1
0
mirror of https://github.com/postgres/postgres.git synced 2025-11-07 19:06:32 +03:00
Files
postgres/src/test/regress/expected/partition_aggregate.out
Richard Guo c1777f2d6d Fix assertion failure in generate_orderedappend_paths()
In generate_orderedappend_paths(), there is an assumption that a child
relation's row estimate is always greater than zero.  There is an
Assert verifying this assumption, and the estimate is also used to
convert an absolute tuple count into a fraction.

However, this assumption is not always valid -- for example, upper
relations can have their row estimates unset, resulting in a value of
zero.  This can cause an assertion failure in debug builds or lead to
the tuple fraction being computed as infinity in production builds.

To fix, use the row estimate from the cheapest_total path to compute
the tuple fraction.  The row estimate in this path should already have
been forced to a valid value.

In passing, update the comment for generate_orderedappend_paths() to
note that the function also considers the cheapest-fractional case
when not all tuples need to be retrieved.  That is, it collects all
the cheapest fractional paths and builds an ordered append path for
each interesting ordering.

Backpatch to v18, where this issue was introduced.

Bug: #19102
Reported-by: Kuntal Ghosh <kuntalghosh.2007@gmail.com>
Author: Richard Guo <guofenglinux@gmail.com>
Reviewed-by: Kuntal Ghosh <kuntalghosh.2007@gmail.com>
Reviewed-by: Andrei Lepikhov <lepihov@gmail.com>
Discussion: https://postgr.es/m/19102-93480667e1200169@postgresql.org
Backpatch-through: 18
2025-11-05 18:09:21 +09:00

1557 lines
64 KiB
Plaintext

--
-- PARTITION_AGGREGATE
-- Test partitionwise aggregation on partitioned tables
--
-- Note: to ensure plan stability, it's a good idea to make the partitions of
-- any one partitioned table in this test all have different numbers of rows.
--
-- Enable partitionwise aggregate, which by default is disabled.
SET enable_partitionwise_aggregate TO true;
-- Enable partitionwise join, which by default is disabled.
SET enable_partitionwise_join TO true;
-- Disable parallel plans.
SET max_parallel_workers_per_gather TO 0;
-- Disable incremental sort, which can influence selected plans due to fuzz factor.
SET enable_incremental_sort TO off;
-- Disable eager aggregation, which can interfere with the generation of partitionwise aggregation.
SET enable_eager_aggregate TO off;
--
-- Tests for list partitioned tables.
--
CREATE TABLE pagg_tab (a int, b int, c text, d int) PARTITION BY LIST(c);
CREATE TABLE pagg_tab_p1 PARTITION OF pagg_tab FOR VALUES IN ('0000', '0001', '0002', '0003', '0004');
CREATE TABLE pagg_tab_p2 PARTITION OF pagg_tab FOR VALUES IN ('0005', '0006', '0007', '0008');
CREATE TABLE pagg_tab_p3 PARTITION OF pagg_tab FOR VALUES IN ('0009', '0010', '0011');
INSERT INTO pagg_tab SELECT i % 20, i % 30, to_char(i % 12, 'FM0000'), i % 30 FROM generate_series(0, 2999) i;
ANALYZE pagg_tab;
-- When GROUP BY clause matches; full aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT c, sum(a), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY c HAVING avg(d) < 15 ORDER BY 1, 2, 3;
QUERY PLAN
--------------------------------------------------------------
Sort
Sort Key: pagg_tab.c, (sum(pagg_tab.a)), (avg(pagg_tab.b))
-> Append
-> HashAggregate
Group Key: pagg_tab.c
Filter: (avg(pagg_tab.d) < '15'::numeric)
-> Seq Scan on pagg_tab_p1 pagg_tab
-> HashAggregate
Group Key: pagg_tab_1.c
Filter: (avg(pagg_tab_1.d) < '15'::numeric)
-> Seq Scan on pagg_tab_p2 pagg_tab_1
-> HashAggregate
Group Key: pagg_tab_2.c
Filter: (avg(pagg_tab_2.d) < '15'::numeric)
-> Seq Scan on pagg_tab_p3 pagg_tab_2
(15 rows)
SELECT c, sum(a), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY c HAVING avg(d) < 15 ORDER BY 1, 2, 3;
c | sum | avg | count | min | max
------+------+---------------------+-------+-----+-----
0000 | 2000 | 12.0000000000000000 | 250 | 0 | 24
0001 | 2250 | 13.0000000000000000 | 250 | 1 | 25
0002 | 2500 | 14.0000000000000000 | 250 | 2 | 26
0006 | 2500 | 12.0000000000000000 | 250 | 2 | 24
0007 | 2750 | 13.0000000000000000 | 250 | 3 | 25
0008 | 2000 | 14.0000000000000000 | 250 | 0 | 26
(6 rows)
-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT a, sum(b), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY a HAVING avg(d) < 15 ORDER BY 1, 2, 3;
QUERY PLAN
--------------------------------------------------------------
Sort
Sort Key: pagg_tab.a, (sum(pagg_tab.b)), (avg(pagg_tab.b))
-> Finalize HashAggregate
Group Key: pagg_tab.a
Filter: (avg(pagg_tab.d) < '15'::numeric)
-> Append
-> Partial HashAggregate
Group Key: pagg_tab.a
-> Seq Scan on pagg_tab_p1 pagg_tab
-> Partial HashAggregate
Group Key: pagg_tab_1.a
-> Seq Scan on pagg_tab_p2 pagg_tab_1
-> Partial HashAggregate
Group Key: pagg_tab_2.a
-> Seq Scan on pagg_tab_p3 pagg_tab_2
(15 rows)
SELECT a, sum(b), avg(b), count(*), min(a), max(b) FROM pagg_tab GROUP BY a HAVING avg(d) < 15 ORDER BY 1, 2, 3;
a | sum | avg | count | min | max
----+------+---------------------+-------+-----+-----
0 | 1500 | 10.0000000000000000 | 150 | 0 | 20
1 | 1650 | 11.0000000000000000 | 150 | 1 | 21
2 | 1800 | 12.0000000000000000 | 150 | 2 | 22
3 | 1950 | 13.0000000000000000 | 150 | 3 | 23
4 | 2100 | 14.0000000000000000 | 150 | 4 | 24
10 | 1500 | 10.0000000000000000 | 150 | 10 | 20
11 | 1650 | 11.0000000000000000 | 150 | 11 | 21
12 | 1800 | 12.0000000000000000 | 150 | 12 | 22
13 | 1950 | 13.0000000000000000 | 150 | 13 | 23
14 | 2100 | 14.0000000000000000 | 150 | 14 | 24
(10 rows)
-- Check with multiple columns in GROUP BY
EXPLAIN (COSTS OFF)
SELECT a, c, count(*) FROM pagg_tab GROUP BY a, c;
QUERY PLAN
------------------------------------------------
Append
-> HashAggregate
Group Key: pagg_tab.a, pagg_tab.c
-> Seq Scan on pagg_tab_p1 pagg_tab
-> HashAggregate
Group Key: pagg_tab_1.a, pagg_tab_1.c
-> Seq Scan on pagg_tab_p2 pagg_tab_1
-> HashAggregate
Group Key: pagg_tab_2.a, pagg_tab_2.c
-> Seq Scan on pagg_tab_p3 pagg_tab_2
(10 rows)
-- Check with multiple columns in GROUP BY, order in GROUP BY is reversed
EXPLAIN (COSTS OFF)
SELECT a, c, count(*) FROM pagg_tab GROUP BY c, a;
QUERY PLAN
------------------------------------------------
Append
-> HashAggregate
Group Key: pagg_tab.c, pagg_tab.a
-> Seq Scan on pagg_tab_p1 pagg_tab
-> HashAggregate
Group Key: pagg_tab_1.c, pagg_tab_1.a
-> Seq Scan on pagg_tab_p2 pagg_tab_1
-> HashAggregate
Group Key: pagg_tab_2.c, pagg_tab_2.a
-> Seq Scan on pagg_tab_p3 pagg_tab_2
(10 rows)
-- Check with multiple columns in GROUP BY, order in target-list is reversed
EXPLAIN (COSTS OFF)
SELECT c, a, count(*) FROM pagg_tab GROUP BY a, c;
QUERY PLAN
------------------------------------------------
Append
-> HashAggregate
Group Key: pagg_tab.a, pagg_tab.c
-> Seq Scan on pagg_tab_p1 pagg_tab
-> HashAggregate
Group Key: pagg_tab_1.a, pagg_tab_1.c
-> Seq Scan on pagg_tab_p2 pagg_tab_1
-> HashAggregate
Group Key: pagg_tab_2.a, pagg_tab_2.c
-> Seq Scan on pagg_tab_p3 pagg_tab_2
(10 rows)
-- Test when input relation for grouping is dummy
EXPLAIN (COSTS OFF)
SELECT c, sum(a) FROM pagg_tab WHERE 1 = 2 GROUP BY c;
QUERY PLAN
------------------------------------
HashAggregate
Group Key: c
-> Result
Replaces: Scan on pagg_tab
One-Time Filter: false
(5 rows)
SELECT c, sum(a) FROM pagg_tab WHERE 1 = 2 GROUP BY c;
c | sum
---+-----
(0 rows)
EXPLAIN (COSTS OFF)
SELECT c, sum(a) FROM pagg_tab WHERE c = 'x' GROUP BY c;
QUERY PLAN
------------------------------------
GroupAggregate
-> Result
Replaces: Scan on pagg_tab
One-Time Filter: false
(4 rows)
SELECT c, sum(a) FROM pagg_tab WHERE c = 'x' GROUP BY c;
c | sum
---+-----
(0 rows)
-- Test GroupAggregate paths by disabling hash aggregates.
SET enable_hashagg TO false;
-- When GROUP BY clause matches full aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT c, sum(a), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
QUERY PLAN
--------------------------------------------------------------
Sort
Sort Key: pagg_tab.c, (sum(pagg_tab.a)), (avg(pagg_tab.b))
-> Append
-> GroupAggregate
Group Key: pagg_tab.c
Filter: (avg(pagg_tab.d) < '15'::numeric)
-> Sort
Sort Key: pagg_tab.c
-> Seq Scan on pagg_tab_p1 pagg_tab
-> GroupAggregate
Group Key: pagg_tab_1.c
Filter: (avg(pagg_tab_1.d) < '15'::numeric)
-> Sort
Sort Key: pagg_tab_1.c
-> Seq Scan on pagg_tab_p2 pagg_tab_1
-> GroupAggregate
Group Key: pagg_tab_2.c
Filter: (avg(pagg_tab_2.d) < '15'::numeric)
-> Sort
Sort Key: pagg_tab_2.c
-> Seq Scan on pagg_tab_p3 pagg_tab_2
(21 rows)
SELECT c, sum(a), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
c | sum | avg | count
------+------+---------------------+-------
0000 | 2000 | 12.0000000000000000 | 250
0001 | 2250 | 13.0000000000000000 | 250
0002 | 2500 | 14.0000000000000000 | 250
0006 | 2500 | 12.0000000000000000 | 250
0007 | 2750 | 13.0000000000000000 | 250
0008 | 2000 | 14.0000000000000000 | 250
(6 rows)
-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT a, sum(b), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
QUERY PLAN
------------------------------------------------------------------
Sort
Sort Key: pagg_tab.a, (sum(pagg_tab.b)), (avg(pagg_tab.b))
-> Finalize GroupAggregate
Group Key: pagg_tab.a
Filter: (avg(pagg_tab.d) < '15'::numeric)
-> Merge Append
Sort Key: pagg_tab.a
-> Partial GroupAggregate
Group Key: pagg_tab.a
-> Sort
Sort Key: pagg_tab.a
-> Seq Scan on pagg_tab_p1 pagg_tab
-> Partial GroupAggregate
Group Key: pagg_tab_1.a
-> Sort
Sort Key: pagg_tab_1.a
-> Seq Scan on pagg_tab_p2 pagg_tab_1
-> Partial GroupAggregate
Group Key: pagg_tab_2.a
-> Sort
Sort Key: pagg_tab_2.a
-> Seq Scan on pagg_tab_p3 pagg_tab_2
(22 rows)
SELECT a, sum(b), avg(b), count(*) FROM pagg_tab GROUP BY 1 HAVING avg(d) < 15 ORDER BY 1, 2, 3;
a | sum | avg | count
----+------+---------------------+-------
0 | 1500 | 10.0000000000000000 | 150
1 | 1650 | 11.0000000000000000 | 150
2 | 1800 | 12.0000000000000000 | 150
3 | 1950 | 13.0000000000000000 | 150
4 | 2100 | 14.0000000000000000 | 150
10 | 1500 | 10.0000000000000000 | 150
11 | 1650 | 11.0000000000000000 | 150
12 | 1800 | 12.0000000000000000 | 150
13 | 1950 | 13.0000000000000000 | 150
14 | 2100 | 14.0000000000000000 | 150
(10 rows)
-- Test partitionwise grouping without any aggregates
EXPLAIN (COSTS OFF)
SELECT c FROM pagg_tab GROUP BY c ORDER BY 1;
QUERY PLAN
------------------------------------------------------
Merge Append
Sort Key: pagg_tab.c
-> Group
Group Key: pagg_tab.c
-> Sort
Sort Key: pagg_tab.c
-> Seq Scan on pagg_tab_p1 pagg_tab
-> Group
Group Key: pagg_tab_1.c
-> Sort
Sort Key: pagg_tab_1.c
-> Seq Scan on pagg_tab_p2 pagg_tab_1
-> Group
Group Key: pagg_tab_2.c
-> Sort
Sort Key: pagg_tab_2.c
-> Seq Scan on pagg_tab_p3 pagg_tab_2
(17 rows)
SELECT c FROM pagg_tab GROUP BY c ORDER BY 1;
c
------
0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
(12 rows)
EXPLAIN (COSTS OFF)
SELECT a FROM pagg_tab WHERE a < 3 GROUP BY a ORDER BY 1;
QUERY PLAN
------------------------------------------------------------
Group
Group Key: pagg_tab.a
-> Merge Append
Sort Key: pagg_tab.a
-> Group
Group Key: pagg_tab.a
-> Sort
Sort Key: pagg_tab.a
-> Seq Scan on pagg_tab_p1 pagg_tab
Filter: (a < 3)
-> Group
Group Key: pagg_tab_1.a
-> Sort
Sort Key: pagg_tab_1.a
-> Seq Scan on pagg_tab_p2 pagg_tab_1
Filter: (a < 3)
-> Group
Group Key: pagg_tab_2.a
-> Sort
Sort Key: pagg_tab_2.a
-> Seq Scan on pagg_tab_p3 pagg_tab_2
Filter: (a < 3)
(22 rows)
SELECT a FROM pagg_tab WHERE a < 3 GROUP BY a ORDER BY 1;
a
---
0
1
2
(3 rows)
-- Test partitionwise aggregation with ordered append path built from fractional paths
EXPLAIN (COSTS OFF)
SELECT count(*) FROM pagg_tab GROUP BY c ORDER BY c LIMIT 1;
QUERY PLAN
------------------------------------------------------------
Limit
-> Merge Append
Sort Key: pagg_tab.c
-> GroupAggregate
Group Key: pagg_tab.c
-> Sort
Sort Key: pagg_tab.c
-> Seq Scan on pagg_tab_p1 pagg_tab
-> GroupAggregate
Group Key: pagg_tab_1.c
-> Sort
Sort Key: pagg_tab_1.c
-> Seq Scan on pagg_tab_p2 pagg_tab_1
-> GroupAggregate
Group Key: pagg_tab_2.c
-> Sort
Sort Key: pagg_tab_2.c
-> Seq Scan on pagg_tab_p3 pagg_tab_2
(18 rows)
SELECT count(*) FROM pagg_tab GROUP BY c ORDER BY c LIMIT 1;
count
-------
250
(1 row)
RESET enable_hashagg;
-- ROLLUP, partitionwise aggregation does not apply
EXPLAIN (COSTS OFF)
SELECT c, sum(a) FROM pagg_tab GROUP BY rollup(c) ORDER BY 1, 2;
QUERY PLAN
------------------------------------------------------
Sort
Sort Key: pagg_tab.c, (sum(pagg_tab.a))
-> MixedAggregate
Hash Key: pagg_tab.c
Group Key: ()
-> Append
-> Seq Scan on pagg_tab_p1 pagg_tab_1
-> Seq Scan on pagg_tab_p2 pagg_tab_2
-> Seq Scan on pagg_tab_p3 pagg_tab_3
(9 rows)
-- ORDERED SET within the aggregate.
-- Full aggregation; since all the rows that belong to the same group come
-- from the same partition, having an ORDER BY within the aggregate doesn't
-- make any difference.
EXPLAIN (COSTS OFF)
SELECT c, sum(b order by a) FROM pagg_tab GROUP BY c ORDER BY 1, 2;
QUERY PLAN
---------------------------------------------------------------
Sort
Sort Key: pagg_tab.c, (sum(pagg_tab.b ORDER BY pagg_tab.a))
-> Append
-> GroupAggregate
Group Key: pagg_tab.c
-> Sort
Sort Key: pagg_tab.c, pagg_tab.a
-> Seq Scan on pagg_tab_p1 pagg_tab
-> GroupAggregate
Group Key: pagg_tab_1.c
-> Sort
Sort Key: pagg_tab_1.c, pagg_tab_1.a
-> Seq Scan on pagg_tab_p2 pagg_tab_1
-> GroupAggregate
Group Key: pagg_tab_2.c
-> Sort
Sort Key: pagg_tab_2.c, pagg_tab_2.a
-> Seq Scan on pagg_tab_p3 pagg_tab_2
(18 rows)
-- Since GROUP BY clause does not match with PARTITION KEY; we need to do
-- partial aggregation. However, ORDERED SET are not partial safe and thus
-- partitionwise aggregation plan is not generated.
EXPLAIN (COSTS OFF)
SELECT a, sum(b order by a) FROM pagg_tab GROUP BY a ORDER BY 1, 2;
QUERY PLAN
---------------------------------------------------------------
Sort
Sort Key: pagg_tab.a, (sum(pagg_tab.b ORDER BY pagg_tab.a))
-> GroupAggregate
Group Key: pagg_tab.a
-> Sort
Sort Key: pagg_tab.a
-> Append
-> Seq Scan on pagg_tab_p1 pagg_tab_1
-> Seq Scan on pagg_tab_p2 pagg_tab_2
-> Seq Scan on pagg_tab_p3 pagg_tab_3
(10 rows)
-- JOIN query
CREATE TABLE pagg_tab1(x int, y int) PARTITION BY RANGE(x);
CREATE TABLE pagg_tab1_p1 PARTITION OF pagg_tab1 FOR VALUES FROM (0) TO (10);
CREATE TABLE pagg_tab1_p2 PARTITION OF pagg_tab1 FOR VALUES FROM (10) TO (20);
CREATE TABLE pagg_tab1_p3 PARTITION OF pagg_tab1 FOR VALUES FROM (20) TO (30);
CREATE TABLE pagg_tab2(x int, y int) PARTITION BY RANGE(y);
CREATE TABLE pagg_tab2_p1 PARTITION OF pagg_tab2 FOR VALUES FROM (0) TO (10);
CREATE TABLE pagg_tab2_p2 PARTITION OF pagg_tab2 FOR VALUES FROM (10) TO (20);
CREATE TABLE pagg_tab2_p3 PARTITION OF pagg_tab2 FOR VALUES FROM (20) TO (30);
INSERT INTO pagg_tab1 SELECT i % 30, i % 20 FROM generate_series(0, 299, 2) i;
INSERT INTO pagg_tab2 SELECT i % 20, i % 30 FROM generate_series(0, 299, 3) i;
ANALYZE pagg_tab1;
ANALYZE pagg_tab2;
-- When GROUP BY clause matches; full aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT t1.x, sum(t1.y), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
QUERY PLAN
-------------------------------------------------------------
Sort
Sort Key: t1.x, (sum(t1.y)), (count(*))
-> Append
-> HashAggregate
Group Key: t1.x
-> Hash Join
Hash Cond: (t1.x = t2.y)
-> Seq Scan on pagg_tab1_p1 t1
-> Hash
-> Seq Scan on pagg_tab2_p1 t2
-> HashAggregate
Group Key: t1_1.x
-> Hash Join
Hash Cond: (t1_1.x = t2_1.y)
-> Seq Scan on pagg_tab1_p2 t1_1
-> Hash
-> Seq Scan on pagg_tab2_p2 t2_1
-> HashAggregate
Group Key: t1_2.x
-> Hash Join
Hash Cond: (t2_2.y = t1_2.x)
-> Seq Scan on pagg_tab2_p3 t2_2
-> Hash
-> Seq Scan on pagg_tab1_p3 t1_2
(24 rows)
SELECT t1.x, sum(t1.y), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
x | sum | count
----+------+-------
0 | 500 | 100
6 | 1100 | 100
12 | 700 | 100
18 | 1300 | 100
24 | 900 | 100
(5 rows)
-- Check with whole-row reference; partitionwise aggregation does not apply
EXPLAIN (COSTS OFF)
SELECT t1.x, sum(t1.y), count(t1) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
QUERY PLAN
-------------------------------------------------------------
Sort
Sort Key: t1.x, (sum(t1.y)), (count(((t1.*)::pagg_tab1)))
-> HashAggregate
Group Key: t1.x
-> Hash Join
Hash Cond: (t1.x = t2.y)
-> Append
-> Seq Scan on pagg_tab1_p1 t1_1
-> Seq Scan on pagg_tab1_p2 t1_2
-> Seq Scan on pagg_tab1_p3 t1_3
-> Hash
-> Append
-> Seq Scan on pagg_tab2_p1 t2_1
-> Seq Scan on pagg_tab2_p2 t2_2
-> Seq Scan on pagg_tab2_p3 t2_3
(15 rows)
SELECT t1.x, sum(t1.y), count(t1) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.x ORDER BY 1, 2, 3;
x | sum | count
----+------+-------
0 | 500 | 100
6 | 1100 | 100
12 | 700 | 100
18 | 1300 | 100
24 | 900 | 100
(5 rows)
-- GROUP BY having other matching key
EXPLAIN (COSTS OFF)
SELECT t2.y, sum(t1.y), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t2.y ORDER BY 1, 2, 3;
QUERY PLAN
-------------------------------------------------------------
Sort
Sort Key: t2.y, (sum(t1.y)), (count(*))
-> Append
-> HashAggregate
Group Key: t2.y
-> Hash Join
Hash Cond: (t1.x = t2.y)
-> Seq Scan on pagg_tab1_p1 t1
-> Hash
-> Seq Scan on pagg_tab2_p1 t2
-> HashAggregate
Group Key: t2_1.y
-> Hash Join
Hash Cond: (t1_1.x = t2_1.y)
-> Seq Scan on pagg_tab1_p2 t1_1
-> Hash
-> Seq Scan on pagg_tab2_p2 t2_1
-> HashAggregate
Group Key: t2_2.y
-> Hash Join
Hash Cond: (t2_2.y = t1_2.x)
-> Seq Scan on pagg_tab2_p3 t2_2
-> Hash
-> Seq Scan on pagg_tab1_p3 t1_2
(24 rows)
-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
-- Also test GroupAggregate paths by disabling hash aggregates.
SET enable_hashagg TO false;
EXPLAIN (COSTS OFF)
SELECT t1.y, sum(t1.x), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.y HAVING avg(t1.x) > 10 ORDER BY 1, 2, 3;
QUERY PLAN
-------------------------------------------------------------------------
Sort
Sort Key: t1.y, (sum(t1.x)), (count(*))
-> Finalize GroupAggregate
Group Key: t1.y
Filter: (avg(t1.x) > '10'::numeric)
-> Merge Append
Sort Key: t1.y
-> Partial GroupAggregate
Group Key: t1.y
-> Sort
Sort Key: t1.y
-> Hash Join
Hash Cond: (t1.x = t2.y)
-> Seq Scan on pagg_tab1_p1 t1
-> Hash
-> Seq Scan on pagg_tab2_p1 t2
-> Partial GroupAggregate
Group Key: t1_1.y
-> Sort
Sort Key: t1_1.y
-> Hash Join
Hash Cond: (t1_1.x = t2_1.y)
-> Seq Scan on pagg_tab1_p2 t1_1
-> Hash
-> Seq Scan on pagg_tab2_p2 t2_1
-> Partial GroupAggregate
Group Key: t1_2.y
-> Sort
Sort Key: t1_2.y
-> Hash Join
Hash Cond: (t2_2.y = t1_2.x)
-> Seq Scan on pagg_tab2_p3 t2_2
-> Hash
-> Seq Scan on pagg_tab1_p3 t1_2
(34 rows)
SELECT t1.y, sum(t1.x), count(*) FROM pagg_tab1 t1, pagg_tab2 t2 WHERE t1.x = t2.y GROUP BY t1.y HAVING avg(t1.x) > 10 ORDER BY 1, 2, 3;
y | sum | count
----+------+-------
2 | 600 | 50
4 | 1200 | 50
8 | 900 | 50
12 | 600 | 50
14 | 1200 | 50
18 | 900 | 50
(6 rows)
RESET enable_hashagg;
-- Check with LEFT/RIGHT/FULL OUTER JOINs which produces NULL values for
-- aggregation
-- LEFT JOIN, should produce partial partitionwise aggregation plan as
-- GROUP BY is on nullable column
EXPLAIN (COSTS OFF)
SELECT b.y, sum(a.y) FROM pagg_tab1 a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
QUERY PLAN
------------------------------------------------------------------
Finalize GroupAggregate
Group Key: b.y
-> Sort
Sort Key: b.y
-> Append
-> Partial HashAggregate
Group Key: b.y
-> Hash Left Join
Hash Cond: (a.x = b.y)
-> Seq Scan on pagg_tab1_p1 a
-> Hash
-> Seq Scan on pagg_tab2_p1 b
-> Partial HashAggregate
Group Key: b_1.y
-> Hash Left Join
Hash Cond: (a_1.x = b_1.y)
-> Seq Scan on pagg_tab1_p2 a_1
-> Hash
-> Seq Scan on pagg_tab2_p2 b_1
-> Partial HashAggregate
Group Key: b_2.y
-> Hash Right Join
Hash Cond: (b_2.y = a_2.x)
-> Seq Scan on pagg_tab2_p3 b_2
-> Hash
-> Seq Scan on pagg_tab1_p3 a_2
(26 rows)
SELECT b.y, sum(a.y) FROM pagg_tab1 a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
y | sum
----+------
0 | 500
6 | 1100
12 | 700
18 | 1300
24 | 900
| 900
(6 rows)
-- RIGHT JOIN, should produce full partitionwise aggregation plan as
-- GROUP BY is on non-nullable column
EXPLAIN (COSTS OFF)
SELECT b.y, sum(a.y) FROM pagg_tab1 a RIGHT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
QUERY PLAN
------------------------------------------------------------
Sort
Sort Key: b.y
-> Append
-> HashAggregate
Group Key: b.y
-> Hash Right Join
Hash Cond: (a.x = b.y)
-> Seq Scan on pagg_tab1_p1 a
-> Hash
-> Seq Scan on pagg_tab2_p1 b
-> HashAggregate
Group Key: b_1.y
-> Hash Right Join
Hash Cond: (a_1.x = b_1.y)
-> Seq Scan on pagg_tab1_p2 a_1
-> Hash
-> Seq Scan on pagg_tab2_p2 b_1
-> HashAggregate
Group Key: b_2.y
-> Hash Left Join
Hash Cond: (b_2.y = a_2.x)
-> Seq Scan on pagg_tab2_p3 b_2
-> Hash
-> Seq Scan on pagg_tab1_p3 a_2
(24 rows)
SELECT b.y, sum(a.y) FROM pagg_tab1 a RIGHT JOIN pagg_tab2 b ON a.x = b.y GROUP BY b.y ORDER BY 1 NULLS LAST;
y | sum
----+------
0 | 500
3 |
6 | 1100
9 |
12 | 700
15 |
18 | 1300
21 |
24 | 900
27 |
(10 rows)
-- FULL JOIN, should produce partial partitionwise aggregation plan as
-- GROUP BY is on nullable column
EXPLAIN (COSTS OFF)
SELECT a.x, sum(b.x) FROM pagg_tab1 a FULL OUTER JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x ORDER BY 1 NULLS LAST;
QUERY PLAN
------------------------------------------------------------------
Finalize GroupAggregate
Group Key: a.x
-> Sort
Sort Key: a.x
-> Append
-> Partial HashAggregate
Group Key: a.x
-> Hash Full Join
Hash Cond: (a.x = b.y)
-> Seq Scan on pagg_tab1_p1 a
-> Hash
-> Seq Scan on pagg_tab2_p1 b
-> Partial HashAggregate
Group Key: a_1.x
-> Hash Full Join
Hash Cond: (a_1.x = b_1.y)
-> Seq Scan on pagg_tab1_p2 a_1
-> Hash
-> Seq Scan on pagg_tab2_p2 b_1
-> Partial HashAggregate
Group Key: a_2.x
-> Hash Full Join
Hash Cond: (b_2.y = a_2.x)
-> Seq Scan on pagg_tab2_p3 b_2
-> Hash
-> Seq Scan on pagg_tab1_p3 a_2
(26 rows)
SELECT a.x, sum(b.x) FROM pagg_tab1 a FULL OUTER JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x ORDER BY 1 NULLS LAST;
x | sum
----+------
0 | 500
2 |
4 |
6 | 1100
8 |
10 |
12 | 700
14 |
16 |
18 | 1300
20 |
22 |
24 | 900
26 |
28 |
| 500
(16 rows)
-- LEFT JOIN, with dummy relation on right side, ideally
-- should produce full partitionwise aggregation plan as GROUP BY is on
-- non-nullable columns.
-- But right now we are unable to do partitionwise join in this case.
EXPLAIN (COSTS OFF)
SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a LEFT JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20 GROUP BY a.x, b.y ORDER BY 1, 2;
QUERY PLAN
--------------------------------------------------------------------
Sort
Sort Key: pagg_tab1.x, pagg_tab2.y
-> HashAggregate
Group Key: pagg_tab1.x, pagg_tab2.y
-> Hash Left Join
Hash Cond: (pagg_tab1.x = pagg_tab2.y)
Filter: ((pagg_tab1.x > 5) OR (pagg_tab2.y < 20))
-> Append
-> Seq Scan on pagg_tab1_p1 pagg_tab1_1
Filter: (x < 20)
-> Seq Scan on pagg_tab1_p2 pagg_tab1_2
Filter: (x < 20)
-> Hash
-> Append
-> Seq Scan on pagg_tab2_p2 pagg_tab2_1
Filter: (y > 10)
-> Seq Scan on pagg_tab2_p3 pagg_tab2_2
Filter: (y > 10)
(18 rows)
SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a LEFT JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20 GROUP BY a.x, b.y ORDER BY 1, 2;
x | y | count
----+----+-------
6 | | 10
8 | | 10
10 | | 10
12 | 12 | 100
14 | | 10
16 | | 10
18 | 18 | 100
(7 rows)
-- FULL JOIN, with dummy relations on both sides, ideally
-- should produce partial partitionwise aggregation plan as GROUP BY is on
-- nullable columns.
-- But right now we are unable to do partitionwise join in this case.
EXPLAIN (COSTS OFF)
SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a FULL JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20 GROUP BY a.x, b.y ORDER BY 1, 2;
QUERY PLAN
--------------------------------------------------------------------
Sort
Sort Key: pagg_tab1.x, pagg_tab2.y
-> HashAggregate
Group Key: pagg_tab1.x, pagg_tab2.y
-> Hash Full Join
Hash Cond: (pagg_tab1.x = pagg_tab2.y)
Filter: ((pagg_tab1.x > 5) OR (pagg_tab2.y < 20))
-> Append
-> Seq Scan on pagg_tab1_p1 pagg_tab1_1
Filter: (x < 20)
-> Seq Scan on pagg_tab1_p2 pagg_tab1_2
Filter: (x < 20)
-> Hash
-> Append
-> Seq Scan on pagg_tab2_p2 pagg_tab2_1
Filter: (y > 10)
-> Seq Scan on pagg_tab2_p3 pagg_tab2_2
Filter: (y > 10)
(18 rows)
SELECT a.x, b.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x < 20) a FULL JOIN (SELECT * FROM pagg_tab2 WHERE y > 10) b ON a.x = b.y WHERE a.x > 5 or b.y < 20 GROUP BY a.x, b.y ORDER BY 1, 2;
x | y | count
----+----+-------
6 | | 10
8 | | 10
10 | | 10
12 | 12 | 100
14 | | 10
16 | | 10
18 | 18 | 100
| 15 | 10
(8 rows)
-- Empty join relation because of empty outer side, no partitionwise agg plan
EXPLAIN (COSTS OFF)
SELECT a.x, a.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x = 1 AND x = 2) a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x, a.y ORDER BY 1, 2;
QUERY PLAN
----------------------------------------------
GroupAggregate
Group Key: pagg_tab1.y
-> Sort
Sort Key: pagg_tab1.y
-> Result
Replaces: Join on b, pagg_tab1
One-Time Filter: false
(7 rows)
SELECT a.x, a.y, count(*) FROM (SELECT * FROM pagg_tab1 WHERE x = 1 AND x = 2) a LEFT JOIN pagg_tab2 b ON a.x = b.y GROUP BY a.x, a.y ORDER BY 1, 2;
x | y | count
---+---+-------
(0 rows)
-- Partition by multiple columns
CREATE TABLE pagg_tab_m (a int, b int, c int) PARTITION BY RANGE(a, ((a+b)/2));
CREATE TABLE pagg_tab_m_p1 PARTITION OF pagg_tab_m FOR VALUES FROM (0, 0) TO (12, 12);
CREATE TABLE pagg_tab_m_p2 PARTITION OF pagg_tab_m FOR VALUES FROM (12, 12) TO (22, 22);
CREATE TABLE pagg_tab_m_p3 PARTITION OF pagg_tab_m FOR VALUES FROM (22, 22) TO (30, 30);
INSERT INTO pagg_tab_m SELECT i % 30, i % 40, i % 50 FROM generate_series(0, 2999) i;
ANALYZE pagg_tab_m;
-- Partial aggregation as GROUP BY clause does not match with PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a HAVING avg(c) < 22 ORDER BY 1, 2, 3;
QUERY PLAN
--------------------------------------------------------------------
Sort
Sort Key: pagg_tab_m.a, (sum(pagg_tab_m.b)), (avg(pagg_tab_m.c))
-> Finalize HashAggregate
Group Key: pagg_tab_m.a
Filter: (avg(pagg_tab_m.c) < '22'::numeric)
-> Append
-> Partial HashAggregate
Group Key: pagg_tab_m.a
-> Seq Scan on pagg_tab_m_p1 pagg_tab_m
-> Partial HashAggregate
Group Key: pagg_tab_m_1.a
-> Seq Scan on pagg_tab_m_p2 pagg_tab_m_1
-> Partial HashAggregate
Group Key: pagg_tab_m_2.a
-> Seq Scan on pagg_tab_m_p3 pagg_tab_m_2
(15 rows)
SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a HAVING avg(c) < 22 ORDER BY 1, 2, 3;
a | sum | avg | count
----+------+---------------------+-------
0 | 1500 | 20.0000000000000000 | 100
1 | 1600 | 21.0000000000000000 | 100
10 | 1500 | 20.0000000000000000 | 100
11 | 1600 | 21.0000000000000000 | 100
20 | 1500 | 20.0000000000000000 | 100
21 | 1600 | 21.0000000000000000 | 100
(6 rows)
-- Full aggregation as GROUP BY clause matches with PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a, (a+b)/2 HAVING sum(b) < 50 ORDER BY 1, 2, 3;
QUERY PLAN
----------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_m.a, (sum(pagg_tab_m.b)), (avg(pagg_tab_m.c))
-> Append
-> HashAggregate
Group Key: pagg_tab_m.a, ((pagg_tab_m.a + pagg_tab_m.b) / 2)
Filter: (sum(pagg_tab_m.b) < 50)
-> Seq Scan on pagg_tab_m_p1 pagg_tab_m
-> HashAggregate
Group Key: pagg_tab_m_1.a, ((pagg_tab_m_1.a + pagg_tab_m_1.b) / 2)
Filter: (sum(pagg_tab_m_1.b) < 50)
-> Seq Scan on pagg_tab_m_p2 pagg_tab_m_1
-> HashAggregate
Group Key: pagg_tab_m_2.a, ((pagg_tab_m_2.a + pagg_tab_m_2.b) / 2)
Filter: (sum(pagg_tab_m_2.b) < 50)
-> Seq Scan on pagg_tab_m_p3 pagg_tab_m_2
(15 rows)
SELECT a, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY a, (a+b)/2 HAVING sum(b) < 50 ORDER BY 1, 2, 3;
a | sum | avg | count
----+-----+---------------------+-------
0 | 0 | 20.0000000000000000 | 25
1 | 25 | 21.0000000000000000 | 25
10 | 0 | 20.0000000000000000 | 25
11 | 25 | 21.0000000000000000 | 25
20 | 0 | 20.0000000000000000 | 25
21 | 25 | 21.0000000000000000 | 25
(6 rows)
-- Full aggregation as PARTITION KEY is part of GROUP BY clause
EXPLAIN (COSTS OFF)
SELECT a, c, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY (a+b)/2, 2, 1 HAVING sum(b) = 50 AND avg(c) > 25 ORDER BY 1, 2, 3;
QUERY PLAN
--------------------------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_m.a, pagg_tab_m.c, (sum(pagg_tab_m.b))
-> Append
-> HashAggregate
Group Key: pagg_tab_m.a, pagg_tab_m.c, ((pagg_tab_m.a + pagg_tab_m.b) / 2)
Filter: ((sum(pagg_tab_m.b) = 50) AND (avg(pagg_tab_m.c) > '25'::numeric))
-> Seq Scan on pagg_tab_m_p1 pagg_tab_m
-> HashAggregate
Group Key: pagg_tab_m_1.a, pagg_tab_m_1.c, ((pagg_tab_m_1.a + pagg_tab_m_1.b) / 2)
Filter: ((sum(pagg_tab_m_1.b) = 50) AND (avg(pagg_tab_m_1.c) > '25'::numeric))
-> Seq Scan on pagg_tab_m_p2 pagg_tab_m_1
-> HashAggregate
Group Key: pagg_tab_m_2.a, pagg_tab_m_2.c, ((pagg_tab_m_2.a + pagg_tab_m_2.b) / 2)
Filter: ((sum(pagg_tab_m_2.b) = 50) AND (avg(pagg_tab_m_2.c) > '25'::numeric))
-> Seq Scan on pagg_tab_m_p3 pagg_tab_m_2
(15 rows)
SELECT a, c, sum(b), avg(c), count(*) FROM pagg_tab_m GROUP BY (a+b)/2, 2, 1 HAVING sum(b) = 50 AND avg(c) > 25 ORDER BY 1, 2, 3;
a | c | sum | avg | count
----+----+-----+---------------------+-------
0 | 30 | 50 | 30.0000000000000000 | 5
0 | 40 | 50 | 40.0000000000000000 | 5
10 | 30 | 50 | 30.0000000000000000 | 5
10 | 40 | 50 | 40.0000000000000000 | 5
20 | 30 | 50 | 30.0000000000000000 | 5
20 | 40 | 50 | 40.0000000000000000 | 5
(6 rows)
-- Test with multi-level partitioning scheme
CREATE TABLE pagg_tab_ml (a int, b int, c text) PARTITION BY RANGE(a);
CREATE TABLE pagg_tab_ml_p1 PARTITION OF pagg_tab_ml FOR VALUES FROM (0) TO (12);
CREATE TABLE pagg_tab_ml_p2 PARTITION OF pagg_tab_ml FOR VALUES FROM (12) TO (20) PARTITION BY LIST (c);
CREATE TABLE pagg_tab_ml_p2_s1 PARTITION OF pagg_tab_ml_p2 FOR VALUES IN ('0000', '0001', '0002');
CREATE TABLE pagg_tab_ml_p2_s2 PARTITION OF pagg_tab_ml_p2 FOR VALUES IN ('0003');
-- This level of partitioning has different column positions than the parent
CREATE TABLE pagg_tab_ml_p3(b int, c text, a int) PARTITION BY RANGE (b);
CREATE TABLE pagg_tab_ml_p3_s1(c text, a int, b int);
CREATE TABLE pagg_tab_ml_p3_s2 PARTITION OF pagg_tab_ml_p3 FOR VALUES FROM (7) TO (10);
ALTER TABLE pagg_tab_ml_p3 ATTACH PARTITION pagg_tab_ml_p3_s1 FOR VALUES FROM (0) TO (7);
ALTER TABLE pagg_tab_ml ATTACH PARTITION pagg_tab_ml_p3 FOR VALUES FROM (20) TO (30);
INSERT INTO pagg_tab_ml SELECT i % 30, i % 10, to_char(i % 4, 'FM0000') FROM generate_series(0, 29999) i;
ANALYZE pagg_tab_ml;
-- For Parallel Append
SET max_parallel_workers_per_gather TO 2;
SET parallel_setup_cost = 0;
-- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
-- for level 1 only. For subpartitions, GROUP BY clause does not match with
-- PARTITION KEY, but still we do not see a partial aggregation as array_agg()
-- is not partial agg safe.
EXPLAIN (COSTS OFF)
SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
QUERY PLAN
--------------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (array_agg(DISTINCT pagg_tab_ml.c))
-> Gather
Workers Planned: 2
-> Parallel Append
-> GroupAggregate
Group Key: pagg_tab_ml.a
Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
-> Sort
Sort Key: pagg_tab_ml.a, pagg_tab_ml.c
-> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
-> GroupAggregate
Group Key: pagg_tab_ml_5.a
Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
-> Sort
Sort Key: pagg_tab_ml_5.a, pagg_tab_ml_5.c
-> Append
-> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
-> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
-> GroupAggregate
Group Key: pagg_tab_ml_2.a
Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
-> Sort
Sort Key: pagg_tab_ml_2.a, pagg_tab_ml_2.c
-> Append
-> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
-> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
(27 rows)
SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
a | sum | array_agg | count
----+------+-------------+-------
0 | 0 | {0000,0002} | 1000
1 | 1000 | {0001,0003} | 1000
2 | 2000 | {0000,0002} | 1000
10 | 0 | {0000,0002} | 1000
11 | 1000 | {0001,0003} | 1000
12 | 2000 | {0000,0002} | 1000
20 | 0 | {0000,0002} | 1000
21 | 1000 | {0001,0003} | 1000
22 | 2000 | {0000,0002} | 1000
(9 rows)
-- Without ORDER BY clause, to test Gather at top-most path
EXPLAIN (COSTS OFF)
SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3;
QUERY PLAN
---------------------------------------------------------------------------
Gather
Workers Planned: 2
-> Parallel Append
-> GroupAggregate
Group Key: pagg_tab_ml.a
Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
-> Sort
Sort Key: pagg_tab_ml.a, pagg_tab_ml.c
-> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
-> GroupAggregate
Group Key: pagg_tab_ml_5.a
Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
-> Sort
Sort Key: pagg_tab_ml_5.a, pagg_tab_ml_5.c
-> Append
-> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
-> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
-> GroupAggregate
Group Key: pagg_tab_ml_2.a
Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
-> Sort
Sort Key: pagg_tab_ml_2.a, pagg_tab_ml_2.c
-> Append
-> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
-> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
(25 rows)
RESET parallel_setup_cost;
-- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
-- for level 1 only. For subpartitions, GROUP BY clause does not match with
-- PARTITION KEY, thus we will have a partial aggregation for them.
EXPLAIN (COSTS OFF)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
QUERY PLAN
---------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
-> Append
-> HashAggregate
Group Key: pagg_tab_ml.a
Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
-> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
-> Finalize GroupAggregate
Group Key: pagg_tab_ml_2.a
Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
-> Sort
Sort Key: pagg_tab_ml_2.a
-> Append
-> Partial HashAggregate
Group Key: pagg_tab_ml_2.a
-> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
-> Partial HashAggregate
Group Key: pagg_tab_ml_3.a
-> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
-> Finalize GroupAggregate
Group Key: pagg_tab_ml_5.a
Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
-> Sort
Sort Key: pagg_tab_ml_5.a
-> Append
-> Partial HashAggregate
Group Key: pagg_tab_ml_5.a
-> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
-> Partial HashAggregate
Group Key: pagg_tab_ml_6.a
-> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
(31 rows)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
a | sum | count
----+------+-------
0 | 0 | 1000
1 | 1000 | 1000
2 | 2000 | 1000
10 | 0 | 1000
11 | 1000 | 1000
12 | 2000 | 1000
20 | 0 | 1000
21 | 1000 | 1000
22 | 2000 | 1000
(9 rows)
-- Partial aggregation at all levels as GROUP BY clause does not match with
-- PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b ORDER BY 1, 2, 3;
QUERY PLAN
---------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_ml.b, (sum(pagg_tab_ml.a)), (count(*))
-> Finalize GroupAggregate
Group Key: pagg_tab_ml.b
-> Sort
Sort Key: pagg_tab_ml.b
-> Append
-> Partial HashAggregate
Group Key: pagg_tab_ml.b
-> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
-> Partial HashAggregate
Group Key: pagg_tab_ml_1.b
-> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
-> Partial HashAggregate
Group Key: pagg_tab_ml_2.b
-> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
-> Partial HashAggregate
Group Key: pagg_tab_ml_3.b
-> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
-> Partial HashAggregate
Group Key: pagg_tab_ml_4.b
-> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
(22 rows)
SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b HAVING avg(a) < 15 ORDER BY 1, 2, 3;
b | sum | count
---+-------+-------
0 | 30000 | 3000
1 | 33000 | 3000
2 | 36000 | 3000
3 | 39000 | 3000
4 | 42000 | 3000
(5 rows)
-- Full aggregation at all levels as GROUP BY clause matches with PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
QUERY PLAN
----------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
-> Append
-> HashAggregate
Group Key: pagg_tab_ml.a, pagg_tab_ml.b, pagg_tab_ml.c
Filter: (avg(pagg_tab_ml.b) > '7'::numeric)
-> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
-> HashAggregate
Group Key: pagg_tab_ml_1.a, pagg_tab_ml_1.b, pagg_tab_ml_1.c
Filter: (avg(pagg_tab_ml_1.b) > '7'::numeric)
-> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
-> HashAggregate
Group Key: pagg_tab_ml_2.a, pagg_tab_ml_2.b, pagg_tab_ml_2.c
Filter: (avg(pagg_tab_ml_2.b) > '7'::numeric)
-> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
-> HashAggregate
Group Key: pagg_tab_ml_3.a, pagg_tab_ml_3.b, pagg_tab_ml_3.c
Filter: (avg(pagg_tab_ml_3.b) > '7'::numeric)
-> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
-> HashAggregate
Group Key: pagg_tab_ml_4.a, pagg_tab_ml_4.b, pagg_tab_ml_4.c
Filter: (avg(pagg_tab_ml_4.b) > '7'::numeric)
-> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
(23 rows)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
a | sum | count
----+------+-------
8 | 4000 | 500
8 | 4000 | 500
9 | 4500 | 500
9 | 4500 | 500
18 | 4000 | 500
18 | 4000 | 500
19 | 4500 | 500
19 | 4500 | 500
28 | 4000 | 500
28 | 4000 | 500
29 | 4500 | 500
29 | 4500 | 500
(12 rows)
-- Parallelism within partitionwise aggregates
SET min_parallel_table_scan_size TO '8kB';
SET parallel_setup_cost TO 0;
-- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
-- for level 1 only. For subpartitions, GROUP BY clause does not match with
-- PARTITION KEY, thus we will have a partial aggregation for them.
EXPLAIN (COSTS OFF)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
QUERY PLAN
------------------------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
-> Append
-> Finalize GroupAggregate
Group Key: pagg_tab_ml.a
Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: pagg_tab_ml.a
-> Partial HashAggregate
Group Key: pagg_tab_ml.a
-> Parallel Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
-> Finalize GroupAggregate
Group Key: pagg_tab_ml_2.a
Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: pagg_tab_ml_2.a
-> Parallel Append
-> Partial HashAggregate
Group Key: pagg_tab_ml_2.a
-> Parallel Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
-> Partial HashAggregate
Group Key: pagg_tab_ml_3.a
-> Parallel Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
-> Finalize GroupAggregate
Group Key: pagg_tab_ml_5.a
Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: pagg_tab_ml_5.a
-> Parallel Append
-> Partial HashAggregate
Group Key: pagg_tab_ml_5.a
-> Parallel Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
-> Partial HashAggregate
Group Key: pagg_tab_ml_6.a
-> Parallel Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
(41 rows)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
a | sum | count
----+------+-------
0 | 0 | 1000
1 | 1000 | 1000
2 | 2000 | 1000
10 | 0 | 1000
11 | 1000 | 1000
12 | 2000 | 1000
20 | 0 | 1000
21 | 1000 | 1000
22 | 2000 | 1000
(9 rows)
-- Partial aggregation at all levels as GROUP BY clause does not match with
-- PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b ORDER BY 1, 2, 3;
QUERY PLAN
------------------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_ml.b, (sum(pagg_tab_ml.a)), (count(*))
-> Finalize GroupAggregate
Group Key: pagg_tab_ml.b
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: pagg_tab_ml.b
-> Parallel Append
-> Partial HashAggregate
Group Key: pagg_tab_ml.b
-> Parallel Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
-> Partial HashAggregate
Group Key: pagg_tab_ml_3.b
-> Parallel Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
-> Partial HashAggregate
Group Key: pagg_tab_ml_1.b
-> Parallel Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
-> Partial HashAggregate
Group Key: pagg_tab_ml_4.b
-> Parallel Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
-> Partial HashAggregate
Group Key: pagg_tab_ml_2.b
-> Parallel Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
(24 rows)
SELECT b, sum(a), count(*) FROM pagg_tab_ml GROUP BY b HAVING avg(a) < 15 ORDER BY 1, 2, 3;
b | sum | count
---+-------+-------
0 | 30000 | 3000
1 | 33000 | 3000
2 | 36000 | 3000
3 | 39000 | 3000
4 | 42000 | 3000
(5 rows)
-- Full aggregation at all levels as GROUP BY clause matches with PARTITION KEY
EXPLAIN (COSTS OFF)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
QUERY PLAN
----------------------------------------------------------------------------------
Gather Merge
Workers Planned: 2
-> Sort
Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (count(*))
-> Parallel Append
-> HashAggregate
Group Key: pagg_tab_ml.a, pagg_tab_ml.b, pagg_tab_ml.c
Filter: (avg(pagg_tab_ml.b) > '7'::numeric)
-> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
-> HashAggregate
Group Key: pagg_tab_ml_3.a, pagg_tab_ml_3.b, pagg_tab_ml_3.c
Filter: (avg(pagg_tab_ml_3.b) > '7'::numeric)
-> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_3
-> HashAggregate
Group Key: pagg_tab_ml_1.a, pagg_tab_ml_1.b, pagg_tab_ml_1.c
Filter: (avg(pagg_tab_ml_1.b) > '7'::numeric)
-> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_1
-> HashAggregate
Group Key: pagg_tab_ml_4.a, pagg_tab_ml_4.b, pagg_tab_ml_4.c
Filter: (avg(pagg_tab_ml_4.b) > '7'::numeric)
-> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_4
-> HashAggregate
Group Key: pagg_tab_ml_2.a, pagg_tab_ml_2.b, pagg_tab_ml_2.c
Filter: (avg(pagg_tab_ml_2.b) > '7'::numeric)
-> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_2
(25 rows)
SELECT a, sum(b), count(*) FROM pagg_tab_ml GROUP BY a, b, c HAVING avg(b) > 7 ORDER BY 1, 2, 3;
a | sum | count
----+------+-------
8 | 4000 | 500
8 | 4000 | 500
9 | 4500 | 500
9 | 4500 | 500
18 | 4000 | 500
18 | 4000 | 500
19 | 4500 | 500
19 | 4500 | 500
28 | 4000 | 500
28 | 4000 | 500
29 | 4500 | 500
29 | 4500 | 500
(12 rows)
-- Parallelism within partitionwise aggregates (single level)
-- Add few parallel setup cost, so that we will see a plan which gathers
-- partially created paths even for full aggregation and sticks a single Gather
-- followed by finalization step.
-- Without this, the cost of doing partial aggregation + Gather + finalization
-- for each partition and then Append over it turns out to be same and this
-- wins as we add it first. This parallel_setup_cost plays a vital role in
-- costing such plans.
SET parallel_setup_cost TO 10;
CREATE TABLE pagg_tab_para(x int, y int) PARTITION BY RANGE(x);
CREATE TABLE pagg_tab_para_p1 PARTITION OF pagg_tab_para FOR VALUES FROM (0) TO (12);
CREATE TABLE pagg_tab_para_p2 PARTITION OF pagg_tab_para FOR VALUES FROM (12) TO (22);
CREATE TABLE pagg_tab_para_p3 PARTITION OF pagg_tab_para FOR VALUES FROM (22) TO (30);
INSERT INTO pagg_tab_para SELECT i % 30, i % 20 FROM generate_series(0, 29999) i;
ANALYZE pagg_tab_para;
-- When GROUP BY clause matches; full aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
QUERY PLAN
-------------------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
-> Finalize GroupAggregate
Group Key: pagg_tab_para.x
Filter: (avg(pagg_tab_para.y) < '7'::numeric)
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: pagg_tab_para.x
-> Parallel Append
-> Partial HashAggregate
Group Key: pagg_tab_para.x
-> Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
-> Partial HashAggregate
Group Key: pagg_tab_para_1.x
-> Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
-> Partial HashAggregate
Group Key: pagg_tab_para_2.x
-> Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
(19 rows)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
x | sum | avg | count
----+------+--------------------+-------
0 | 5000 | 5.0000000000000000 | 1000
1 | 6000 | 6.0000000000000000 | 1000
10 | 5000 | 5.0000000000000000 | 1000
11 | 6000 | 6.0000000000000000 | 1000
20 | 5000 | 5.0000000000000000 | 1000
21 | 6000 | 6.0000000000000000 | 1000
(6 rows)
-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
QUERY PLAN
-------------------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_para.y, (sum(pagg_tab_para.x)), (avg(pagg_tab_para.x))
-> Finalize GroupAggregate
Group Key: pagg_tab_para.y
Filter: (avg(pagg_tab_para.x) < '12'::numeric)
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: pagg_tab_para.y
-> Parallel Append
-> Partial HashAggregate
Group Key: pagg_tab_para.y
-> Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
-> Partial HashAggregate
Group Key: pagg_tab_para_1.y
-> Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
-> Partial HashAggregate
Group Key: pagg_tab_para_2.y
-> Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
(19 rows)
SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
y | sum | avg | count
----+-------+---------------------+-------
0 | 15000 | 10.0000000000000000 | 1500
1 | 16500 | 11.0000000000000000 | 1500
10 | 15000 | 10.0000000000000000 | 1500
11 | 16500 | 11.0000000000000000 | 1500
(4 rows)
-- Test when parent can produce parallel paths but not any (or some) of its children
-- (Use one more aggregate to tilt the cost estimates for the plan we want)
ALTER TABLE pagg_tab_para_p1 SET (parallel_workers = 0);
ALTER TABLE pagg_tab_para_p3 SET (parallel_workers = 0);
ANALYZE pagg_tab_para;
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
QUERY PLAN
-------------------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
-> Finalize GroupAggregate
Group Key: pagg_tab_para.x
Filter: (avg(pagg_tab_para.y) < '7'::numeric)
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: pagg_tab_para.x
-> Partial HashAggregate
Group Key: pagg_tab_para.x
-> Parallel Append
-> Seq Scan on pagg_tab_para_p1 pagg_tab_para_1
-> Seq Scan on pagg_tab_para_p3 pagg_tab_para_3
-> Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_2
(15 rows)
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
x | sum | avg | sum | count
----+------+--------------------+-------+-------
0 | 5000 | 5.0000000000000000 | 5000 | 1000
1 | 6000 | 6.0000000000000000 | 7000 | 1000
10 | 5000 | 5.0000000000000000 | 15000 | 1000
11 | 6000 | 6.0000000000000000 | 17000 | 1000
20 | 5000 | 5.0000000000000000 | 25000 | 1000
21 | 6000 | 6.0000000000000000 | 27000 | 1000
(6 rows)
ALTER TABLE pagg_tab_para_p2 SET (parallel_workers = 0);
ANALYZE pagg_tab_para;
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
QUERY PLAN
----------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
-> Finalize GroupAggregate
Group Key: pagg_tab_para.x
Filter: (avg(pagg_tab_para.y) < '7'::numeric)
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: pagg_tab_para.x
-> Partial HashAggregate
Group Key: pagg_tab_para.x
-> Parallel Append
-> Seq Scan on pagg_tab_para_p1 pagg_tab_para_1
-> Seq Scan on pagg_tab_para_p2 pagg_tab_para_2
-> Seq Scan on pagg_tab_para_p3 pagg_tab_para_3
(15 rows)
SELECT x, sum(y), avg(y), sum(x+y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
x | sum | avg | sum | count
----+------+--------------------+-------+-------
0 | 5000 | 5.0000000000000000 | 5000 | 1000
1 | 6000 | 6.0000000000000000 | 7000 | 1000
10 | 5000 | 5.0000000000000000 | 15000 | 1000
11 | 6000 | 6.0000000000000000 | 17000 | 1000
20 | 5000 | 5.0000000000000000 | 25000 | 1000
21 | 6000 | 6.0000000000000000 | 27000 | 1000
(6 rows)
-- Reset parallelism parameters to get partitionwise aggregation plan.
RESET min_parallel_table_scan_size;
RESET parallel_setup_cost;
EXPLAIN (COSTS OFF)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
QUERY PLAN
-----------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_para.x, (sum(pagg_tab_para.y)), (avg(pagg_tab_para.y))
-> Append
-> HashAggregate
Group Key: pagg_tab_para.x
Filter: (avg(pagg_tab_para.y) < '7'::numeric)
-> Seq Scan on pagg_tab_para_p1 pagg_tab_para
-> HashAggregate
Group Key: pagg_tab_para_1.x
Filter: (avg(pagg_tab_para_1.y) < '7'::numeric)
-> Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
-> HashAggregate
Group Key: pagg_tab_para_2.x
Filter: (avg(pagg_tab_para_2.y) < '7'::numeric)
-> Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
(15 rows)
SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) < 7 ORDER BY 1, 2, 3;
x | sum | avg | count
----+------+--------------------+-------
0 | 5000 | 5.0000000000000000 | 1000
1 | 6000 | 6.0000000000000000 | 1000
10 | 5000 | 5.0000000000000000 | 1000
11 | 6000 | 6.0000000000000000 | 1000
20 | 5000 | 5.0000000000000000 | 1000
21 | 6000 | 6.0000000000000000 | 1000
(6 rows)