1
0
mirror of https://github.com/postgres/postgres.git synced 2025-08-21 10:42:50 +03:00
Files
postgres/src/backend/storage/ipc/latch.c
Heikki Linnakangas 393e0d2314 Split WaitEventSet functions to separate source file
latch.c now only contains the Latch related functions, which build on
the WaitEventSet abstraction. Most of the platform-dependent stuff is
now in waiteventset.c.

Reviewed-by: Andres Freund <andres@anarazel.de>
Discussion: https://www.postgresql.org/message-id/8a507fb6-df28-49d3-81a5-ede180d7f0fb@iki.fi
2025-03-06 01:26:16 +02:00

388 lines
11 KiB
C

/*-------------------------------------------------------------------------
*
* latch.c
* Routines for inter-process latches
*
* The latch interface is a reliable replacement for the common pattern of
* using pg_usleep() or select() to wait until a signal arrives, where the
* signal handler sets a flag variable. See latch.h for more information
* on how to use them.
*
* Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/storage/ipc/latch.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "miscadmin.h"
#include "port/atomics.h"
#include "storage/latch.h"
#include "storage/waiteventset.h"
#include "utils/resowner.h"
/* A common WaitEventSet used to implement WaitLatch() */
static WaitEventSet *LatchWaitSet;
/* The positions of the latch and PM death events in LatchWaitSet */
#define LatchWaitSetLatchPos 0
#define LatchWaitSetPostmasterDeathPos 1
void
InitializeLatchWaitSet(void)
{
int latch_pos PG_USED_FOR_ASSERTS_ONLY;
Assert(LatchWaitSet == NULL);
/* Set up the WaitEventSet used by WaitLatch(). */
LatchWaitSet = CreateWaitEventSet(NULL, 2);
latch_pos = AddWaitEventToSet(LatchWaitSet, WL_LATCH_SET, PGINVALID_SOCKET,
MyLatch, NULL);
Assert(latch_pos == LatchWaitSetLatchPos);
/*
* WaitLatch will modify this to WL_EXIT_ON_PM_DEATH or
* WL_POSTMASTER_DEATH on each call.
*/
if (IsUnderPostmaster)
{
latch_pos = AddWaitEventToSet(LatchWaitSet, WL_EXIT_ON_PM_DEATH,
PGINVALID_SOCKET, NULL, NULL);
Assert(latch_pos == LatchWaitSetPostmasterDeathPos);
}
}
/*
* Initialize a process-local latch.
*/
void
InitLatch(Latch *latch)
{
latch->is_set = false;
latch->maybe_sleeping = false;
latch->owner_pid = MyProcPid;
latch->is_shared = false;
#ifdef WIN32
latch->event = CreateEvent(NULL, TRUE, FALSE, NULL);
if (latch->event == NULL)
elog(ERROR, "CreateEvent failed: error code %lu", GetLastError());
#endif /* WIN32 */
}
/*
* Initialize a shared latch that can be set from other processes. The latch
* is initially owned by no-one; use OwnLatch to associate it with the
* current process.
*
* InitSharedLatch needs to be called in postmaster before forking child
* processes, usually right after allocating the shared memory block
* containing the latch with ShmemInitStruct. (The Unix implementation
* doesn't actually require that, but the Windows one does.) Because of
* this restriction, we have no concurrency issues to worry about here.
*
* Note that other handles created in this module are never marked as
* inheritable. Thus we do not need to worry about cleaning up child
* process references to postmaster-private latches or WaitEventSets.
*/
void
InitSharedLatch(Latch *latch)
{
#ifdef WIN32
SECURITY_ATTRIBUTES sa;
/*
* Set up security attributes to specify that the events are inherited.
*/
ZeroMemory(&sa, sizeof(sa));
sa.nLength = sizeof(sa);
sa.bInheritHandle = TRUE;
latch->event = CreateEvent(&sa, TRUE, FALSE, NULL);
if (latch->event == NULL)
elog(ERROR, "CreateEvent failed: error code %lu", GetLastError());
#endif
latch->is_set = false;
latch->maybe_sleeping = false;
latch->owner_pid = 0;
latch->is_shared = true;
}
/*
* Associate a shared latch with the current process, allowing it to
* wait on the latch.
*
* Although there is a sanity check for latch-already-owned, we don't do
* any sort of locking here, meaning that we could fail to detect the error
* if two processes try to own the same latch at about the same time. If
* there is any risk of that, caller must provide an interlock to prevent it.
*/
void
OwnLatch(Latch *latch)
{
int owner_pid;
/* Sanity checks */
Assert(latch->is_shared);
owner_pid = latch->owner_pid;
if (owner_pid != 0)
elog(PANIC, "latch already owned by PID %d", owner_pid);
latch->owner_pid = MyProcPid;
}
/*
* Disown a shared latch currently owned by the current process.
*/
void
DisownLatch(Latch *latch)
{
Assert(latch->is_shared);
Assert(latch->owner_pid == MyProcPid);
latch->owner_pid = 0;
}
/*
* Wait for a given latch to be set, or for postmaster death, or until timeout
* is exceeded. 'wakeEvents' is a bitmask that specifies which of those events
* to wait for. If the latch is already set (and WL_LATCH_SET is given), the
* function returns immediately.
*
* The "timeout" is given in milliseconds. It must be >= 0 if WL_TIMEOUT flag
* is given. Although it is declared as "long", we don't actually support
* timeouts longer than INT_MAX milliseconds. Note that some extra overhead
* is incurred when WL_TIMEOUT is given, so avoid using a timeout if possible.
*
* The latch must be owned by the current process, ie. it must be a
* process-local latch initialized with InitLatch, or a shared latch
* associated with the current process by calling OwnLatch.
*
* Returns bit mask indicating which condition(s) caused the wake-up. Note
* that if multiple wake-up conditions are true, there is no guarantee that
* we return all of them in one call, but we will return at least one.
*/
int
WaitLatch(Latch *latch, int wakeEvents, long timeout,
uint32 wait_event_info)
{
WaitEvent event;
/* Postmaster-managed callers must handle postmaster death somehow. */
Assert(!IsUnderPostmaster ||
(wakeEvents & WL_EXIT_ON_PM_DEATH) ||
(wakeEvents & WL_POSTMASTER_DEATH));
/*
* Some callers may have a latch other than MyLatch, or no latch at all,
* or want to handle postmaster death differently. It's cheap to assign
* those, so just do it every time.
*/
if (!(wakeEvents & WL_LATCH_SET))
latch = NULL;
ModifyWaitEvent(LatchWaitSet, LatchWaitSetLatchPos, WL_LATCH_SET, latch);
ModifyWaitEvent(LatchWaitSet, LatchWaitSetPostmasterDeathPos,
(wakeEvents & (WL_EXIT_ON_PM_DEATH | WL_POSTMASTER_DEATH)),
NULL);
if (WaitEventSetWait(LatchWaitSet,
(wakeEvents & WL_TIMEOUT) ? timeout : -1,
&event, 1,
wait_event_info) == 0)
return WL_TIMEOUT;
else
return event.events;
}
/*
* Like WaitLatch, but with an extra socket argument for WL_SOCKET_*
* conditions.
*
* When waiting on a socket, EOF and error conditions always cause the socket
* to be reported as readable/writable/connected, so that the caller can deal
* with the condition.
*
* wakeEvents must include either WL_EXIT_ON_PM_DEATH for automatic exit
* if the postmaster dies or WL_POSTMASTER_DEATH for a flag set in the
* return value if the postmaster dies. The latter is useful for rare cases
* where some behavior other than immediate exit is needed.
*
* NB: These days this is just a wrapper around the WaitEventSet API. When
* using a latch very frequently, consider creating a longer living
* WaitEventSet instead; that's more efficient.
*/
int
WaitLatchOrSocket(Latch *latch, int wakeEvents, pgsocket sock,
long timeout, uint32 wait_event_info)
{
int ret = 0;
int rc;
WaitEvent event;
WaitEventSet *set = CreateWaitEventSet(CurrentResourceOwner, 3);
if (wakeEvents & WL_TIMEOUT)
Assert(timeout >= 0);
else
timeout = -1;
if (wakeEvents & WL_LATCH_SET)
AddWaitEventToSet(set, WL_LATCH_SET, PGINVALID_SOCKET,
latch, NULL);
/* Postmaster-managed callers must handle postmaster death somehow. */
Assert(!IsUnderPostmaster ||
(wakeEvents & WL_EXIT_ON_PM_DEATH) ||
(wakeEvents & WL_POSTMASTER_DEATH));
if ((wakeEvents & WL_POSTMASTER_DEATH) && IsUnderPostmaster)
AddWaitEventToSet(set, WL_POSTMASTER_DEATH, PGINVALID_SOCKET,
NULL, NULL);
if ((wakeEvents & WL_EXIT_ON_PM_DEATH) && IsUnderPostmaster)
AddWaitEventToSet(set, WL_EXIT_ON_PM_DEATH, PGINVALID_SOCKET,
NULL, NULL);
if (wakeEvents & WL_SOCKET_MASK)
{
int ev;
ev = wakeEvents & WL_SOCKET_MASK;
AddWaitEventToSet(set, ev, sock, NULL, NULL);
}
rc = WaitEventSetWait(set, timeout, &event, 1, wait_event_info);
if (rc == 0)
ret |= WL_TIMEOUT;
else
{
ret |= event.events & (WL_LATCH_SET |
WL_POSTMASTER_DEATH |
WL_SOCKET_MASK);
}
FreeWaitEventSet(set);
return ret;
}
/*
* Sets a latch and wakes up anyone waiting on it.
*
* This is cheap if the latch is already set, otherwise not so much.
*
* NB: when calling this in a signal handler, be sure to save and restore
* errno around it. (That's standard practice in most signal handlers, of
* course, but we used to omit it in handlers that only set a flag.)
*
* NB: this function is called from critical sections and signal handlers so
* throwing an error is not a good idea.
*/
void
SetLatch(Latch *latch)
{
#ifndef WIN32
pid_t owner_pid;
#else
HANDLE handle;
#endif
/*
* The memory barrier has to be placed here to ensure that any flag
* variables possibly changed by this process have been flushed to main
* memory, before we check/set is_set.
*/
pg_memory_barrier();
/* Quick exit if already set */
if (latch->is_set)
return;
latch->is_set = true;
pg_memory_barrier();
if (!latch->maybe_sleeping)
return;
#ifndef WIN32
/*
* See if anyone's waiting for the latch. It can be the current process if
* we're in a signal handler. We use the self-pipe or SIGURG to ourselves
* to wake up WaitEventSetWaitBlock() without races in that case. If it's
* another process, send a signal.
*
* Fetch owner_pid only once, in case the latch is concurrently getting
* owned or disowned. XXX: This assumes that pid_t is atomic, which isn't
* guaranteed to be true! In practice, the effective range of pid_t fits
* in a 32 bit integer, and so should be atomic. In the worst case, we
* might end up signaling the wrong process. Even then, you're very
* unlucky if a process with that bogus pid exists and belongs to
* Postgres; and PG database processes should handle excess SIGUSR1
* interrupts without a problem anyhow.
*
* Another sort of race condition that's possible here is for a new
* process to own the latch immediately after we look, so we don't signal
* it. This is okay so long as all callers of ResetLatch/WaitLatch follow
* the standard coding convention of waiting at the bottom of their loops,
* not the top, so that they'll correctly process latch-setting events
* that happen before they enter the loop.
*/
owner_pid = latch->owner_pid;
if (owner_pid == 0)
return;
else if (owner_pid == MyProcPid)
WakeupMyProc();
else
WakeupOtherProc(owner_pid);
#else
/*
* See if anyone's waiting for the latch. It can be the current process if
* we're in a signal handler.
*
* Use a local variable here just in case somebody changes the event field
* concurrently (which really should not happen).
*/
handle = latch->event;
if (handle)
{
SetEvent(handle);
/*
* Note that we silently ignore any errors. We might be in a signal
* handler or other critical path where it's not safe to call elog().
*/
}
#endif
}
/*
* Clear the latch. Calling WaitLatch after this will sleep, unless
* the latch is set again before the WaitLatch call.
*/
void
ResetLatch(Latch *latch)
{
/* Only the owner should reset the latch */
Assert(latch->owner_pid == MyProcPid);
Assert(latch->maybe_sleeping == false);
latch->is_set = false;
/*
* Ensure that the write to is_set gets flushed to main memory before we
* examine any flag variables. Otherwise a concurrent SetLatch might
* falsely conclude that it needn't signal us, even though we have missed
* seeing some flag updates that SetLatch was supposed to inform us of.
*/
pg_memory_barrier();
}