1
0
mirror of https://github.com/postgres/postgres.git synced 2025-04-25 21:42:33 +03:00
Tom Lane c382a2b669 Fix float-to-integer coercions to handle edge cases correctly.
ftoi4 and its sibling coercion functions did their overflow checks in
a way that looked superficially plausible, but actually depended on an
assumption that the MIN and MAX comparison constants can be represented
exactly in the float4 or float8 domain.  That fails in ftoi4, ftoi8,
and dtoi8, resulting in a possibility that values near the MAX limit will
be wrongly converted (to negative values) when they need to be rejected.

Also, because we compared before rounding off the fractional part,
the other three functions threw errors for values that really ought
to get rounded to the min or max integer value.

Fix by doing rint() first (requiring an assumption that it handles
NaN and Inf correctly; but dtoi8 and ftoi8 were assuming that already),
and by comparing to values that should coerce to float exactly, namely
INTxx_MIN and -INTxx_MIN.  Also remove some random cosmetic discrepancies
between these six functions.

This back-patches commits cbdb8b4c0 and 452b637d4.  In the 9.4 branch,
also back-patch the portion of 62e2a8dc2 that added PG_INTnn_MIN and
related constants to c.h, so that these functions can rely on them.

Per bug #15519 from Victor Petrovykh.

Patch by me; thanks to Andrew Gierth for analysis and discussion.

Discussion: https://postgr.es/m/15519-4fc785b483201ff1@postgresql.org
2018-11-24 12:45:49 -05:00

1518 lines
32 KiB
C

/*-------------------------------------------------------------------------
*
* int8.c
* Internal 64-bit integer operations
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/utils/adt/int8.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include <limits.h>
#include <math.h>
#include "funcapi.h"
#include "libpq/pqformat.h"
#include "utils/int8.h"
#include "utils/builtins.h"
#define MAXINT8LEN 25
#define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
typedef struct
{
int64 current;
int64 finish;
int64 step;
} generate_series_fctx;
/***********************************************************************
**
** Routines for 64-bit integers.
**
***********************************************************************/
/*----------------------------------------------------------
* Formatting and conversion routines.
*---------------------------------------------------------*/
/*
* scanint8 --- try to parse a string into an int8.
*
* If errorOK is false, ereport a useful error message if the string is bad.
* If errorOK is true, just return "false" for bad input.
*/
bool
scanint8(const char *str, bool errorOK, int64 *result)
{
const char *ptr = str;
int64 tmp = 0;
int sign = 1;
/*
* Do our own scan, rather than relying on sscanf which might be broken
* for long long.
*/
/* skip leading spaces */
while (*ptr && isspace((unsigned char) *ptr))
ptr++;
/* handle sign */
if (*ptr == '-')
{
ptr++;
/*
* Do an explicit check for INT64_MIN. Ugly though this is, it's
* cleaner than trying to get the loop below to handle it portably.
*/
if (strncmp(ptr, "9223372036854775808", 19) == 0)
{
tmp = PG_INT64_MIN;
ptr += 19;
goto gotdigits;
}
sign = -1;
}
else if (*ptr == '+')
ptr++;
/* require at least one digit */
if (!isdigit((unsigned char) *ptr))
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for integer: \"%s\"",
str)));
}
/* process digits */
while (*ptr && isdigit((unsigned char) *ptr))
{
int64 newtmp = tmp * 10 + (*ptr++ - '0');
if ((newtmp / 10) != tmp) /* overflow? */
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("value \"%s\" is out of range for type %s",
str, "bigint")));
}
tmp = newtmp;
}
gotdigits:
/* allow trailing whitespace, but not other trailing chars */
while (*ptr != '\0' && isspace((unsigned char) *ptr))
ptr++;
if (*ptr != '\0')
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for integer: \"%s\"",
str)));
}
*result = (sign < 0) ? -tmp : tmp;
return true;
}
/* int8in()
*/
Datum
int8in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
int64 result;
(void) scanint8(str, false, &result);
PG_RETURN_INT64(result);
}
/* int8out()
*/
Datum
int8out(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
char buf[MAXINT8LEN + 1];
char *result;
pg_lltoa(val, buf);
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* int8recv - converts external binary format to int8
*/
Datum
int8recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
PG_RETURN_INT64(pq_getmsgint64(buf));
}
/*
* int8send - converts int8 to binary format
*/
Datum
int8send(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint64(&buf, arg1);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*----------------------------------------------------------
* Relational operators for int8s, including cross-data-type comparisons.
*---------------------------------------------------------*/
/* int8relop()
* Is val1 relop val2?
*/
Datum
int8eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int8ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int8lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int8gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int8le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int8ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int84relop()
* Is 64-bit val1 relop 32-bit val2?
*/
Datum
int84eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int84ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int84lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int84gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int84le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int84ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int48relop()
* Is 32-bit val1 relop 64-bit val2?
*/
Datum
int48eq(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int48ne(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int48lt(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int48gt(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int48le(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int48ge(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int82relop()
* Is 64-bit val1 relop 16-bit val2?
*/
Datum
int82eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int82ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int82lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int82gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int82le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int82ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int28relop()
* Is 16-bit val1 relop 64-bit val2?
*/
Datum
int28eq(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int28ne(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int28lt(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int28gt(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int28le(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int28ge(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/*----------------------------------------------------------
* Arithmetic operators on 64-bit integers.
*---------------------------------------------------------*/
Datum
int8um(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
int64 result;
result = -arg;
/* overflow check (needed for INT64_MIN) */
if (arg != 0 && SAMESIGN(result, arg))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int8up(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
PG_RETURN_INT64(arg);
}
Datum
int8pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int8mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int8mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg2 gives arg1
* again. There are two cases where this fails: arg2 = 0 (which cannot
* overflow) and arg1 = INT64_MIN, arg2 = -1 (where the division itself
* will overflow and thus incorrectly match).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg1 != (int64) ((int32) arg1) || arg2 != (int64) ((int32) arg2))
{
if (arg2 != 0 &&
((arg2 == -1 && arg1 < 0 && result < 0) ||
result / arg2 != arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
}
PG_RETURN_INT64(result);
}
Datum
int8div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* INT64_MIN / -1 is problematic, since the result can't be represented on
* a two's-complement machine. Some machines produce INT64_MIN, some
* produce zero, some throw an exception. We can dodge the problem by
* recognizing that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
result = -arg1;
/* overflow check (needed for INT64_MIN) */
if (arg1 != 0 && SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT64(result);
}
/* int8abs()
* Absolute value
*/
Datum
int8abs(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 result;
result = (arg1 < 0) ? -arg1 : arg1;
/* overflow check (needed for INT64_MIN) */
if (result < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
/* int8mod()
* Modulo operation.
*/
Datum
int8mod(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* Some machines throw a floating-point exception for INT64_MIN % -1,
* which is a bit silly since the correct answer is perfectly
* well-defined, namely zero.
*/
if (arg2 == -1)
PG_RETURN_INT64(0);
/* No overflow is possible */
PG_RETURN_INT64(arg1 % arg2);
}
Datum
int8inc(PG_FUNCTION_ARGS)
{
/*
* When int8 is pass-by-reference, we provide this special case to avoid
* palloc overhead for COUNT(): when called as an aggregate, we know that
* the argument is modifiable local storage, so just update it in-place.
* (If int8 is pass-by-value, then of course this is useless as well as
* incorrect, so just ifdef it out.)
*/
#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
if (AggCheckCallContext(fcinfo, NULL))
{
int64 *arg = (int64 *) PG_GETARG_POINTER(0);
int64 result;
result = *arg + 1;
/* Overflow check */
if (result < 0 && *arg > 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
*arg = result;
PG_RETURN_POINTER(arg);
}
else
#endif
{
/* Not called as an aggregate, so just do it the dumb way */
int64 arg = PG_GETARG_INT64(0);
int64 result;
result = arg + 1;
/* Overflow check */
if (result < 0 && arg > 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
}
Datum
int8dec(PG_FUNCTION_ARGS)
{
/*
* When int8 is pass-by-reference, we provide this special case to avoid
* palloc overhead for COUNT(): when called as an aggregate, we know that
* the argument is modifiable local storage, so just update it in-place.
* (If int8 is pass-by-value, then of course this is useless as well as
* incorrect, so just ifdef it out.)
*/
#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
if (AggCheckCallContext(fcinfo, NULL))
{
int64 *arg = (int64 *) PG_GETARG_POINTER(0);
int64 result;
result = *arg - 1;
/* Overflow check */
if (result > 0 && *arg < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
*arg = result;
PG_RETURN_POINTER(arg);
}
else
#endif
{
/* Not called as an aggregate, so just do it the dumb way */
int64 arg = PG_GETARG_INT64(0);
int64 result;
result = arg - 1;
/* Overflow check */
if (result > 0 && arg < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
}
/*
* These functions are exactly like int8inc/int8dec but are used for
* aggregates that count only non-null values. Since the functions are
* declared strict, the null checks happen before we ever get here, and all we
* need do is increment the state value. We could actually make these pg_proc
* entries point right at int8inc/int8dec, but then the opr_sanity regression
* test would complain about mismatched entries for a built-in function.
*/
Datum
int8inc_any(PG_FUNCTION_ARGS)
{
return int8inc(fcinfo);
}
Datum
int8inc_float8_float8(PG_FUNCTION_ARGS)
{
return int8inc(fcinfo);
}
Datum
int8dec_any(PG_FUNCTION_ARGS)
{
return int8dec(fcinfo);
}
Datum
int8larger(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = ((arg1 > arg2) ? arg1 : arg2);
PG_RETURN_INT64(result);
}
Datum
int8smaller(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = ((arg1 < arg2) ? arg1 : arg2);
PG_RETURN_INT64(result);
}
Datum
int84pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int84mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int84mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg1 gives arg2
* again. There is one case where this fails: arg1 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg1 != (int64) ((int32) arg1) &&
result / arg1 != arg2)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int84div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* INT64_MIN / -1 is problematic, since the result can't be represented on
* a two's-complement machine. Some machines produce INT64_MIN, some
* produce zero, some throw an exception. We can dodge the problem by
* recognizing that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
result = -arg1;
/* overflow check (needed for INT64_MIN) */
if (arg1 != 0 && SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT64(result);
}
Datum
int48pl(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int48mi(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int48mul(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg2 gives arg1
* again. There is one case where this fails: arg2 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg2 != (int64) ((int32) arg2) &&
result / arg2 != arg1)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int48div(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/* No overflow is possible */
PG_RETURN_INT64((int64) arg1 / arg2);
}
Datum
int82pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int82mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int82mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg1 gives arg2
* again. There is one case where this fails: arg1 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg1 != (int64) ((int32) arg1) &&
result / arg1 != arg2)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int82div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* INT64_MIN / -1 is problematic, since the result can't be represented on
* a two's-complement machine. Some machines produce INT64_MIN, some
* produce zero, some throw an exception. We can dodge the problem by
* recognizing that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
result = -arg1;
/* overflow check (needed for INT64_MIN) */
if (arg1 != 0 && SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT64(result);
}
Datum
int28pl(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int28mi(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int28mul(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg2 gives arg1
* again. There is one case where this fails: arg2 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg2 != (int64) ((int32) arg2) &&
result / arg2 != arg1)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int28div(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/* No overflow is possible */
PG_RETURN_INT64((int64) arg1 / arg2);
}
/* Binary arithmetics
*
* int8and - returns arg1 & arg2
* int8or - returns arg1 | arg2
* int8xor - returns arg1 # arg2
* int8not - returns ~arg1
* int8shl - returns arg1 << arg2
* int8shr - returns arg1 >> arg2
*/
Datum
int8and(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 & arg2);
}
Datum
int8or(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 | arg2);
}
Datum
int8xor(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 ^ arg2);
}
Datum
int8not(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
PG_RETURN_INT64(~arg1);
}
Datum
int8shl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(arg1 << arg2);
}
Datum
int8shr(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(arg1 >> arg2);
}
/*----------------------------------------------------------
* Conversion operators.
*---------------------------------------------------------*/
Datum
int48(PG_FUNCTION_ARGS)
{
int32 arg = PG_GETARG_INT32(0);
PG_RETURN_INT64((int64) arg);
}
Datum
int84(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
int32 result;
result = (int32) arg;
/* Test for overflow by reverse-conversion. */
if ((int64) result != arg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int28(PG_FUNCTION_ARGS)
{
int16 arg = PG_GETARG_INT16(0);
PG_RETURN_INT64((int64) arg);
}
Datum
int82(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
int16 result;
result = (int16) arg;
/* Test for overflow by reverse-conversion. */
if ((int64) result != arg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16(result);
}
Datum
i8tod(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
float8 result;
result = arg;
PG_RETURN_FLOAT8(result);
}
/* dtoi8()
* Convert float8 to 8-byte integer.
*/
Datum
dtoi8(PG_FUNCTION_ARGS)
{
float8 num = PG_GETARG_FLOAT8(0);
/*
* Get rid of any fractional part in the input. This is so we don't fail
* on just-out-of-range values that would round into range. Note
* assumption that rint() will pass through a NaN or Inf unchanged.
*/
num = rint(num);
/*
* Range check. We must be careful here that the boundary values are
* expressed exactly in the float domain. We expect PG_INT64_MIN to be an
* exact power of 2, so it will be represented exactly; but PG_INT64_MAX
* isn't, and might get rounded off, so avoid using it.
*/
if (num < (float8) PG_INT64_MIN ||
num >= -((float8) PG_INT64_MIN) ||
isnan(num))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64((int64) num);
}
Datum
i8tof(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
float4 result;
result = arg;
PG_RETURN_FLOAT4(result);
}
/* ftoi8()
* Convert float4 to 8-byte integer.
*/
Datum
ftoi8(PG_FUNCTION_ARGS)
{
float4 num = PG_GETARG_FLOAT4(0);
/*
* Get rid of any fractional part in the input. This is so we don't fail
* on just-out-of-range values that would round into range. Note
* assumption that rint() will pass through a NaN or Inf unchanged.
*/
num = rint(num);
/*
* Range check. We must be careful here that the boundary values are
* expressed exactly in the float domain. We expect PG_INT64_MIN to be an
* exact power of 2, so it will be represented exactly; but PG_INT64_MAX
* isn't, and might get rounded off, so avoid using it.
*/
if (num < (float4) PG_INT64_MIN ||
num >= -((float4) PG_INT64_MIN) ||
isnan(num))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64((int64) num);
}
Datum
i8tooid(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
Oid result;
result = (Oid) arg;
/* Test for overflow by reverse-conversion. */
if ((int64) result != arg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("OID out of range")));
PG_RETURN_OID(result);
}
Datum
oidtoi8(PG_FUNCTION_ARGS)
{
Oid arg = PG_GETARG_OID(0);
PG_RETURN_INT64((int64) arg);
}
/*
* non-persistent numeric series generator
*/
Datum
generate_series_int8(PG_FUNCTION_ARGS)
{
return generate_series_step_int8(fcinfo);
}
Datum
generate_series_step_int8(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
generate_series_fctx *fctx;
int64 result;
MemoryContext oldcontext;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
int64 start = PG_GETARG_INT64(0);
int64 finish = PG_GETARG_INT64(1);
int64 step = 1;
/* see if we were given an explicit step size */
if (PG_NARGS() == 3)
step = PG_GETARG_INT64(2);
if (step == 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("step size cannot equal zero")));
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
/*
* Use fctx to keep state from call to call. Seed current with the
* original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = step;
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* get the saved state and use current as the result for this iteration
*/
fctx = funcctx->user_fctx;
result = fctx->current;
if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
(fctx->step < 0 && fctx->current >= fctx->finish))
{
/* increment current in preparation for next iteration */
fctx->current += fctx->step;
/* if next-value computation overflows, this is the final result */
if (SAMESIGN(result, fctx->step) && !SAMESIGN(result, fctx->current))
fctx->step = 0;
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, Int64GetDatum(result));
}
else
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}