROR, "cannot extract attribute from empty tuple slot");
|
|
|
|
/*
|
|
* load up any slots available from physical tuple
|
|
*/
|
|
attno = HeapTupleHeaderGetNatts(tuple->t_data);
|
|
attno = Min(attno, attnum);
|
|
|
|
slot_deform_tuple(slot, attno);
|
|
|
|
/*
|
|
* If tuple doesn't have all the atts indicated by tupleDesc, read the
|
|
* rest as null
|
|
*/
|
|
for (; attno < attnum; attno++)
|
|
{
|
|
slot->tts_values[attno] = (Datum) 0;
|
|
slot->tts_isnull[attno] = true;
|
|
}
|
|
slot->tts_nvalid = attnum;
|
|
}
|
|
|
|
/*
|
|
* slot_attisnull
|
|
* Detect whether an attribute of the slot is null, without
|
|
* actually fetching it.
|
|
*/
|
|
bool
|
|
slot_attisnull(TupleTableSlot *slot, int attnum)
|
|
{
|
|
HeapTuple tuple = slot->tts_tuple;
|
|
TupleDesc tupleDesc = slot->tts_tupleDescriptor;
|
|
|
|
/*
|
|
* system attributes are handled by heap_attisnull
|
|
*/
|
|
if (attnum <= 0)
|
|
{
|
|
if (tuple == NULL) /* internal error */
|
|
elog(ERROR, "cannot extract system attribute from virtual tuple");
|
|
if (slot->tts_mintuple) /* internal error */
|
|
elog(ERROR, "cannot extract system attribute from minimal tuple");
|
|
return heap_attisnull(tuple, attnum);
|
|
}
|
|
|
|
/*
|
|
* fast path if desired attribute already cached
|
|
*/
|
|
if (attnum <= slot->tts_nvalid)
|
|
return slot->tts_isnull[attnum - 1];
|
|
|
|
/*
|
|
* return NULL if attnum is out of range according to the tupdesc
|
|
*/
|
|
if (attnum > tupleDesc->natts)
|
|
return true;
|
|
|
|
/*
|
|
* otherwise we had better have a physical tuple (tts_nvalid should equal
|
|
* natts in all virtual-tuple cases)
|
|
*/
|
|
if (tuple == NULL) /* internal error */
|
|
elog(ERROR, "cannot extract attribute from empty tuple slot");
|
|
|
|
/* and let the tuple tell it */
|
|
return heap_attisnull(tuple, attnum);
|
|
}
|
|
|
|
/*
|
|
* heap_freetuple
|
|
*/
|
|
void
|
|
heap_freetuple(HeapTuple htup)
|
|
{
|
|
pfree(htup);
|
|
}
|
|
|
|
|
|
/*
|
|
* heap_form_minimal_tuple
|
|
* construct a MinimalTuple from the given values[] and isnull[] arrays,
|
|
* which are of the length indicated by tupleDescriptor->natts
|
|
*
|
|
* This is exactly like heap_form_tuple() except that the result is a
|
|
* "minimal" tuple lacking a HeapTupleData header as well as room for system
|
|
* columns.
|
|
*
|
|
* The result is allocated in the current memory context.
|
|
*/
|
|
MinimalTuple
|
|
heap_form_minimal_tuple(TupleDesc tupleDescriptor,
|
|
Datum *values,
|
|
bool *isnull)
|
|
{
|
|
MinimalTuple tuple; /* return tuple */
|
|
unsigned long len;
|
|
int hoff;
|
|
bool hasnull = false;
|
|
Form_pg_attribute *att = tupleDescriptor->attrs;
|
|
int numberOfAttributes = tupleDescriptor->natts;
|
|
int i;
|
|
|
|
if (numberOfAttributes > MaxTupleAttributeNumber)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_TOO_MANY_COLUMNS),
|
|
errmsg("number of columns (%d) exceeds limit (%d)",
|
|
numberOfAttributes, MaxTupleAttributeNumber)));
|
|
|
|
/*
|
|
* Check for nulls and embedded tuples; expand any toasted attributes in
|
|
* embedded tuples. This preserves the invariant that toasting can only
|
|
* go one level deep.
|
|
*
|
|
* We can skip calling toast_flatten_tuple_attribute() if the attribute
|
|
* couldn't possibly be of composite type. All composite datums are
|
|
* varlena and have alignment 'd'; furthermore they aren't arrays. Also,
|
|
* if an attribute is already toasted, it must have been sent to disk
|
|
* already and so cannot contain toasted attributes.
|
|
*/
|
|
for (i = 0; i < numberOfAttributes; i++)
|
|
{
|
|
if (isnull[i])
|
|
hasnull = true;
|
|
else if (att[i]->attlen == -1 &&
|
|
att[i]->attalign == 'd' &&
|
|
att[i]->attndims == 0 &&
|
|
!VARATT_IS_EXTENDED(values[i]))
|
|
{
|
|
values[i] = toast_flatten_tuple_attribute(values[i],
|
|
att[i]->atttypid,
|
|
att[i]->atttypmod);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine total space needed
|
|
*/
|
|
len = offsetof(MinimalTupleData, t_bits);
|
|
|
|
if (hasnull)
|
|
len += BITMAPLEN(numberOfAttributes);
|
|
|
|
if (tupleDescriptor->tdhasoid)
|
|
len += sizeof(Oid);
|
|
|
|
hoff = len = MAXALIGN(len); /* align user data safely */
|
|
|
|
len += heap_compute_data_size(tupleDescriptor, values, isnull);
|
|
|
|
/*
|
|
* Allocate and zero the space needed.
|
|
*/
|
|
tuple = (MinimalTuple) palloc0(len);
|
|
|
|
/*
|
|
* And fill in the information.
|
|
*/
|
|
tuple->t_len = len;
|
|
HeapTupleHeaderSetNatts(tuple, numberOfAttributes);
|
|
tuple->t_hoff = hoff + MINIMAL_TUPLE_OFFSET;
|
|
|
|
if (tupleDescriptor->tdhasoid) /* else leave infomask = 0 */
|
|
tuple->t_infomask = HEAP_HASOID;
|
|
|
|
heap_fill_tuple(tupleDescriptor,
|
|
values,
|
|
isnull,
|
|
(char *) tuple + hoff,
|
|
&tuple->t_infomask,
|
|
(hasnull ? tuple->t_bits : NULL));
|
|
|
|
return tuple;
|
|
}
|
|
|
|
/*
|
|
* heap_free_minimal_tuple
|
|
*/
|
|
void
|
|
heap_free_minimal_tuple(MinimalTuple mtup)
|
|
{
|
|
pfree(mtup);
|
|
}
|
|
|
|
/*
|
|
* heap_copy_minimal_tuple
|
|
* copy a MinimalTuple
|
|
*
|
|
* The result is allocated in the current memory context.
|
|
*/
|
|
MinimalTuple
|
|
heap_copy_minimal_tuple(MinimalTuple mtup)
|
|
{
|
|
MinimalTuple result;
|
|
|
|
result = (MinimalTuple) palloc(mtup->t_len);
|
|
memcpy(result, mtup, mtup->t_len);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* heap_tuple_from_minimal_tuple
|
|
* create a HeapTuple by copying from a MinimalTuple;
|
|
* system columns are filled with zeroes
|
|
*
|
|
* The result is allocated in the current memory context.
|
|
* The HeapTuple struct, tuple header, and tuple data are all allocated
|
|
* as a single palloc() block.
|
|
*/
|
|
HeapTuple
|
|
heap_tuple_from_minimal_tuple(MinimalTuple mtup)
|
|
{
|
|
HeapTuple result;
|
|
uint32 len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
|
|
|
|
result = (HeapTuple) palloc(HEAPTUPLESIZE + len);
|
|
result->t_len = len;
|
|
ItemPointerSetInvalid(&(result->t_self));
|
|
result->t_tableOid = InvalidOid;
|
|
result->t_data = (HeapTupleHeader) ((char *) result + HEAPTUPLESIZE);
|
|
memcpy((char *) result->t_data + MINIMAL_TUPLE_OFFSET, mtup, mtup->t_len);
|
|
memset(result->t_data, 0, offsetof(HeapTupleHeaderData, t_infomask2));
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* minimal_tuple_from_heap_tuple
|
|
* create a MinimalTuple by copying from a HeapTuple
|
|
*
|
|
* The result is allocated in the current memory context.
|
|
*/
|
|
MinimalTuple
|
|
minimal_tuple_from_heap_tuple(HeapTuple htup)
|
|
{
|
|
MinimalTuple result;
|
|
uint32 len;
|
|
|
|
Assert(htup->t_len > MINIMAL_TUPLE_OFFSET);
|
|
len = htup->t_len - MINIMAL_TUPLE_OFFSET;
|
|
result = (MinimalTuple) palloc(len);
|
|
memcpy(result, (char *) htup->t_data + MINIMAL_TUPLE_OFFSET, len);
|
|
result->t_len = len;
|
|
return result;
|
|
}
|
|
|
|
|
|
/* ----------------
|
|
* heap_addheader
|
|
*
|
|
* This routine forms a HeapTuple by copying the given structure (tuple
|
|
* data) and adding a generic header. Note that the tuple data is
|
|
* presumed to contain no null fields and no varlena fields.
|
|
*
|
|
* This routine is really only useful for certain system tables that are
|
|
* known to be fixed-width and null-free. Currently it is only used for
|
|
* pg_attribute tuples.
|
|
* ----------------
|
|
*/
|
|
HeapTuple
|
|
heap_addheader(int natts, /* max domain index */
|
|
bool withoid, /* reserve space for oid */
|
|
Size structlen, /* its length */
|
|
void *structure) /* pointer to the struct */
|
|
{
|
|
HeapTuple tuple;
|
|
HeapTupleHeader td;
|
|
Size len;
|
|
int hoff;
|
|
|
|
AssertArg(natts > 0);
|
|
|
|
/* header needs no null bitmap */
|
|
hoff = offsetof(HeapTupleHeaderData, t_bits);
|
|
if (withoid)
|
|
hoff += sizeof(Oid);
|
|
hoff = MAXALIGN(hoff);
|
|
len = hoff + structlen;
|
|
|
|
tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + len);
|
|
tuple->t_data = td = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);
|
|
|
|
tuple->t_len = len;
|
|
ItemPointerSetInvalid(&(tuple->t_self));
|
|
tuple->t_tableOid = InvalidOid;
|
|
|
|
/* we don't bother to fill the Datum fields */
|
|
|
|
HeapTupleHeaderSetNatts(td, natts);
|
|
td->t_hoff = hoff;
|
|
|
|
if (withoid) /* else leave infomask = 0 */
|
|
td->t_infomask = HEAP_HASOID;
|
|
|
|
memcpy((char *) td + hoff, structure, structlen);
|
|
|
|
return tuple;
|
|
}
|