mirror of
https://github.com/postgres/postgres.git
synced 2025-05-31 03:21:24 +03:00
This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
src/backend/nodes/README Node Structures =============== Andrew Yu (11/94) Introduction ------------ The current node structures are plain old C structures. "Inheritance" is achieved by convention. No additional functions will be generated. Functions that manipulate node structures reside in this directory. FILES IN THIS DIRECTORY (src/backend/nodes/) General-purpose node manipulation functions: copyfuncs.c - copy a node tree equalfuncs.c - compare two node trees outfuncs.c - convert a node tree to text representation readfuncs.c - convert text representation back to a node tree makefuncs.c - creator functions for some common node types nodeFuncs.c - some other general-purpose manipulation functions Specialized manipulation functions: bitmapset.c - Bitmapset support list.c - generic list support params.c - Param support tidbitmap.c - TIDBitmap support value.c - support for Value nodes FILES IN src/include/nodes/ Node definitions: nodes.h - define node tags (NodeTag) primnodes.h - primitive nodes parsenodes.h - parse tree nodes plannodes.h - plan tree nodes relation.h - planner internal nodes execnodes.h - executor nodes memnodes.h - memory nodes pg_list.h - generic list Steps to Add a Node ------------------- Suppose you want to define a node Foo: 1. Add a tag (T_Foo) to the enum NodeTag in nodes.h. (If you insert the tag in a way that moves the numbers associated with existing tags, you'll need to recompile the whole tree after doing this. It doesn't force initdb though, because the numbers never go to disk.) 2. Add the structure definition to the appropriate include/nodes/???.h file. If you intend to inherit from, say a Plan node, put Plan as the first field of your struct definition. 3. If you intend to use copyObject, equal, nodeToString or stringToNode, add an appropriate function to copyfuncs.c, equalfuncs.c, outfuncs.c and readfuncs.c accordingly. (Except for frequently used nodes, don't bother writing a creator function in makefuncs.c) The header comments in those files give general rules for whether you need to add support. 4. Add cases to the functions in nodeFuncs.c as needed. There are many other places you'll probably also need to teach about your new node type. Best bet is to grep for references to one or two similar existing node types to find all the places to touch. Historical Note --------------- Prior to the current simple C structure definitions, the Node structures used a pseudo-inheritance system which automatically generated creator and accessor functions. Since every node inherited from LispValue, the whole thing was a mess. Here's a little anecdote: LispValue definition -- class used to support lisp structures in C. This is here because we did not want to totally rewrite planner and executor code which depended on lisp structures when we ported postgres V1 from lisp to C. -cim 4/23/90