1
0
mirror of https://github.com/postgres/postgres.git synced 2025-04-27 22:56:53 +03:00
postgres/src/common/binaryheap.c
Nathan Bossart c103d07381 Add function for removing arbitrary nodes in binaryheap.
This commit introduces binaryheap_remove_node(), which can be used
to remove any node from a binary heap.  The implementation is
straightforward.  The target node is replaced with the last node in
the heap, and then we sift as needed to preserve the heap property.
This new function is intended for use in a follow-up commit that
will improve the performance of pg_restore.

Reviewed-by: Tom Lane
Discussion: https://postgr.es/m/3612876.1689443232%40sss.pgh.pa.us
2023-09-18 14:06:08 -07:00

366 lines
8.3 KiB
C

/*-------------------------------------------------------------------------
*
* binaryheap.c
* A simple binary heap implementation
*
* Portions Copyright (c) 2012-2023, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/common/binaryheap.c
*
*-------------------------------------------------------------------------
*/
#ifdef FRONTEND
#include "postgres_fe.h"
#else
#include "postgres.h"
#endif
#include <math.h>
#ifdef FRONTEND
#include "common/logging.h"
#endif
#include "lib/binaryheap.h"
static void sift_down(binaryheap *heap, int node_off);
static void sift_up(binaryheap *heap, int node_off);
/*
* binaryheap_allocate
*
* Returns a pointer to a newly-allocated heap that has the capacity to
* store the given number of nodes, with the heap property defined by
* the given comparator function, which will be invoked with the additional
* argument specified by 'arg'.
*/
binaryheap *
binaryheap_allocate(int capacity, binaryheap_comparator compare, void *arg)
{
int sz;
binaryheap *heap;
sz = offsetof(binaryheap, bh_nodes) + sizeof(bh_node_type) * capacity;
heap = (binaryheap *) palloc(sz);
heap->bh_space = capacity;
heap->bh_compare = compare;
heap->bh_arg = arg;
heap->bh_size = 0;
heap->bh_has_heap_property = true;
return heap;
}
/*
* binaryheap_reset
*
* Resets the heap to an empty state, losing its data content but not the
* parameters passed at allocation.
*/
void
binaryheap_reset(binaryheap *heap)
{
heap->bh_size = 0;
heap->bh_has_heap_property = true;
}
/*
* binaryheap_free
*
* Releases memory used by the given binaryheap.
*/
void
binaryheap_free(binaryheap *heap)
{
pfree(heap);
}
/*
* These utility functions return the offset of the left child, right
* child, and parent of the node at the given index, respectively.
*
* The heap is represented as an array of nodes, with the root node
* stored at index 0. The left child of node i is at index 2*i+1, and
* the right child at 2*i+2. The parent of node i is at index (i-1)/2.
*/
static inline int
left_offset(int i)
{
return 2 * i + 1;
}
static inline int
right_offset(int i)
{
return 2 * i + 2;
}
static inline int
parent_offset(int i)
{
return (i - 1) / 2;
}
/*
* binaryheap_add_unordered
*
* Adds the given datum to the end of the heap's list of nodes in O(1) without
* preserving the heap property. This is a convenience to add elements quickly
* to a new heap. To obtain a valid heap, one must call binaryheap_build()
* afterwards.
*/
void
binaryheap_add_unordered(binaryheap *heap, bh_node_type d)
{
if (heap->bh_size >= heap->bh_space)
{
#ifdef FRONTEND
pg_fatal("out of binary heap slots");
#else
elog(ERROR, "out of binary heap slots");
#endif
}
heap->bh_has_heap_property = false;
heap->bh_nodes[heap->bh_size] = d;
heap->bh_size++;
}
/*
* binaryheap_build
*
* Assembles a valid heap in O(n) from the nodes added by
* binaryheap_add_unordered(). Not needed otherwise.
*/
void
binaryheap_build(binaryheap *heap)
{
int i;
for (i = parent_offset(heap->bh_size - 1); i >= 0; i--)
sift_down(heap, i);
heap->bh_has_heap_property = true;
}
/*
* binaryheap_add
*
* Adds the given datum to the heap in O(log n) time, while preserving
* the heap property.
*/
void
binaryheap_add(binaryheap *heap, bh_node_type d)
{
if (heap->bh_size >= heap->bh_space)
{
#ifdef FRONTEND
pg_fatal("out of binary heap slots");
#else
elog(ERROR, "out of binary heap slots");
#endif
}
heap->bh_nodes[heap->bh_size] = d;
heap->bh_size++;
sift_up(heap, heap->bh_size - 1);
}
/*
* binaryheap_first
*
* Returns a pointer to the first (root, topmost) node in the heap
* without modifying the heap. The caller must ensure that this
* routine is not used on an empty heap. Always O(1).
*/
bh_node_type
binaryheap_first(binaryheap *heap)
{
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
return heap->bh_nodes[0];
}
/*
* binaryheap_remove_first
*
* Removes the first (root, topmost) node in the heap and returns a
* pointer to it after rebalancing the heap. The caller must ensure
* that this routine is not used on an empty heap. O(log n) worst
* case.
*/
bh_node_type
binaryheap_remove_first(binaryheap *heap)
{
bh_node_type result;
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
/* extract the root node, which will be the result */
result = heap->bh_nodes[0];
/* easy if heap contains one element */
if (heap->bh_size == 1)
{
heap->bh_size--;
return result;
}
/*
* Remove the last node, placing it in the vacated root entry, and sift
* the new root node down to its correct position.
*/
heap->bh_nodes[0] = heap->bh_nodes[--heap->bh_size];
sift_down(heap, 0);
return result;
}
/*
* binaryheap_remove_node
*
* Removes the nth (zero based) node from the heap. The caller must ensure
* that there are at least (n + 1) nodes in the heap. O(log n) worst case.
*/
void
binaryheap_remove_node(binaryheap *heap, int n)
{
int cmp;
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
Assert(n >= 0 && n < heap->bh_size);
/* compare last node to the one that is being removed */
cmp = heap->bh_compare(heap->bh_nodes[--heap->bh_size],
heap->bh_nodes[n],
heap->bh_arg);
/* remove the last node, placing it in the vacated entry */
heap->bh_nodes[n] = heap->bh_nodes[heap->bh_size];
/* sift as needed to preserve the heap property */
if (cmp > 0)
sift_up(heap, n);
else if (cmp < 0)
sift_down(heap, n);
}
/*
* binaryheap_replace_first
*
* Replace the topmost element of a non-empty heap, preserving the heap
* property. O(1) in the best case, or O(log n) if it must fall back to
* sifting the new node down.
*/
void
binaryheap_replace_first(binaryheap *heap, bh_node_type d)
{
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
heap->bh_nodes[0] = d;
if (heap->bh_size > 1)
sift_down(heap, 0);
}
/*
* Sift a node up to the highest position it can hold according to the
* comparator.
*/
static void
sift_up(binaryheap *heap, int node_off)
{
bh_node_type node_val = heap->bh_nodes[node_off];
/*
* Within the loop, the node_off'th array entry is a "hole" that
* notionally holds node_val, but we don't actually store node_val there
* till the end, saving some unnecessary data copying steps.
*/
while (node_off != 0)
{
int cmp;
int parent_off;
bh_node_type parent_val;
/*
* If this node is smaller than its parent, the heap condition is
* satisfied, and we're done.
*/
parent_off = parent_offset(node_off);
parent_val = heap->bh_nodes[parent_off];
cmp = heap->bh_compare(node_val,
parent_val,
heap->bh_arg);
if (cmp <= 0)
break;
/*
* Otherwise, swap the parent value with the hole, and go on to check
* the node's new parent.
*/
heap->bh_nodes[node_off] = parent_val;
node_off = parent_off;
}
/* Re-fill the hole */
heap->bh_nodes[node_off] = node_val;
}
/*
* Sift a node down from its current position to satisfy the heap
* property.
*/
static void
sift_down(binaryheap *heap, int node_off)
{
bh_node_type node_val = heap->bh_nodes[node_off];
/*
* Within the loop, the node_off'th array entry is a "hole" that
* notionally holds node_val, but we don't actually store node_val there
* till the end, saving some unnecessary data copying steps.
*/
while (true)
{
int left_off = left_offset(node_off);
int right_off = right_offset(node_off);
int swap_off = 0;
/* Is the left child larger than the parent? */
if (left_off < heap->bh_size &&
heap->bh_compare(node_val,
heap->bh_nodes[left_off],
heap->bh_arg) < 0)
swap_off = left_off;
/* Is the right child larger than the parent? */
if (right_off < heap->bh_size &&
heap->bh_compare(node_val,
heap->bh_nodes[right_off],
heap->bh_arg) < 0)
{
/* swap with the larger child */
if (!swap_off ||
heap->bh_compare(heap->bh_nodes[left_off],
heap->bh_nodes[right_off],
heap->bh_arg) < 0)
swap_off = right_off;
}
/*
* If we didn't find anything to swap, the heap condition is
* satisfied, and we're done.
*/
if (!swap_off)
break;
/*
* Otherwise, swap the hole with the child that violates the heap
* property; then go on to check its children.
*/
heap->bh_nodes[node_off] = heap->bh_nodes[swap_off];
node_off = swap_off;
}
/* Re-fill the hole */
heap->bh_nodes[node_off] = node_val;
}