mirror of
https://github.com/postgres/postgres.git
synced 2025-04-25 21:42:33 +03:00
module and teach PREPARE and protocol-level prepared statements to use it. In service of this, rearrange utility-statement processing so that parse analysis does not assume table schemas can't change before execution for utility statements (necessary because we don't attempt to re-acquire locks for utility statements when reusing a stored plan). This requires some refactoring of the ProcessUtility API, but it ends up cleaner anyway, for instance we can get rid of the QueryContext global. Still to do: fix up SPI and related code to use the plan cache; I'm tempted to try to make SQL functions use it too. Also, there are at least some aspects of system state that we want to ensure remain the same during a replan as in the original processing; search_path certainly ought to behave that way for instance, and perhaps there are others.
3618 lines
103 KiB
C
3618 lines
103 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* analyze.c
|
|
* transform the raw parse tree into a query tree
|
|
*
|
|
* For optimizable statements, we are careful to obtain a suitable lock on
|
|
* each referenced table, and other modules of the backend preserve or
|
|
* re-obtain these locks before depending on the results. It is therefore
|
|
* okay to do significant semantic analysis of these statements. For
|
|
* utility commands, no locks are obtained here (and if they were, we could
|
|
* not be sure we'd still have them at execution). Hence the general rule
|
|
* for utility commands is to just dump them into a Query node untransformed.
|
|
* parse_analyze does do some purely syntactic transformations on CREATE TABLE
|
|
* and ALTER TABLE, but that's about it. In cases where this module contains
|
|
* mechanisms that are useful for utility statements, we provide separate
|
|
* subroutines that should be called at the beginning of utility execution;
|
|
* an example is analyzeIndexStmt.
|
|
*
|
|
*
|
|
* Portions Copyright (c) 1996-2007, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* $PostgreSQL: pgsql/src/backend/parser/analyze.c,v 1.362 2007/03/13 00:33:41 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/heapam.h"
|
|
#include "catalog/heap.h"
|
|
#include "catalog/index.h"
|
|
#include "catalog/namespace.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "commands/defrem.h"
|
|
#include "commands/prepare.h"
|
|
#include "commands/tablecmds.h"
|
|
#include "miscadmin.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/var.h"
|
|
#include "parser/analyze.h"
|
|
#include "parser/gramparse.h"
|
|
#include "parser/parse_agg.h"
|
|
#include "parser/parse_clause.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_relation.h"
|
|
#include "parser/parse_target.h"
|
|
#include "parser/parse_type.h"
|
|
#include "parser/parsetree.h"
|
|
#include "rewrite/rewriteManip.h"
|
|
#include "utils/acl.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
|
|
|
|
/* State shared by transformCreateSchemaStmt and its subroutines */
|
|
typedef struct
|
|
{
|
|
const char *stmtType; /* "CREATE SCHEMA" or "ALTER SCHEMA" */
|
|
char *schemaname; /* name of schema */
|
|
char *authid; /* owner of schema */
|
|
List *sequences; /* CREATE SEQUENCE items */
|
|
List *tables; /* CREATE TABLE items */
|
|
List *views; /* CREATE VIEW items */
|
|
List *indexes; /* CREATE INDEX items */
|
|
List *triggers; /* CREATE TRIGGER items */
|
|
List *grants; /* GRANT items */
|
|
List *fwconstraints; /* Forward referencing FOREIGN KEY constraints */
|
|
List *alters; /* Generated ALTER items (from the above) */
|
|
List *ixconstraints; /* index-creating constraints */
|
|
List *blist; /* "before list" of things to do before
|
|
* creating the schema */
|
|
List *alist; /* "after list" of things to do after creating
|
|
* the schema */
|
|
} CreateSchemaStmtContext;
|
|
|
|
/* State shared by transformCreateStmt and its subroutines */
|
|
typedef struct
|
|
{
|
|
const char *stmtType; /* "CREATE TABLE" or "ALTER TABLE" */
|
|
RangeVar *relation; /* relation to create */
|
|
List *inhRelations; /* relations to inherit from */
|
|
bool hasoids; /* does relation have an OID column? */
|
|
bool isalter; /* true if altering existing table */
|
|
List *columns; /* ColumnDef items */
|
|
List *ckconstraints; /* CHECK constraints */
|
|
List *fkconstraints; /* FOREIGN KEY constraints */
|
|
List *ixconstraints; /* index-creating constraints */
|
|
List *blist; /* "before list" of things to do before
|
|
* creating the table */
|
|
List *alist; /* "after list" of things to do after creating
|
|
* the table */
|
|
IndexStmt *pkey; /* PRIMARY KEY index, if any */
|
|
} CreateStmtContext;
|
|
|
|
typedef struct
|
|
{
|
|
Oid *paramTypes;
|
|
int numParams;
|
|
} check_parameter_resolution_context;
|
|
|
|
|
|
static List *do_parse_analyze(Node *parseTree, ParseState *pstate);
|
|
static Query *transformStmt(ParseState *pstate, Node *stmt,
|
|
List **extras_before, List **extras_after);
|
|
static Query *transformDeleteStmt(ParseState *pstate, DeleteStmt *stmt);
|
|
static Query *transformInsertStmt(ParseState *pstate, InsertStmt *stmt,
|
|
List **extras_before, List **extras_after);
|
|
static List *transformInsertRow(ParseState *pstate, List *exprlist,
|
|
List *stmtcols, List *icolumns, List *attrnos);
|
|
static List *transformReturningList(ParseState *pstate, List *returningList);
|
|
static Query *transformSelectStmt(ParseState *pstate, SelectStmt *stmt);
|
|
static Query *transformValuesClause(ParseState *pstate, SelectStmt *stmt);
|
|
static Query *transformSetOperationStmt(ParseState *pstate, SelectStmt *stmt);
|
|
static Node *transformSetOperationTree(ParseState *pstate, SelectStmt *stmt);
|
|
static Query *transformUpdateStmt(ParseState *pstate, UpdateStmt *stmt);
|
|
static Query *transformCreateStmt(ParseState *pstate, CreateStmt *stmt,
|
|
List **extras_before, List **extras_after);
|
|
static Query *transformAlterTableStmt(ParseState *pstate, AlterTableStmt *stmt,
|
|
List **extras_before, List **extras_after);
|
|
static void transformColumnDefinition(ParseState *pstate,
|
|
CreateStmtContext *cxt,
|
|
ColumnDef *column);
|
|
static void transformTableConstraint(ParseState *pstate,
|
|
CreateStmtContext *cxt,
|
|
Constraint *constraint);
|
|
static void transformInhRelation(ParseState *pstate, CreateStmtContext *cxt,
|
|
InhRelation *inhrelation);
|
|
static void transformIndexConstraints(ParseState *pstate,
|
|
CreateStmtContext *cxt);
|
|
static void transformFKConstraints(ParseState *pstate,
|
|
CreateStmtContext *cxt,
|
|
bool skipValidation,
|
|
bool isAddConstraint);
|
|
static void applyColumnNames(List *dst, List *src);
|
|
static void getSetColTypes(ParseState *pstate, Node *node,
|
|
List **colTypes, List **colTypmods);
|
|
static void transformLockingClause(Query *qry, LockingClause *lc);
|
|
static void transformConstraintAttrs(List *constraintList);
|
|
static void transformColumnType(ParseState *pstate, ColumnDef *column);
|
|
static void release_pstate_resources(ParseState *pstate);
|
|
static FromExpr *makeFromExpr(List *fromlist, Node *quals);
|
|
static bool check_parameter_resolution_walker(Node *node,
|
|
check_parameter_resolution_context *context);
|
|
|
|
|
|
/*
|
|
* parse_analyze
|
|
* Analyze a raw parse tree and transform it to Query form.
|
|
*
|
|
* If available, pass the source text from which the raw parse tree was
|
|
* generated; it's OK to pass NULL if this is not available.
|
|
*
|
|
* Optionally, information about $n parameter types can be supplied.
|
|
* References to $n indexes not defined by paramTypes[] are disallowed.
|
|
*
|
|
* The result is a List of Query nodes (we need a list since some commands
|
|
* produce multiple Queries). Optimizable statements require considerable
|
|
* transformation, while most utility-type statements are simply hung off
|
|
* a dummy CMD_UTILITY Query node.
|
|
*/
|
|
List *
|
|
parse_analyze(Node *parseTree, const char *sourceText,
|
|
Oid *paramTypes, int numParams)
|
|
{
|
|
ParseState *pstate = make_parsestate(NULL);
|
|
List *result;
|
|
|
|
pstate->p_sourcetext = sourceText;
|
|
pstate->p_paramtypes = paramTypes;
|
|
pstate->p_numparams = numParams;
|
|
pstate->p_variableparams = false;
|
|
|
|
result = do_parse_analyze(parseTree, pstate);
|
|
|
|
pfree(pstate);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* parse_analyze_varparams
|
|
*
|
|
* This variant is used when it's okay to deduce information about $n
|
|
* symbol datatypes from context. The passed-in paramTypes[] array can
|
|
* be modified or enlarged (via repalloc).
|
|
*/
|
|
List *
|
|
parse_analyze_varparams(Node *parseTree, const char *sourceText,
|
|
Oid **paramTypes, int *numParams)
|
|
{
|
|
ParseState *pstate = make_parsestate(NULL);
|
|
List *result;
|
|
|
|
pstate->p_sourcetext = sourceText;
|
|
pstate->p_paramtypes = *paramTypes;
|
|
pstate->p_numparams = *numParams;
|
|
pstate->p_variableparams = true;
|
|
|
|
result = do_parse_analyze(parseTree, pstate);
|
|
|
|
*paramTypes = pstate->p_paramtypes;
|
|
*numParams = pstate->p_numparams;
|
|
|
|
pfree(pstate);
|
|
|
|
/* make sure all is well with parameter types */
|
|
if (*numParams > 0)
|
|
{
|
|
check_parameter_resolution_context context;
|
|
|
|
context.paramTypes = *paramTypes;
|
|
context.numParams = *numParams;
|
|
check_parameter_resolution_walker((Node *) result, &context);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* parse_sub_analyze
|
|
* Entry point for recursively analyzing a sub-statement.
|
|
*/
|
|
List *
|
|
parse_sub_analyze(Node *parseTree, ParseState *parentParseState)
|
|
{
|
|
ParseState *pstate = make_parsestate(parentParseState);
|
|
List *result;
|
|
|
|
result = do_parse_analyze(parseTree, pstate);
|
|
|
|
pfree(pstate);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* do_parse_analyze
|
|
* Workhorse code shared by the above variants of parse_analyze.
|
|
*/
|
|
static List *
|
|
do_parse_analyze(Node *parseTree, ParseState *pstate)
|
|
{
|
|
List *result = NIL;
|
|
|
|
/* Lists to return extra commands from transformation */
|
|
List *extras_before = NIL;
|
|
List *extras_after = NIL;
|
|
Query *query;
|
|
ListCell *l;
|
|
|
|
query = transformStmt(pstate, parseTree, &extras_before, &extras_after);
|
|
|
|
/* don't need to access result relation any more */
|
|
release_pstate_resources(pstate);
|
|
|
|
foreach(l, extras_before)
|
|
result = list_concat(result, parse_sub_analyze(lfirst(l), pstate));
|
|
|
|
result = lappend(result, query);
|
|
|
|
foreach(l, extras_after)
|
|
result = list_concat(result, parse_sub_analyze(lfirst(l), pstate));
|
|
|
|
/*
|
|
* Make sure that only the original query is marked original. We have to
|
|
* do this explicitly since recursive calls of do_parse_analyze will have
|
|
* marked some of the added-on queries as "original". Also mark only the
|
|
* original query as allowed to set the command-result tag.
|
|
*/
|
|
foreach(l, result)
|
|
{
|
|
Query *q = lfirst(l);
|
|
|
|
if (q == query)
|
|
{
|
|
q->querySource = QSRC_ORIGINAL;
|
|
q->canSetTag = true;
|
|
}
|
|
else
|
|
{
|
|
q->querySource = QSRC_PARSER;
|
|
q->canSetTag = false;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
release_pstate_resources(ParseState *pstate)
|
|
{
|
|
if (pstate->p_target_relation != NULL)
|
|
heap_close(pstate->p_target_relation, NoLock);
|
|
pstate->p_target_relation = NULL;
|
|
pstate->p_target_rangetblentry = NULL;
|
|
}
|
|
|
|
/*
|
|
* transformStmt -
|
|
* transform a Parse tree into a Query tree.
|
|
*/
|
|
static Query *
|
|
transformStmt(ParseState *pstate, Node *parseTree,
|
|
List **extras_before, List **extras_after)
|
|
{
|
|
Query *result = NULL;
|
|
|
|
switch (nodeTag(parseTree))
|
|
{
|
|
/*
|
|
* Non-optimizable statements
|
|
*/
|
|
case T_CreateStmt:
|
|
result = transformCreateStmt(pstate, (CreateStmt *) parseTree,
|
|
extras_before, extras_after);
|
|
break;
|
|
|
|
case T_AlterTableStmt:
|
|
result = transformAlterTableStmt(pstate,
|
|
(AlterTableStmt *) parseTree,
|
|
extras_before, extras_after);
|
|
break;
|
|
|
|
/*
|
|
* Optimizable statements
|
|
*/
|
|
case T_InsertStmt:
|
|
result = transformInsertStmt(pstate, (InsertStmt *) parseTree,
|
|
extras_before, extras_after);
|
|
break;
|
|
|
|
case T_DeleteStmt:
|
|
result = transformDeleteStmt(pstate, (DeleteStmt *) parseTree);
|
|
break;
|
|
|
|
case T_UpdateStmt:
|
|
result = transformUpdateStmt(pstate, (UpdateStmt *) parseTree);
|
|
break;
|
|
|
|
case T_SelectStmt:
|
|
{
|
|
SelectStmt *n = (SelectStmt *) parseTree;
|
|
|
|
if (n->valuesLists)
|
|
result = transformValuesClause(pstate, n);
|
|
else if (n->op == SETOP_NONE)
|
|
result = transformSelectStmt(pstate, n);
|
|
else
|
|
result = transformSetOperationStmt(pstate, n);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
|
|
/*
|
|
* other statements don't require any transformation; just return
|
|
* the original parsetree with a Query node plastered on top.
|
|
*/
|
|
result = makeNode(Query);
|
|
result->commandType = CMD_UTILITY;
|
|
result->utilityStmt = (Node *) parseTree;
|
|
break;
|
|
}
|
|
|
|
/* Mark as original query until we learn differently */
|
|
result->querySource = QSRC_ORIGINAL;
|
|
result->canSetTag = true;
|
|
|
|
/*
|
|
* Check that we did not produce too many resnos; at the very least we
|
|
* cannot allow more than 2^16, since that would exceed the range of a
|
|
* AttrNumber. It seems safest to use MaxTupleAttributeNumber.
|
|
*/
|
|
if (pstate->p_next_resno - 1 > MaxTupleAttributeNumber)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("target lists can have at most %d entries",
|
|
MaxTupleAttributeNumber)));
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* transformDeleteStmt -
|
|
* transforms a Delete Statement
|
|
*/
|
|
static Query *
|
|
transformDeleteStmt(ParseState *pstate, DeleteStmt *stmt)
|
|
{
|
|
Query *qry = makeNode(Query);
|
|
Node *qual;
|
|
|
|
qry->commandType = CMD_DELETE;
|
|
|
|
/* set up range table with just the result rel */
|
|
qry->resultRelation = setTargetTable(pstate, stmt->relation,
|
|
interpretInhOption(stmt->relation->inhOpt),
|
|
true,
|
|
ACL_DELETE);
|
|
|
|
qry->distinctClause = NIL;
|
|
|
|
/*
|
|
* The USING clause is non-standard SQL syntax, and is equivalent in
|
|
* functionality to the FROM list that can be specified for UPDATE. The
|
|
* USING keyword is used rather than FROM because FROM is already a
|
|
* keyword in the DELETE syntax.
|
|
*/
|
|
transformFromClause(pstate, stmt->usingClause);
|
|
|
|
qual = transformWhereClause(pstate, stmt->whereClause, "WHERE");
|
|
|
|
qry->returningList = transformReturningList(pstate, stmt->returningList);
|
|
|
|
/* done building the range table and jointree */
|
|
qry->rtable = pstate->p_rtable;
|
|
qry->jointree = makeFromExpr(pstate->p_joinlist, qual);
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
qry->hasAggs = pstate->p_hasAggs;
|
|
if (pstate->p_hasAggs)
|
|
parseCheckAggregates(pstate, qry);
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* transformInsertStmt -
|
|
* transform an Insert Statement
|
|
*/
|
|
static Query *
|
|
transformInsertStmt(ParseState *pstate, InsertStmt *stmt,
|
|
List **extras_before, List **extras_after)
|
|
{
|
|
Query *qry = makeNode(Query);
|
|
SelectStmt *selectStmt = (SelectStmt *) stmt->selectStmt;
|
|
List *exprList = NIL;
|
|
bool isGeneralSelect;
|
|
List *sub_rtable;
|
|
List *sub_relnamespace;
|
|
List *sub_varnamespace;
|
|
List *icolumns;
|
|
List *attrnos;
|
|
RangeTblEntry *rte;
|
|
RangeTblRef *rtr;
|
|
ListCell *icols;
|
|
ListCell *attnos;
|
|
ListCell *lc;
|
|
|
|
qry->commandType = CMD_INSERT;
|
|
pstate->p_is_insert = true;
|
|
|
|
/*
|
|
* We have three cases to deal with: DEFAULT VALUES (selectStmt == NULL),
|
|
* VALUES list, or general SELECT input. We special-case VALUES, both for
|
|
* efficiency and so we can handle DEFAULT specifications.
|
|
*/
|
|
isGeneralSelect = (selectStmt && selectStmt->valuesLists == NIL);
|
|
|
|
/*
|
|
* If a non-nil rangetable/namespace was passed in, and we are doing
|
|
* INSERT/SELECT, arrange to pass the rangetable/namespace down to the
|
|
* SELECT. This can only happen if we are inside a CREATE RULE, and in
|
|
* that case we want the rule's OLD and NEW rtable entries to appear as
|
|
* part of the SELECT's rtable, not as outer references for it. (Kluge!)
|
|
* The SELECT's joinlist is not affected however. We must do this before
|
|
* adding the target table to the INSERT's rtable.
|
|
*/
|
|
if (isGeneralSelect)
|
|
{
|
|
sub_rtable = pstate->p_rtable;
|
|
pstate->p_rtable = NIL;
|
|
sub_relnamespace = pstate->p_relnamespace;
|
|
pstate->p_relnamespace = NIL;
|
|
sub_varnamespace = pstate->p_varnamespace;
|
|
pstate->p_varnamespace = NIL;
|
|
}
|
|
else
|
|
{
|
|
sub_rtable = NIL; /* not used, but keep compiler quiet */
|
|
sub_relnamespace = NIL;
|
|
sub_varnamespace = NIL;
|
|
}
|
|
|
|
/*
|
|
* Must get write lock on INSERT target table before scanning SELECT, else
|
|
* we will grab the wrong kind of initial lock if the target table is also
|
|
* mentioned in the SELECT part. Note that the target table is not added
|
|
* to the joinlist or namespace.
|
|
*/
|
|
qry->resultRelation = setTargetTable(pstate, stmt->relation,
|
|
false, false, ACL_INSERT);
|
|
|
|
/* Validate stmt->cols list, or build default list if no list given */
|
|
icolumns = checkInsertTargets(pstate, stmt->cols, &attrnos);
|
|
Assert(list_length(icolumns) == list_length(attrnos));
|
|
|
|
/*
|
|
* Determine which variant of INSERT we have.
|
|
*/
|
|
if (selectStmt == NULL)
|
|
{
|
|
/*
|
|
* We have INSERT ... DEFAULT VALUES. We can handle this case by
|
|
* emitting an empty targetlist --- all columns will be defaulted when
|
|
* the planner expands the targetlist.
|
|
*/
|
|
exprList = NIL;
|
|
}
|
|
else if (isGeneralSelect)
|
|
{
|
|
/*
|
|
* We make the sub-pstate a child of the outer pstate so that it can
|
|
* see any Param definitions supplied from above. Since the outer
|
|
* pstate's rtable and namespace are presently empty, there are no
|
|
* side-effects of exposing names the sub-SELECT shouldn't be able to
|
|
* see.
|
|
*/
|
|
ParseState *sub_pstate = make_parsestate(pstate);
|
|
Query *selectQuery;
|
|
|
|
/*
|
|
* Process the source SELECT.
|
|
*
|
|
* It is important that this be handled just like a standalone SELECT;
|
|
* otherwise the behavior of SELECT within INSERT might be different
|
|
* from a stand-alone SELECT. (Indeed, Postgres up through 6.5 had
|
|
* bugs of just that nature...)
|
|
*/
|
|
sub_pstate->p_rtable = sub_rtable;
|
|
sub_pstate->p_relnamespace = sub_relnamespace;
|
|
sub_pstate->p_varnamespace = sub_varnamespace;
|
|
|
|
/*
|
|
* Note: we are not expecting that extras_before and extras_after are
|
|
* going to be used by the transformation of the SELECT statement.
|
|
*/
|
|
selectQuery = transformStmt(sub_pstate, stmt->selectStmt,
|
|
extras_before, extras_after);
|
|
|
|
release_pstate_resources(sub_pstate);
|
|
pfree(sub_pstate);
|
|
|
|
Assert(IsA(selectQuery, Query));
|
|
Assert(selectQuery->commandType == CMD_SELECT);
|
|
if (selectQuery->into)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("INSERT ... SELECT cannot specify INTO")));
|
|
|
|
/*
|
|
* Make the source be a subquery in the INSERT's rangetable, and add
|
|
* it to the INSERT's joinlist.
|
|
*/
|
|
rte = addRangeTableEntryForSubquery(pstate,
|
|
selectQuery,
|
|
makeAlias("*SELECT*", NIL),
|
|
false);
|
|
rtr = makeNode(RangeTblRef);
|
|
/* assume new rte is at end */
|
|
rtr->rtindex = list_length(pstate->p_rtable);
|
|
Assert(rte == rt_fetch(rtr->rtindex, pstate->p_rtable));
|
|
pstate->p_joinlist = lappend(pstate->p_joinlist, rtr);
|
|
|
|
/*----------
|
|
* Generate an expression list for the INSERT that selects all the
|
|
* non-resjunk columns from the subquery. (INSERT's tlist must be
|
|
* separate from the subquery's tlist because we may add columns,
|
|
* insert datatype coercions, etc.)
|
|
*
|
|
* HACK: unknown-type constants and params in the SELECT's targetlist
|
|
* are copied up as-is rather than being referenced as subquery
|
|
* outputs. This is to ensure that when we try to coerce them to
|
|
* the target column's datatype, the right things happen (see
|
|
* special cases in coerce_type). Otherwise, this fails:
|
|
* INSERT INTO foo SELECT 'bar', ... FROM baz
|
|
*----------
|
|
*/
|
|
exprList = NIL;
|
|
foreach(lc, selectQuery->targetList)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(lc);
|
|
Expr *expr;
|
|
|
|
if (tle->resjunk)
|
|
continue;
|
|
if (tle->expr &&
|
|
(IsA(tle->expr, Const) ||IsA(tle->expr, Param)) &&
|
|
exprType((Node *) tle->expr) == UNKNOWNOID)
|
|
expr = tle->expr;
|
|
else
|
|
expr = (Expr *) makeVar(rtr->rtindex,
|
|
tle->resno,
|
|
exprType((Node *) tle->expr),
|
|
exprTypmod((Node *) tle->expr),
|
|
0);
|
|
exprList = lappend(exprList, expr);
|
|
}
|
|
|
|
/* Prepare row for assignment to target table */
|
|
exprList = transformInsertRow(pstate, exprList,
|
|
stmt->cols,
|
|
icolumns, attrnos);
|
|
}
|
|
else if (list_length(selectStmt->valuesLists) > 1)
|
|
{
|
|
/*
|
|
* Process INSERT ... VALUES with multiple VALUES sublists. We
|
|
* generate a VALUES RTE holding the transformed expression lists, and
|
|
* build up a targetlist containing Vars that reference the VALUES
|
|
* RTE.
|
|
*/
|
|
List *exprsLists = NIL;
|
|
int sublist_length = -1;
|
|
|
|
foreach(lc, selectStmt->valuesLists)
|
|
{
|
|
List *sublist = (List *) lfirst(lc);
|
|
|
|
/* Do basic expression transformation (same as a ROW() expr) */
|
|
sublist = transformExpressionList(pstate, sublist);
|
|
|
|
/*
|
|
* All the sublists must be the same length, *after*
|
|
* transformation (which might expand '*' into multiple items).
|
|
* The VALUES RTE can't handle anything different.
|
|
*/
|
|
if (sublist_length < 0)
|
|
{
|
|
/* Remember post-transformation length of first sublist */
|
|
sublist_length = list_length(sublist);
|
|
}
|
|
else if (sublist_length != list_length(sublist))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("VALUES lists must all be the same length")));
|
|
}
|
|
|
|
/* Prepare row for assignment to target table */
|
|
sublist = transformInsertRow(pstate, sublist,
|
|
stmt->cols,
|
|
icolumns, attrnos);
|
|
|
|
exprsLists = lappend(exprsLists, sublist);
|
|
}
|
|
|
|
/*
|
|
* There mustn't have been any table references in the expressions,
|
|
* else strange things would happen, like Cartesian products of those
|
|
* tables with the VALUES list ...
|
|
*/
|
|
if (pstate->p_joinlist != NIL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("VALUES must not contain table references")));
|
|
|
|
/*
|
|
* Another thing we can't currently support is NEW/OLD references in
|
|
* rules --- seems we'd need something like SQL99's LATERAL construct
|
|
* to ensure that the values would be available while evaluating the
|
|
* VALUES RTE. This is a shame. FIXME
|
|
*/
|
|
if (list_length(pstate->p_rtable) != 1 &&
|
|
contain_vars_of_level((Node *) exprsLists, 0))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("VALUES must not contain OLD or NEW references"),
|
|
errhint("Use SELECT ... UNION ALL ... instead.")));
|
|
|
|
/*
|
|
* Generate the VALUES RTE
|
|
*/
|
|
rte = addRangeTableEntryForValues(pstate, exprsLists, NULL, true);
|
|
rtr = makeNode(RangeTblRef);
|
|
/* assume new rte is at end */
|
|
rtr->rtindex = list_length(pstate->p_rtable);
|
|
Assert(rte == rt_fetch(rtr->rtindex, pstate->p_rtable));
|
|
pstate->p_joinlist = lappend(pstate->p_joinlist, rtr);
|
|
|
|
/*
|
|
* Generate list of Vars referencing the RTE
|
|
*/
|
|
expandRTE(rte, rtr->rtindex, 0, false, NULL, &exprList);
|
|
}
|
|
else
|
|
{
|
|
/*----------
|
|
* Process INSERT ... VALUES with a single VALUES sublist.
|
|
* We treat this separately for efficiency and for historical
|
|
* compatibility --- specifically, allowing table references,
|
|
* such as
|
|
* INSERT INTO foo VALUES(bar.*)
|
|
*
|
|
* The sublist is just computed directly as the Query's targetlist,
|
|
* with no VALUES RTE. So it works just like SELECT without FROM.
|
|
*----------
|
|
*/
|
|
List *valuesLists = selectStmt->valuesLists;
|
|
|
|
Assert(list_length(valuesLists) == 1);
|
|
|
|
/* Do basic expression transformation (same as a ROW() expr) */
|
|
exprList = transformExpressionList(pstate,
|
|
(List *) linitial(valuesLists));
|
|
|
|
/* Prepare row for assignment to target table */
|
|
exprList = transformInsertRow(pstate, exprList,
|
|
stmt->cols,
|
|
icolumns, attrnos);
|
|
}
|
|
|
|
/*
|
|
* Generate query's target list using the computed list of expressions.
|
|
*/
|
|
qry->targetList = NIL;
|
|
icols = list_head(icolumns);
|
|
attnos = list_head(attrnos);
|
|
foreach(lc, exprList)
|
|
{
|
|
Expr *expr = (Expr *) lfirst(lc);
|
|
ResTarget *col;
|
|
TargetEntry *tle;
|
|
|
|
col = (ResTarget *) lfirst(icols);
|
|
Assert(IsA(col, ResTarget));
|
|
|
|
tle = makeTargetEntry(expr,
|
|
(AttrNumber) lfirst_int(attnos),
|
|
col->name,
|
|
false);
|
|
qry->targetList = lappend(qry->targetList, tle);
|
|
|
|
icols = lnext(icols);
|
|
attnos = lnext(attnos);
|
|
}
|
|
|
|
/*
|
|
* If we have a RETURNING clause, we need to add the target relation to
|
|
* the query namespace before processing it, so that Var references in
|
|
* RETURNING will work. Also, remove any namespace entries added in a
|
|
* sub-SELECT or VALUES list.
|
|
*/
|
|
if (stmt->returningList)
|
|
{
|
|
pstate->p_relnamespace = NIL;
|
|
pstate->p_varnamespace = NIL;
|
|
addRTEtoQuery(pstate, pstate->p_target_rangetblentry,
|
|
false, true, true);
|
|
qry->returningList = transformReturningList(pstate,
|
|
stmt->returningList);
|
|
}
|
|
|
|
/* done building the range table and jointree */
|
|
qry->rtable = pstate->p_rtable;
|
|
qry->jointree = makeFromExpr(pstate->p_joinlist, NULL);
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
/* aggregates not allowed (but subselects are okay) */
|
|
if (pstate->p_hasAggs)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("cannot use aggregate function in VALUES")));
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* Prepare an INSERT row for assignment to the target table.
|
|
*
|
|
* The row might be either a VALUES row, or variables referencing a
|
|
* sub-SELECT output.
|
|
*/
|
|
static List *
|
|
transformInsertRow(ParseState *pstate, List *exprlist,
|
|
List *stmtcols, List *icolumns, List *attrnos)
|
|
{
|
|
List *result;
|
|
ListCell *lc;
|
|
ListCell *icols;
|
|
ListCell *attnos;
|
|
|
|
/*
|
|
* Check length of expr list. It must not have more expressions than
|
|
* there are target columns. We allow fewer, but only if no explicit
|
|
* columns list was given (the remaining columns are implicitly
|
|
* defaulted). Note we must check this *after* transformation because
|
|
* that could expand '*' into multiple items.
|
|
*/
|
|
if (list_length(exprlist) > list_length(icolumns))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("INSERT has more expressions than target columns")));
|
|
if (stmtcols != NIL &&
|
|
list_length(exprlist) < list_length(icolumns))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("INSERT has more target columns than expressions")));
|
|
|
|
/*
|
|
* Prepare columns for assignment to target table.
|
|
*/
|
|
result = NIL;
|
|
icols = list_head(icolumns);
|
|
attnos = list_head(attrnos);
|
|
foreach(lc, exprlist)
|
|
{
|
|
Expr *expr = (Expr *) lfirst(lc);
|
|
ResTarget *col;
|
|
|
|
col = (ResTarget *) lfirst(icols);
|
|
Assert(IsA(col, ResTarget));
|
|
|
|
expr = transformAssignedExpr(pstate, expr,
|
|
col->name,
|
|
lfirst_int(attnos),
|
|
col->indirection,
|
|
col->location);
|
|
|
|
result = lappend(result, expr);
|
|
|
|
icols = lnext(icols);
|
|
attnos = lnext(attnos);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* transformCreateStmt -
|
|
* transforms the "create table" statement
|
|
* SQL92 allows constraints to be scattered all over, so thumb through
|
|
* the columns and collect all constraints into one place.
|
|
* If there are any implied indices (e.g. UNIQUE or PRIMARY KEY)
|
|
* then expand those into multiple IndexStmt blocks.
|
|
* - thomas 1997-12-02
|
|
*/
|
|
static Query *
|
|
transformCreateStmt(ParseState *pstate, CreateStmt *stmt,
|
|
List **extras_before, List **extras_after)
|
|
{
|
|
CreateStmtContext cxt;
|
|
Query *q;
|
|
ListCell *elements;
|
|
|
|
cxt.stmtType = "CREATE TABLE";
|
|
cxt.relation = stmt->relation;
|
|
cxt.inhRelations = stmt->inhRelations;
|
|
cxt.isalter = false;
|
|
cxt.columns = NIL;
|
|
cxt.ckconstraints = NIL;
|
|
cxt.fkconstraints = NIL;
|
|
cxt.ixconstraints = NIL;
|
|
cxt.blist = NIL;
|
|
cxt.alist = NIL;
|
|
cxt.pkey = NULL;
|
|
cxt.hasoids = interpretOidsOption(stmt->options);
|
|
|
|
/*
|
|
* Run through each primary element in the table creation clause. Separate
|
|
* column defs from constraints, and do preliminary analysis.
|
|
*/
|
|
foreach(elements, stmt->tableElts)
|
|
{
|
|
Node *element = lfirst(elements);
|
|
|
|
switch (nodeTag(element))
|
|
{
|
|
case T_ColumnDef:
|
|
transformColumnDefinition(pstate, &cxt,
|
|
(ColumnDef *) element);
|
|
break;
|
|
|
|
case T_Constraint:
|
|
transformTableConstraint(pstate, &cxt,
|
|
(Constraint *) element);
|
|
break;
|
|
|
|
case T_FkConstraint:
|
|
/* No pre-transformation needed */
|
|
cxt.fkconstraints = lappend(cxt.fkconstraints, element);
|
|
break;
|
|
|
|
case T_InhRelation:
|
|
transformInhRelation(pstate, &cxt,
|
|
(InhRelation *) element);
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized node type: %d",
|
|
(int) nodeTag(element));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* transformIndexConstraints wants cxt.alist to contain only index
|
|
* statements, so transfer anything we already have into extras_after
|
|
* immediately.
|
|
*/
|
|
*extras_after = list_concat(cxt.alist, *extras_after);
|
|
cxt.alist = NIL;
|
|
|
|
Assert(stmt->constraints == NIL);
|
|
|
|
/*
|
|
* Postprocess constraints that give rise to index definitions.
|
|
*/
|
|
transformIndexConstraints(pstate, &cxt);
|
|
|
|
/*
|
|
* Postprocess foreign-key constraints.
|
|
*/
|
|
transformFKConstraints(pstate, &cxt, true, false);
|
|
|
|
/*
|
|
* Output results.
|
|
*/
|
|
q = makeNode(Query);
|
|
q->commandType = CMD_UTILITY;
|
|
q->utilityStmt = (Node *) stmt;
|
|
stmt->tableElts = cxt.columns;
|
|
stmt->constraints = cxt.ckconstraints;
|
|
*extras_before = list_concat(*extras_before, cxt.blist);
|
|
*extras_after = list_concat(cxt.alist, *extras_after);
|
|
|
|
return q;
|
|
}
|
|
|
|
static void
|
|
transformColumnDefinition(ParseState *pstate, CreateStmtContext *cxt,
|
|
ColumnDef *column)
|
|
{
|
|
bool is_serial;
|
|
bool saw_nullable;
|
|
Constraint *constraint;
|
|
ListCell *clist;
|
|
|
|
cxt->columns = lappend(cxt->columns, column);
|
|
|
|
/* Check for SERIAL pseudo-types */
|
|
is_serial = false;
|
|
if (list_length(column->typename->names) == 1)
|
|
{
|
|
char *typname = strVal(linitial(column->typename->names));
|
|
|
|
if (strcmp(typname, "serial") == 0 ||
|
|
strcmp(typname, "serial4") == 0)
|
|
{
|
|
is_serial = true;
|
|
column->typename->names = NIL;
|
|
column->typename->typeid = INT4OID;
|
|
}
|
|
else if (strcmp(typname, "bigserial") == 0 ||
|
|
strcmp(typname, "serial8") == 0)
|
|
{
|
|
is_serial = true;
|
|
column->typename->names = NIL;
|
|
column->typename->typeid = INT8OID;
|
|
}
|
|
}
|
|
|
|
/* Do necessary work on the column type declaration */
|
|
transformColumnType(pstate, column);
|
|
|
|
/* Special actions for SERIAL pseudo-types */
|
|
if (is_serial)
|
|
{
|
|
Oid snamespaceid;
|
|
char *snamespace;
|
|
char *sname;
|
|
char *qstring;
|
|
A_Const *snamenode;
|
|
FuncCall *funccallnode;
|
|
CreateSeqStmt *seqstmt;
|
|
AlterSeqStmt *altseqstmt;
|
|
List *attnamelist;
|
|
|
|
/*
|
|
* Determine namespace and name to use for the sequence.
|
|
*
|
|
* Although we use ChooseRelationName, it's not guaranteed that the
|
|
* selected sequence name won't conflict; given sufficiently long
|
|
* field names, two different serial columns in the same table could
|
|
* be assigned the same sequence name, and we'd not notice since we
|
|
* aren't creating the sequence quite yet. In practice this seems
|
|
* quite unlikely to be a problem, especially since few people would
|
|
* need two serial columns in one table.
|
|
*/
|
|
snamespaceid = RangeVarGetCreationNamespace(cxt->relation);
|
|
snamespace = get_namespace_name(snamespaceid);
|
|
sname = ChooseRelationName(cxt->relation->relname,
|
|
column->colname,
|
|
"seq",
|
|
snamespaceid);
|
|
|
|
ereport(NOTICE,
|
|
(errmsg("%s will create implicit sequence \"%s\" for serial column \"%s.%s\"",
|
|
cxt->stmtType, sname,
|
|
cxt->relation->relname, column->colname)));
|
|
|
|
/*
|
|
* Build a CREATE SEQUENCE command to create the sequence object, and
|
|
* add it to the list of things to be done before this CREATE/ALTER
|
|
* TABLE.
|
|
*/
|
|
seqstmt = makeNode(CreateSeqStmt);
|
|
seqstmt->sequence = makeRangeVar(snamespace, sname);
|
|
seqstmt->options = NIL;
|
|
|
|
cxt->blist = lappend(cxt->blist, seqstmt);
|
|
|
|
/*
|
|
* Build an ALTER SEQUENCE ... OWNED BY command to mark the sequence
|
|
* as owned by this column, and add it to the list of things to be
|
|
* done after this CREATE/ALTER TABLE.
|
|
*/
|
|
altseqstmt = makeNode(AlterSeqStmt);
|
|
altseqstmt->sequence = makeRangeVar(snamespace, sname);
|
|
attnamelist = list_make3(makeString(snamespace),
|
|
makeString(cxt->relation->relname),
|
|
makeString(column->colname));
|
|
altseqstmt->options = list_make1(makeDefElem("owned_by",
|
|
(Node *) attnamelist));
|
|
|
|
cxt->alist = lappend(cxt->alist, altseqstmt);
|
|
|
|
/*
|
|
* Create appropriate constraints for SERIAL. We do this in full,
|
|
* rather than shortcutting, so that we will detect any conflicting
|
|
* constraints the user wrote (like a different DEFAULT).
|
|
*
|
|
* Create an expression tree representing the function call
|
|
* nextval('sequencename'). We cannot reduce the raw tree to cooked
|
|
* form until after the sequence is created, but there's no need to do
|
|
* so.
|
|
*/
|
|
qstring = quote_qualified_identifier(snamespace, sname);
|
|
snamenode = makeNode(A_Const);
|
|
snamenode->val.type = T_String;
|
|
snamenode->val.val.str = qstring;
|
|
snamenode->typename = SystemTypeName("regclass");
|
|
funccallnode = makeNode(FuncCall);
|
|
funccallnode->funcname = SystemFuncName("nextval");
|
|
funccallnode->args = list_make1(snamenode);
|
|
funccallnode->agg_star = false;
|
|
funccallnode->agg_distinct = false;
|
|
funccallnode->location = -1;
|
|
|
|
constraint = makeNode(Constraint);
|
|
constraint->contype = CONSTR_DEFAULT;
|
|
constraint->raw_expr = (Node *) funccallnode;
|
|
constraint->cooked_expr = NULL;
|
|
constraint->keys = NIL;
|
|
column->constraints = lappend(column->constraints, constraint);
|
|
|
|
constraint = makeNode(Constraint);
|
|
constraint->contype = CONSTR_NOTNULL;
|
|
column->constraints = lappend(column->constraints, constraint);
|
|
}
|
|
|
|
/* Process column constraints, if any... */
|
|
transformConstraintAttrs(column->constraints);
|
|
|
|
saw_nullable = false;
|
|
|
|
foreach(clist, column->constraints)
|
|
{
|
|
constraint = lfirst(clist);
|
|
|
|
/*
|
|
* If this column constraint is a FOREIGN KEY constraint, then we fill
|
|
* in the current attribute's name and throw it into the list of FK
|
|
* constraints to be processed later.
|
|
*/
|
|
if (IsA(constraint, FkConstraint))
|
|
{
|
|
FkConstraint *fkconstraint = (FkConstraint *) constraint;
|
|
|
|
fkconstraint->fk_attrs = list_make1(makeString(column->colname));
|
|
cxt->fkconstraints = lappend(cxt->fkconstraints, fkconstraint);
|
|
continue;
|
|
}
|
|
|
|
Assert(IsA(constraint, Constraint));
|
|
|
|
switch (constraint->contype)
|
|
{
|
|
case CONSTR_NULL:
|
|
if (saw_nullable && column->is_not_null)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("conflicting NULL/NOT NULL declarations for column \"%s\" of table \"%s\"",
|
|
column->colname, cxt->relation->relname)));
|
|
column->is_not_null = FALSE;
|
|
saw_nullable = true;
|
|
break;
|
|
|
|
case CONSTR_NOTNULL:
|
|
if (saw_nullable && !column->is_not_null)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("conflicting NULL/NOT NULL declarations for column \"%s\" of table \"%s\"",
|
|
column->colname, cxt->relation->relname)));
|
|
column->is_not_null = TRUE;
|
|
saw_nullable = true;
|
|
break;
|
|
|
|
case CONSTR_DEFAULT:
|
|
if (column->raw_default != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("multiple default values specified for column \"%s\" of table \"%s\"",
|
|
column->colname, cxt->relation->relname)));
|
|
column->raw_default = constraint->raw_expr;
|
|
Assert(constraint->cooked_expr == NULL);
|
|
break;
|
|
|
|
case CONSTR_PRIMARY:
|
|
case CONSTR_UNIQUE:
|
|
if (constraint->keys == NIL)
|
|
constraint->keys = list_make1(makeString(column->colname));
|
|
cxt->ixconstraints = lappend(cxt->ixconstraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_CHECK:
|
|
cxt->ckconstraints = lappend(cxt->ckconstraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_ATTR_DEFERRABLE:
|
|
case CONSTR_ATTR_NOT_DEFERRABLE:
|
|
case CONSTR_ATTR_DEFERRED:
|
|
case CONSTR_ATTR_IMMEDIATE:
|
|
/* transformConstraintAttrs took care of these */
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized constraint type: %d",
|
|
constraint->contype);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
transformTableConstraint(ParseState *pstate, CreateStmtContext *cxt,
|
|
Constraint *constraint)
|
|
{
|
|
switch (constraint->contype)
|
|
{
|
|
case CONSTR_PRIMARY:
|
|
case CONSTR_UNIQUE:
|
|
cxt->ixconstraints = lappend(cxt->ixconstraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_CHECK:
|
|
cxt->ckconstraints = lappend(cxt->ckconstraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_NULL:
|
|
case CONSTR_NOTNULL:
|
|
case CONSTR_DEFAULT:
|
|
case CONSTR_ATTR_DEFERRABLE:
|
|
case CONSTR_ATTR_NOT_DEFERRABLE:
|
|
case CONSTR_ATTR_DEFERRED:
|
|
case CONSTR_ATTR_IMMEDIATE:
|
|
elog(ERROR, "invalid context for constraint type %d",
|
|
constraint->contype);
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized constraint type: %d",
|
|
constraint->contype);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* transformInhRelation
|
|
*
|
|
* Change the LIKE <subtable> portion of a CREATE TABLE statement into
|
|
* column definitions which recreate the user defined column portions of
|
|
* <subtable>.
|
|
*
|
|
* Note: because we do this at parse analysis time, any change in the
|
|
* referenced table between parse analysis and execution won't be reflected
|
|
* into the new table. Is this OK?
|
|
*/
|
|
static void
|
|
transformInhRelation(ParseState *pstate, CreateStmtContext *cxt,
|
|
InhRelation *inhRelation)
|
|
{
|
|
AttrNumber parent_attno;
|
|
Relation relation;
|
|
TupleDesc tupleDesc;
|
|
TupleConstr *constr;
|
|
AclResult aclresult;
|
|
bool including_defaults = false;
|
|
bool including_constraints = false;
|
|
bool including_indexes = false;
|
|
ListCell *elem;
|
|
|
|
relation = heap_openrv(inhRelation->relation, AccessShareLock);
|
|
|
|
if (relation->rd_rel->relkind != RELKIND_RELATION)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("inherited relation \"%s\" is not a table",
|
|
inhRelation->relation->relname)));
|
|
|
|
/*
|
|
* Check for SELECT privilages
|
|
*/
|
|
aclresult = pg_class_aclcheck(RelationGetRelid(relation), GetUserId(),
|
|
ACL_SELECT);
|
|
if (aclresult != ACLCHECK_OK)
|
|
aclcheck_error(aclresult, ACL_KIND_CLASS,
|
|
RelationGetRelationName(relation));
|
|
|
|
tupleDesc = RelationGetDescr(relation);
|
|
constr = tupleDesc->constr;
|
|
|
|
foreach(elem, inhRelation->options)
|
|
{
|
|
int option = lfirst_int(elem);
|
|
|
|
switch (option)
|
|
{
|
|
case CREATE_TABLE_LIKE_INCLUDING_DEFAULTS:
|
|
including_defaults = true;
|
|
break;
|
|
case CREATE_TABLE_LIKE_EXCLUDING_DEFAULTS:
|
|
including_defaults = false;
|
|
break;
|
|
case CREATE_TABLE_LIKE_INCLUDING_CONSTRAINTS:
|
|
including_constraints = true;
|
|
break;
|
|
case CREATE_TABLE_LIKE_EXCLUDING_CONSTRAINTS:
|
|
including_constraints = false;
|
|
break;
|
|
case CREATE_TABLE_LIKE_INCLUDING_INDEXES:
|
|
including_indexes = true;
|
|
break;
|
|
case CREATE_TABLE_LIKE_EXCLUDING_INDEXES:
|
|
including_indexes = false;
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized CREATE TABLE LIKE option: %d",
|
|
option);
|
|
}
|
|
}
|
|
|
|
if (including_indexes)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("LIKE INCLUDING INDEXES is not implemented")));
|
|
|
|
/*
|
|
* Insert the copied attributes into the cxt for the new table
|
|
* definition.
|
|
*/
|
|
for (parent_attno = 1; parent_attno <= tupleDesc->natts;
|
|
parent_attno++)
|
|
{
|
|
Form_pg_attribute attribute = tupleDesc->attrs[parent_attno - 1];
|
|
char *attributeName = NameStr(attribute->attname);
|
|
ColumnDef *def;
|
|
|
|
/*
|
|
* Ignore dropped columns in the parent.
|
|
*/
|
|
if (attribute->attisdropped)
|
|
continue;
|
|
|
|
/*
|
|
* Create a new column, which is marked as NOT inherited.
|
|
*
|
|
* For constraints, ONLY the NOT NULL constraint is inherited by the
|
|
* new column definition per SQL99.
|
|
*/
|
|
def = makeNode(ColumnDef);
|
|
def->colname = pstrdup(attributeName);
|
|
def->typename = makeTypeNameFromOid(attribute->atttypid,
|
|
attribute->atttypmod);
|
|
def->inhcount = 0;
|
|
def->is_local = true;
|
|
def->is_not_null = attribute->attnotnull;
|
|
def->raw_default = NULL;
|
|
def->cooked_default = NULL;
|
|
def->constraints = NIL;
|
|
|
|
/*
|
|
* Add to column list
|
|
*/
|
|
cxt->columns = lappend(cxt->columns, def);
|
|
|
|
/*
|
|
* Copy default, if present and the default has been requested
|
|
*/
|
|
if (attribute->atthasdef && including_defaults)
|
|
{
|
|
char *this_default = NULL;
|
|
AttrDefault *attrdef;
|
|
int i;
|
|
|
|
/* Find default in constraint structure */
|
|
Assert(constr != NULL);
|
|
attrdef = constr->defval;
|
|
for (i = 0; i < constr->num_defval; i++)
|
|
{
|
|
if (attrdef[i].adnum == parent_attno)
|
|
{
|
|
this_default = attrdef[i].adbin;
|
|
break;
|
|
}
|
|
}
|
|
Assert(this_default != NULL);
|
|
|
|
/*
|
|
* If default expr could contain any vars, we'd need to fix 'em,
|
|
* but it can't; so default is ready to apply to child.
|
|
*/
|
|
|
|
def->cooked_default = pstrdup(this_default);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy CHECK constraints if requested, being careful to adjust
|
|
* attribute numbers
|
|
*/
|
|
if (including_constraints && tupleDesc->constr)
|
|
{
|
|
AttrNumber *attmap = varattnos_map_schema(tupleDesc, cxt->columns);
|
|
int ccnum;
|
|
|
|
for (ccnum = 0; ccnum < tupleDesc->constr->num_check; ccnum++)
|
|
{
|
|
char *ccname = tupleDesc->constr->check[ccnum].ccname;
|
|
char *ccbin = tupleDesc->constr->check[ccnum].ccbin;
|
|
Node *ccbin_node = stringToNode(ccbin);
|
|
Constraint *n = makeNode(Constraint);
|
|
|
|
change_varattnos_of_a_node(ccbin_node, attmap);
|
|
|
|
n->contype = CONSTR_CHECK;
|
|
n->name = pstrdup(ccname);
|
|
n->raw_expr = NULL;
|
|
n->cooked_expr = nodeToString(ccbin_node);
|
|
n->indexspace = NULL;
|
|
cxt->ckconstraints = lappend(cxt->ckconstraints, (Node *) n);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Close the parent rel, but keep our AccessShareLock on it until xact
|
|
* commit. That will prevent someone else from deleting or ALTERing the
|
|
* parent before the child is committed.
|
|
*/
|
|
heap_close(relation, NoLock);
|
|
}
|
|
|
|
static void
|
|
transformIndexConstraints(ParseState *pstate, CreateStmtContext *cxt)
|
|
{
|
|
IndexStmt *index;
|
|
List *indexlist = NIL;
|
|
ListCell *listptr;
|
|
ListCell *l;
|
|
|
|
/*
|
|
* Run through the constraints that need to generate an index. For PRIMARY
|
|
* KEY, mark each column as NOT NULL and create an index. For UNIQUE,
|
|
* create an index as for PRIMARY KEY, but do not insist on NOT NULL.
|
|
*/
|
|
foreach(listptr, cxt->ixconstraints)
|
|
{
|
|
Constraint *constraint = lfirst(listptr);
|
|
ListCell *keys;
|
|
IndexElem *iparam;
|
|
|
|
Assert(IsA(constraint, Constraint));
|
|
Assert((constraint->contype == CONSTR_PRIMARY)
|
|
|| (constraint->contype == CONSTR_UNIQUE));
|
|
|
|
index = makeNode(IndexStmt);
|
|
|
|
index->unique = true;
|
|
index->primary = (constraint->contype == CONSTR_PRIMARY);
|
|
if (index->primary)
|
|
{
|
|
if (cxt->pkey != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
|
|
errmsg("multiple primary keys for table \"%s\" are not allowed",
|
|
cxt->relation->relname)));
|
|
cxt->pkey = index;
|
|
|
|
/*
|
|
* In ALTER TABLE case, a primary index might already exist, but
|
|
* DefineIndex will check for it.
|
|
*/
|
|
}
|
|
index->isconstraint = true;
|
|
|
|
if (constraint->name != NULL)
|
|
index->idxname = pstrdup(constraint->name);
|
|
else
|
|
index->idxname = NULL; /* DefineIndex will choose name */
|
|
|
|
index->relation = cxt->relation;
|
|
index->accessMethod = DEFAULT_INDEX_TYPE;
|
|
index->options = constraint->options;
|
|
index->tableSpace = constraint->indexspace;
|
|
index->indexParams = NIL;
|
|
index->whereClause = NULL;
|
|
index->concurrent = false;
|
|
|
|
/*
|
|
* Make sure referenced keys exist. If we are making a PRIMARY KEY
|
|
* index, also make sure they are NOT NULL, if possible. (Although we
|
|
* could leave it to DefineIndex to mark the columns NOT NULL, it's
|
|
* more efficient to get it right the first time.)
|
|
*/
|
|
foreach(keys, constraint->keys)
|
|
{
|
|
char *key = strVal(lfirst(keys));
|
|
bool found = false;
|
|
ColumnDef *column = NULL;
|
|
ListCell *columns;
|
|
|
|
foreach(columns, cxt->columns)
|
|
{
|
|
column = (ColumnDef *) lfirst(columns);
|
|
Assert(IsA(column, ColumnDef));
|
|
if (strcmp(column->colname, key) == 0)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found)
|
|
{
|
|
/* found column in the new table; force it to be NOT NULL */
|
|
if (constraint->contype == CONSTR_PRIMARY)
|
|
column->is_not_null = TRUE;
|
|
}
|
|
else if (SystemAttributeByName(key, cxt->hasoids) != NULL)
|
|
{
|
|
/*
|
|
* column will be a system column in the new table, so accept
|
|
* it. System columns can't ever be null, so no need to worry
|
|
* about PRIMARY/NOT NULL constraint.
|
|
*/
|
|
found = true;
|
|
}
|
|
else if (cxt->inhRelations)
|
|
{
|
|
/* try inherited tables */
|
|
ListCell *inher;
|
|
|
|
foreach(inher, cxt->inhRelations)
|
|
{
|
|
RangeVar *inh = (RangeVar *) lfirst(inher);
|
|
Relation rel;
|
|
int count;
|
|
|
|
Assert(IsA(inh, RangeVar));
|
|
rel = heap_openrv(inh, AccessShareLock);
|
|
if (rel->rd_rel->relkind != RELKIND_RELATION)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("inherited relation \"%s\" is not a table",
|
|
inh->relname)));
|
|
for (count = 0; count < rel->rd_att->natts; count++)
|
|
{
|
|
Form_pg_attribute inhattr = rel->rd_att->attrs[count];
|
|
char *inhname = NameStr(inhattr->attname);
|
|
|
|
if (inhattr->attisdropped)
|
|
continue;
|
|
if (strcmp(key, inhname) == 0)
|
|
{
|
|
found = true;
|
|
|
|
/*
|
|
* We currently have no easy way to force an
|
|
* inherited column to be NOT NULL at creation, if
|
|
* its parent wasn't so already. We leave it to
|
|
* DefineIndex to fix things up in this case.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
heap_close(rel, NoLock);
|
|
if (found)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In the ALTER TABLE case, don't complain about index keys not
|
|
* created in the command; they may well exist already.
|
|
* DefineIndex will complain about them if not, and will also take
|
|
* care of marking them NOT NULL.
|
|
*/
|
|
if (!found && !cxt->isalter)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_COLUMN),
|
|
errmsg("column \"%s\" named in key does not exist",
|
|
key)));
|
|
|
|
/* Check for PRIMARY KEY(foo, foo) */
|
|
foreach(columns, index->indexParams)
|
|
{
|
|
iparam = (IndexElem *) lfirst(columns);
|
|
if (iparam->name && strcmp(key, iparam->name) == 0)
|
|
{
|
|
if (index->primary)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DUPLICATE_COLUMN),
|
|
errmsg("column \"%s\" appears twice in primary key constraint",
|
|
key)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DUPLICATE_COLUMN),
|
|
errmsg("column \"%s\" appears twice in unique constraint",
|
|
key)));
|
|
}
|
|
}
|
|
|
|
/* OK, add it to the index definition */
|
|
iparam = makeNode(IndexElem);
|
|
iparam->name = pstrdup(key);
|
|
iparam->expr = NULL;
|
|
iparam->opclass = NIL;
|
|
iparam->ordering = SORTBY_DEFAULT;
|
|
iparam->nulls_ordering = SORTBY_NULLS_DEFAULT;
|
|
index->indexParams = lappend(index->indexParams, iparam);
|
|
}
|
|
|
|
indexlist = lappend(indexlist, index);
|
|
}
|
|
|
|
/*
|
|
* Scan the index list and remove any redundant index specifications. This
|
|
* can happen if, for instance, the user writes UNIQUE PRIMARY KEY. A
|
|
* strict reading of SQL92 would suggest raising an error instead, but
|
|
* that strikes me as too anal-retentive. - tgl 2001-02-14
|
|
*
|
|
* XXX in ALTER TABLE case, it'd be nice to look for duplicate
|
|
* pre-existing indexes, too. However, that seems to risk race
|
|
* conditions since we can't be sure the command will be executed
|
|
* immediately.
|
|
*/
|
|
Assert(cxt->alist == NIL);
|
|
if (cxt->pkey != NULL)
|
|
{
|
|
/* Make sure we keep the PKEY index in preference to others... */
|
|
cxt->alist = list_make1(cxt->pkey);
|
|
}
|
|
|
|
foreach(l, indexlist)
|
|
{
|
|
bool keep = true;
|
|
ListCell *k;
|
|
|
|
index = lfirst(l);
|
|
|
|
/* if it's pkey, it's already in cxt->alist */
|
|
if (index == cxt->pkey)
|
|
continue;
|
|
|
|
foreach(k, cxt->alist)
|
|
{
|
|
IndexStmt *priorindex = lfirst(k);
|
|
|
|
if (equal(index->indexParams, priorindex->indexParams))
|
|
{
|
|
/*
|
|
* If the prior index is as yet unnamed, and this one is
|
|
* named, then transfer the name to the prior index. This
|
|
* ensures that if we have named and unnamed constraints,
|
|
* we'll use (at least one of) the names for the index.
|
|
*/
|
|
if (priorindex->idxname == NULL)
|
|
priorindex->idxname = index->idxname;
|
|
keep = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (keep)
|
|
cxt->alist = lappend(cxt->alist, index);
|
|
}
|
|
}
|
|
|
|
static void
|
|
transformFKConstraints(ParseState *pstate, CreateStmtContext *cxt,
|
|
bool skipValidation, bool isAddConstraint)
|
|
{
|
|
ListCell *fkclist;
|
|
|
|
if (cxt->fkconstraints == NIL)
|
|
return;
|
|
|
|
/*
|
|
* If CREATE TABLE or adding a column with NULL default, we can safely
|
|
* skip validation of the constraint.
|
|
*/
|
|
if (skipValidation)
|
|
{
|
|
foreach(fkclist, cxt->fkconstraints)
|
|
{
|
|
FkConstraint *fkconstraint = (FkConstraint *) lfirst(fkclist);
|
|
|
|
fkconstraint->skip_validation = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For CREATE TABLE or ALTER TABLE ADD COLUMN, gin up an ALTER TABLE ADD
|
|
* CONSTRAINT command to execute after the basic command is complete. (If
|
|
* called from ADD CONSTRAINT, that routine will add the FK constraints to
|
|
* its own subcommand list.)
|
|
*
|
|
* Note: the ADD CONSTRAINT command must also execute after any index
|
|
* creation commands. Thus, this should run after
|
|
* transformIndexConstraints, so that the CREATE INDEX commands are
|
|
* already in cxt->alist.
|
|
*/
|
|
if (!isAddConstraint)
|
|
{
|
|
AlterTableStmt *alterstmt = makeNode(AlterTableStmt);
|
|
|
|
alterstmt->relation = cxt->relation;
|
|
alterstmt->cmds = NIL;
|
|
alterstmt->relkind = OBJECT_TABLE;
|
|
|
|
foreach(fkclist, cxt->fkconstraints)
|
|
{
|
|
FkConstraint *fkconstraint = (FkConstraint *) lfirst(fkclist);
|
|
AlterTableCmd *altercmd = makeNode(AlterTableCmd);
|
|
|
|
altercmd->subtype = AT_ProcessedConstraint;
|
|
altercmd->name = NULL;
|
|
altercmd->def = (Node *) fkconstraint;
|
|
alterstmt->cmds = lappend(alterstmt->cmds, altercmd);
|
|
}
|
|
|
|
cxt->alist = lappend(cxt->alist, alterstmt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* analyzeIndexStmt - perform parse analysis for CREATE INDEX
|
|
*
|
|
* Note that this has to be performed during execution not parse analysis, so
|
|
* it's called by ProcessUtility. (Most other callers don't need to bother,
|
|
* because this is a no-op for an index not using either index expressions or
|
|
* a predicate expression.)
|
|
*/
|
|
IndexStmt *
|
|
analyzeIndexStmt(IndexStmt *stmt, const char *queryString)
|
|
{
|
|
Relation rel;
|
|
ParseState *pstate;
|
|
RangeTblEntry *rte;
|
|
ListCell *l;
|
|
|
|
/*
|
|
* We must not scribble on the passed-in IndexStmt, so copy it. (This
|
|
* is overkill, but easy.)
|
|
*/
|
|
stmt = (IndexStmt *) copyObject(stmt);
|
|
|
|
/*
|
|
* Open the parent table with appropriate locking. We must do this
|
|
* because addRangeTableEntry() would acquire only AccessShareLock,
|
|
* leaving DefineIndex() needing to do a lock upgrade with consequent
|
|
* risk of deadlock. Make sure this stays in sync with the type of
|
|
* lock DefineIndex() wants.
|
|
*/
|
|
rel = heap_openrv(stmt->relation,
|
|
(stmt->concurrent ? ShareUpdateExclusiveLock : ShareLock));
|
|
|
|
/* Set up pstate */
|
|
pstate = make_parsestate(NULL);
|
|
pstate->p_sourcetext = queryString;
|
|
|
|
/*
|
|
* Put the parent table into the rtable so that the expressions can
|
|
* refer to its fields without qualification.
|
|
*/
|
|
rte = addRangeTableEntry(pstate, stmt->relation, NULL, false, true);
|
|
|
|
/* no to join list, yes to namespaces */
|
|
addRTEtoQuery(pstate, rte, false, true, true);
|
|
|
|
/* take care of the where clause */
|
|
if (stmt->whereClause)
|
|
stmt->whereClause = transformWhereClause(pstate,
|
|
stmt->whereClause,
|
|
"WHERE");
|
|
|
|
/* take care of any index expressions */
|
|
foreach(l, stmt->indexParams)
|
|
{
|
|
IndexElem *ielem = (IndexElem *) lfirst(l);
|
|
|
|
if (ielem->expr)
|
|
{
|
|
ielem->expr = transformExpr(pstate, ielem->expr);
|
|
|
|
/*
|
|
* We check only that the result type is legitimate; this is for
|
|
* consistency with what transformWhereClause() checks for the
|
|
* predicate. DefineIndex() will make more checks.
|
|
*/
|
|
if (expression_returns_set(ielem->expr))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("index expression cannot return a set")));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check that only the base rel is mentioned.
|
|
*/
|
|
if (list_length(pstate->p_rtable) != 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
|
|
errmsg("index expressions and predicates can refer only to the table being indexed")));
|
|
|
|
release_pstate_resources(pstate);
|
|
pfree(pstate);
|
|
|
|
/* Close relation, but keep the lock */
|
|
heap_close(rel, NoLock);
|
|
|
|
return stmt;
|
|
}
|
|
|
|
|
|
/*
|
|
* analyzeRuleStmt -
|
|
* transform a Create Rule Statement. The action is a list of parse
|
|
* trees which is transformed into a list of query trees, and we also
|
|
* transform the WHERE clause if any.
|
|
*
|
|
* Note that this has to be performed during execution not parse analysis,
|
|
* so it's called by DefineRule. Also note that we must not scribble on
|
|
* the passed-in RuleStmt, so we do copyObject() on the actions and WHERE
|
|
* clause.
|
|
*/
|
|
void
|
|
analyzeRuleStmt(RuleStmt *stmt, const char *queryString,
|
|
List **actions, Node **whereClause)
|
|
{
|
|
Relation rel;
|
|
ParseState *pstate;
|
|
RangeTblEntry *oldrte;
|
|
RangeTblEntry *newrte;
|
|
|
|
/*
|
|
* To avoid deadlock, make sure the first thing we do is grab
|
|
* AccessExclusiveLock on the target relation. This will be needed by
|
|
* DefineQueryRewrite(), and we don't want to grab a lesser lock
|
|
* beforehand.
|
|
*/
|
|
rel = heap_openrv(stmt->relation, AccessExclusiveLock);
|
|
|
|
/* Set up pstate */
|
|
pstate = make_parsestate(NULL);
|
|
pstate->p_sourcetext = queryString;
|
|
|
|
/*
|
|
* NOTE: 'OLD' must always have a varno equal to 1 and 'NEW' equal to 2.
|
|
* Set up their RTEs in the main pstate for use in parsing the rule
|
|
* qualification.
|
|
*/
|
|
oldrte = addRangeTableEntryForRelation(pstate, rel,
|
|
makeAlias("*OLD*", NIL),
|
|
false, false);
|
|
newrte = addRangeTableEntryForRelation(pstate, rel,
|
|
makeAlias("*NEW*", NIL),
|
|
false, false);
|
|
/* Must override addRangeTableEntry's default access-check flags */
|
|
oldrte->requiredPerms = 0;
|
|
newrte->requiredPerms = 0;
|
|
|
|
/*
|
|
* They must be in the namespace too for lookup purposes, but only add the
|
|
* one(s) that are relevant for the current kind of rule. In an UPDATE
|
|
* rule, quals must refer to OLD.field or NEW.field to be unambiguous, but
|
|
* there's no need to be so picky for INSERT & DELETE. We do not add them
|
|
* to the joinlist.
|
|
*/
|
|
switch (stmt->event)
|
|
{
|
|
case CMD_SELECT:
|
|
addRTEtoQuery(pstate, oldrte, false, true, true);
|
|
break;
|
|
case CMD_UPDATE:
|
|
addRTEtoQuery(pstate, oldrte, false, true, true);
|
|
addRTEtoQuery(pstate, newrte, false, true, true);
|
|
break;
|
|
case CMD_INSERT:
|
|
addRTEtoQuery(pstate, newrte, false, true, true);
|
|
break;
|
|
case CMD_DELETE:
|
|
addRTEtoQuery(pstate, oldrte, false, true, true);
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized event type: %d",
|
|
(int) stmt->event);
|
|
break;
|
|
}
|
|
|
|
/* take care of the where clause */
|
|
*whereClause = transformWhereClause(pstate,
|
|
(Node *) copyObject(stmt->whereClause),
|
|
"WHERE");
|
|
|
|
if (list_length(pstate->p_rtable) != 2) /* naughty, naughty... */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("rule WHERE condition cannot contain references to other relations")));
|
|
|
|
/* aggregates not allowed (but subselects are okay) */
|
|
if (pstate->p_hasAggs)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("cannot use aggregate function in rule WHERE condition")));
|
|
|
|
/*
|
|
* 'instead nothing' rules with a qualification need a query rangetable so
|
|
* the rewrite handler can add the negated rule qualification to the
|
|
* original query. We create a query with the new command type CMD_NOTHING
|
|
* here that is treated specially by the rewrite system.
|
|
*/
|
|
if (stmt->actions == NIL)
|
|
{
|
|
Query *nothing_qry = makeNode(Query);
|
|
|
|
nothing_qry->commandType = CMD_NOTHING;
|
|
nothing_qry->rtable = pstate->p_rtable;
|
|
nothing_qry->jointree = makeFromExpr(NIL, NULL); /* no join wanted */
|
|
|
|
*actions = list_make1(nothing_qry);
|
|
}
|
|
else
|
|
{
|
|
ListCell *l;
|
|
List *newactions = NIL;
|
|
|
|
/*
|
|
* transform each statement, like parse_sub_analyze()
|
|
*/
|
|
foreach(l, stmt->actions)
|
|
{
|
|
Node *action = (Node *) lfirst(l);
|
|
ParseState *sub_pstate = make_parsestate(NULL);
|
|
Query *sub_qry,
|
|
*top_subqry;
|
|
List *extras_before = NIL;
|
|
List *extras_after = NIL;
|
|
bool has_old,
|
|
has_new;
|
|
|
|
/*
|
|
* Since outer ParseState isn't parent of inner, have to pass
|
|
* down the query text by hand.
|
|
*/
|
|
sub_pstate->p_sourcetext = queryString;
|
|
|
|
/*
|
|
* Set up OLD/NEW in the rtable for this statement. The entries
|
|
* are added only to relnamespace, not varnamespace, because we
|
|
* don't want them to be referred to by unqualified field names
|
|
* nor "*" in the rule actions. We decide later whether to put
|
|
* them in the joinlist.
|
|
*/
|
|
oldrte = addRangeTableEntryForRelation(sub_pstate, rel,
|
|
makeAlias("*OLD*", NIL),
|
|
false, false);
|
|
newrte = addRangeTableEntryForRelation(sub_pstate, rel,
|
|
makeAlias("*NEW*", NIL),
|
|
false, false);
|
|
oldrte->requiredPerms = 0;
|
|
newrte->requiredPerms = 0;
|
|
addRTEtoQuery(sub_pstate, oldrte, false, true, false);
|
|
addRTEtoQuery(sub_pstate, newrte, false, true, false);
|
|
|
|
/* Transform the rule action statement */
|
|
top_subqry = transformStmt(sub_pstate,
|
|
(Node *) copyObject(action),
|
|
&extras_before, &extras_after);
|
|
|
|
/*
|
|
* We cannot support utility-statement actions (eg NOTIFY) with
|
|
* nonempty rule WHERE conditions, because there's no way to make
|
|
* the utility action execute conditionally.
|
|
*/
|
|
if (top_subqry->commandType == CMD_UTILITY &&
|
|
*whereClause != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("rules with WHERE conditions can only have SELECT, INSERT, UPDATE, or DELETE actions")));
|
|
|
|
/*
|
|
* If the action is INSERT...SELECT, OLD/NEW have been pushed down
|
|
* into the SELECT, and that's what we need to look at. (Ugly
|
|
* kluge ... try to fix this when we redesign querytrees.)
|
|
*/
|
|
sub_qry = getInsertSelectQuery(top_subqry, NULL);
|
|
|
|
/*
|
|
* If the sub_qry is a setop, we cannot attach any qualifications
|
|
* to it, because the planner won't notice them. This could
|
|
* perhaps be relaxed someday, but for now, we may as well reject
|
|
* such a rule immediately.
|
|
*/
|
|
if (sub_qry->setOperations != NULL && *whereClause != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("conditional UNION/INTERSECT/EXCEPT statements are not implemented")));
|
|
|
|
/*
|
|
* Validate action's use of OLD/NEW, qual too
|
|
*/
|
|
has_old =
|
|
rangeTableEntry_used((Node *) sub_qry, PRS2_OLD_VARNO, 0) ||
|
|
rangeTableEntry_used(*whereClause, PRS2_OLD_VARNO, 0);
|
|
has_new =
|
|
rangeTableEntry_used((Node *) sub_qry, PRS2_NEW_VARNO, 0) ||
|
|
rangeTableEntry_used(*whereClause, PRS2_NEW_VARNO, 0);
|
|
|
|
switch (stmt->event)
|
|
{
|
|
case CMD_SELECT:
|
|
if (has_old)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("ON SELECT rule cannot use OLD")));
|
|
if (has_new)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("ON SELECT rule cannot use NEW")));
|
|
break;
|
|
case CMD_UPDATE:
|
|
/* both are OK */
|
|
break;
|
|
case CMD_INSERT:
|
|
if (has_old)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("ON INSERT rule cannot use OLD")));
|
|
break;
|
|
case CMD_DELETE:
|
|
if (has_new)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("ON DELETE rule cannot use NEW")));
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized event type: %d",
|
|
(int) stmt->event);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* For efficiency's sake, add OLD to the rule action's jointree
|
|
* only if it was actually referenced in the statement or qual.
|
|
*
|
|
* For INSERT, NEW is not really a relation (only a reference to
|
|
* the to-be-inserted tuple) and should never be added to the
|
|
* jointree.
|
|
*
|
|
* For UPDATE, we treat NEW as being another kind of reference to
|
|
* OLD, because it represents references to *transformed* tuples
|
|
* of the existing relation. It would be wrong to enter NEW
|
|
* separately in the jointree, since that would cause a double
|
|
* join of the updated relation. It's also wrong to fail to make
|
|
* a jointree entry if only NEW and not OLD is mentioned.
|
|
*/
|
|
if (has_old || (has_new && stmt->event == CMD_UPDATE))
|
|
{
|
|
/*
|
|
* If sub_qry is a setop, manipulating its jointree will do no
|
|
* good at all, because the jointree is dummy. (This should be
|
|
* a can't-happen case because of prior tests.)
|
|
*/
|
|
if (sub_qry->setOperations != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("conditional UNION/INTERSECT/EXCEPT statements are not implemented")));
|
|
/* hack so we can use addRTEtoQuery() */
|
|
sub_pstate->p_rtable = sub_qry->rtable;
|
|
sub_pstate->p_joinlist = sub_qry->jointree->fromlist;
|
|
addRTEtoQuery(sub_pstate, oldrte, true, false, false);
|
|
sub_qry->jointree->fromlist = sub_pstate->p_joinlist;
|
|
}
|
|
|
|
newactions = list_concat(newactions, extras_before);
|
|
newactions = lappend(newactions, top_subqry);
|
|
newactions = list_concat(newactions, extras_after);
|
|
|
|
release_pstate_resources(sub_pstate);
|
|
pfree(sub_pstate);
|
|
}
|
|
|
|
*actions = newactions;
|
|
}
|
|
|
|
release_pstate_resources(pstate);
|
|
pfree(pstate);
|
|
|
|
/* Close relation, but keep the exclusive lock */
|
|
heap_close(rel, NoLock);
|
|
}
|
|
|
|
|
|
/*
|
|
* transformSelectStmt -
|
|
* transforms a Select Statement
|
|
*/
|
|
static Query *
|
|
transformSelectStmt(ParseState *pstate, SelectStmt *stmt)
|
|
{
|
|
Query *qry = makeNode(Query);
|
|
Node *qual;
|
|
ListCell *l;
|
|
|
|
qry->commandType = CMD_SELECT;
|
|
|
|
/* make FOR UPDATE/FOR SHARE info available to addRangeTableEntry */
|
|
pstate->p_locking_clause = stmt->lockingClause;
|
|
|
|
/* process the FROM clause */
|
|
transformFromClause(pstate, stmt->fromClause);
|
|
|
|
/* transform targetlist */
|
|
qry->targetList = transformTargetList(pstate, stmt->targetList);
|
|
|
|
/* mark column origins */
|
|
markTargetListOrigins(pstate, qry->targetList);
|
|
|
|
/* transform WHERE */
|
|
qual = transformWhereClause(pstate, stmt->whereClause, "WHERE");
|
|
|
|
/*
|
|
* Initial processing of HAVING clause is just like WHERE clause.
|
|
*/
|
|
qry->havingQual = transformWhereClause(pstate, stmt->havingClause,
|
|
"HAVING");
|
|
|
|
/*
|
|
* Transform sorting/grouping stuff. Do ORDER BY first because both
|
|
* transformGroupClause and transformDistinctClause need the results.
|
|
*/
|
|
qry->sortClause = transformSortClause(pstate,
|
|
stmt->sortClause,
|
|
&qry->targetList,
|
|
true /* fix unknowns */ );
|
|
|
|
qry->groupClause = transformGroupClause(pstate,
|
|
stmt->groupClause,
|
|
&qry->targetList,
|
|
qry->sortClause);
|
|
|
|
qry->distinctClause = transformDistinctClause(pstate,
|
|
stmt->distinctClause,
|
|
&qry->targetList,
|
|
&qry->sortClause);
|
|
|
|
qry->limitOffset = transformLimitClause(pstate, stmt->limitOffset,
|
|
"OFFSET");
|
|
qry->limitCount = transformLimitClause(pstate, stmt->limitCount,
|
|
"LIMIT");
|
|
|
|
/* handle any SELECT INTO/CREATE TABLE AS spec */
|
|
if (stmt->into)
|
|
{
|
|
qry->into = stmt->into;
|
|
if (stmt->into->colNames)
|
|
applyColumnNames(qry->targetList, stmt->into->colNames);
|
|
}
|
|
|
|
qry->rtable = pstate->p_rtable;
|
|
qry->jointree = makeFromExpr(pstate->p_joinlist, qual);
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
qry->hasAggs = pstate->p_hasAggs;
|
|
if (pstate->p_hasAggs || qry->groupClause || qry->havingQual)
|
|
parseCheckAggregates(pstate, qry);
|
|
|
|
foreach(l, stmt->lockingClause)
|
|
{
|
|
transformLockingClause(qry, (LockingClause *) lfirst(l));
|
|
}
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* transformValuesClause -
|
|
* transforms a VALUES clause that's being used as a standalone SELECT
|
|
*
|
|
* We build a Query containing a VALUES RTE, rather as if one had written
|
|
* SELECT * FROM (VALUES ...)
|
|
*/
|
|
static Query *
|
|
transformValuesClause(ParseState *pstate, SelectStmt *stmt)
|
|
{
|
|
Query *qry = makeNode(Query);
|
|
List *exprsLists = NIL;
|
|
List **coltype_lists = NULL;
|
|
Oid *coltypes = NULL;
|
|
int sublist_length = -1;
|
|
List *newExprsLists;
|
|
RangeTblEntry *rte;
|
|
RangeTblRef *rtr;
|
|
ListCell *lc;
|
|
ListCell *lc2;
|
|
int i;
|
|
|
|
qry->commandType = CMD_SELECT;
|
|
|
|
/* Most SELECT stuff doesn't apply in a VALUES clause */
|
|
Assert(stmt->distinctClause == NIL);
|
|
Assert(stmt->targetList == NIL);
|
|
Assert(stmt->fromClause == NIL);
|
|
Assert(stmt->whereClause == NULL);
|
|
Assert(stmt->groupClause == NIL);
|
|
Assert(stmt->havingClause == NULL);
|
|
Assert(stmt->op == SETOP_NONE);
|
|
|
|
/*
|
|
* For each row of VALUES, transform the raw expressions and gather type
|
|
* information. This is also a handy place to reject DEFAULT nodes, which
|
|
* the grammar allows for simplicity.
|
|
*/
|
|
foreach(lc, stmt->valuesLists)
|
|
{
|
|
List *sublist = (List *) lfirst(lc);
|
|
|
|
/* Do basic expression transformation (same as a ROW() expr) */
|
|
sublist = transformExpressionList(pstate, sublist);
|
|
|
|
/*
|
|
* All the sublists must be the same length, *after* transformation
|
|
* (which might expand '*' into multiple items). The VALUES RTE can't
|
|
* handle anything different.
|
|
*/
|
|
if (sublist_length < 0)
|
|
{
|
|
/* Remember post-transformation length of first sublist */
|
|
sublist_length = list_length(sublist);
|
|
/* and allocate arrays for column-type info */
|
|
coltype_lists = (List **) palloc0(sublist_length * sizeof(List *));
|
|
coltypes = (Oid *) palloc0(sublist_length * sizeof(Oid));
|
|
}
|
|
else if (sublist_length != list_length(sublist))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("VALUES lists must all be the same length")));
|
|
}
|
|
|
|
exprsLists = lappend(exprsLists, sublist);
|
|
|
|
i = 0;
|
|
foreach(lc2, sublist)
|
|
{
|
|
Node *col = (Node *) lfirst(lc2);
|
|
|
|
if (IsA(col, SetToDefault))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("DEFAULT can only appear in a VALUES list within INSERT")));
|
|
coltype_lists[i] = lappend_oid(coltype_lists[i], exprType(col));
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now resolve the common types of the columns, and coerce everything to
|
|
* those types.
|
|
*/
|
|
for (i = 0; i < sublist_length; i++)
|
|
{
|
|
coltypes[i] = select_common_type(coltype_lists[i], "VALUES");
|
|
}
|
|
|
|
newExprsLists = NIL;
|
|
foreach(lc, exprsLists)
|
|
{
|
|
List *sublist = (List *) lfirst(lc);
|
|
List *newsublist = NIL;
|
|
|
|
i = 0;
|
|
foreach(lc2, sublist)
|
|
{
|
|
Node *col = (Node *) lfirst(lc2);
|
|
|
|
col = coerce_to_common_type(pstate, col, coltypes[i], "VALUES");
|
|
newsublist = lappend(newsublist, col);
|
|
i++;
|
|
}
|
|
|
|
newExprsLists = lappend(newExprsLists, newsublist);
|
|
}
|
|
|
|
/*
|
|
* Generate the VALUES RTE
|
|
*/
|
|
rte = addRangeTableEntryForValues(pstate, newExprsLists, NULL, true);
|
|
rtr = makeNode(RangeTblRef);
|
|
/* assume new rte is at end */
|
|
rtr->rtindex = list_length(pstate->p_rtable);
|
|
Assert(rte == rt_fetch(rtr->rtindex, pstate->p_rtable));
|
|
pstate->p_joinlist = lappend(pstate->p_joinlist, rtr);
|
|
pstate->p_varnamespace = lappend(pstate->p_varnamespace, rte);
|
|
|
|
/*
|
|
* Generate a targetlist as though expanding "*"
|
|
*/
|
|
Assert(pstate->p_next_resno == 1);
|
|
qry->targetList = expandRelAttrs(pstate, rte, rtr->rtindex, 0);
|
|
|
|
/*
|
|
* The grammar allows attaching ORDER BY, LIMIT, and FOR UPDATE to a
|
|
* VALUES, so cope.
|
|
*/
|
|
qry->sortClause = transformSortClause(pstate,
|
|
stmt->sortClause,
|
|
&qry->targetList,
|
|
true /* fix unknowns */ );
|
|
|
|
qry->limitOffset = transformLimitClause(pstate, stmt->limitOffset,
|
|
"OFFSET");
|
|
qry->limitCount = transformLimitClause(pstate, stmt->limitCount,
|
|
"LIMIT");
|
|
|
|
if (stmt->lockingClause)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE cannot be applied to VALUES")));
|
|
|
|
/* handle any CREATE TABLE AS spec */
|
|
if (stmt->into)
|
|
{
|
|
qry->into = stmt->into;
|
|
if (stmt->into->colNames)
|
|
applyColumnNames(qry->targetList, stmt->into->colNames);
|
|
}
|
|
|
|
/*
|
|
* There mustn't have been any table references in the expressions, else
|
|
* strange things would happen, like Cartesian products of those tables
|
|
* with the VALUES list. We have to check this after parsing ORDER BY et
|
|
* al since those could insert more junk.
|
|
*/
|
|
if (list_length(pstate->p_joinlist) != 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("VALUES must not contain table references")));
|
|
|
|
/*
|
|
* Another thing we can't currently support is NEW/OLD references in rules
|
|
* --- seems we'd need something like SQL99's LATERAL construct to ensure
|
|
* that the values would be available while evaluating the VALUES RTE.
|
|
* This is a shame. FIXME
|
|
*/
|
|
if (list_length(pstate->p_rtable) != 1 &&
|
|
contain_vars_of_level((Node *) newExprsLists, 0))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("VALUES must not contain OLD or NEW references"),
|
|
errhint("Use SELECT ... UNION ALL ... instead.")));
|
|
|
|
qry->rtable = pstate->p_rtable;
|
|
qry->jointree = makeFromExpr(pstate->p_joinlist, NULL);
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
/* aggregates not allowed (but subselects are okay) */
|
|
if (pstate->p_hasAggs)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("cannot use aggregate function in VALUES")));
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* transformSetOperationsStmt -
|
|
* transforms a set-operations tree
|
|
*
|
|
* A set-operation tree is just a SELECT, but with UNION/INTERSECT/EXCEPT
|
|
* structure to it. We must transform each leaf SELECT and build up a top-
|
|
* level Query that contains the leaf SELECTs as subqueries in its rangetable.
|
|
* The tree of set operations is converted into the setOperations field of
|
|
* the top-level Query.
|
|
*/
|
|
static Query *
|
|
transformSetOperationStmt(ParseState *pstate, SelectStmt *stmt)
|
|
{
|
|
Query *qry = makeNode(Query);
|
|
SelectStmt *leftmostSelect;
|
|
int leftmostRTI;
|
|
Query *leftmostQuery;
|
|
SetOperationStmt *sostmt;
|
|
List *intoColNames = NIL;
|
|
List *sortClause;
|
|
Node *limitOffset;
|
|
Node *limitCount;
|
|
List *lockingClause;
|
|
Node *node;
|
|
ListCell *left_tlist,
|
|
*lct,
|
|
*lcm,
|
|
*l;
|
|
List *targetvars,
|
|
*targetnames,
|
|
*sv_relnamespace,
|
|
*sv_varnamespace,
|
|
*sv_rtable;
|
|
RangeTblEntry *jrte;
|
|
int tllen;
|
|
|
|
qry->commandType = CMD_SELECT;
|
|
|
|
/*
|
|
* Find leftmost leaf SelectStmt; extract the one-time-only items from it
|
|
* and from the top-level node.
|
|
*/
|
|
leftmostSelect = stmt->larg;
|
|
while (leftmostSelect && leftmostSelect->op != SETOP_NONE)
|
|
leftmostSelect = leftmostSelect->larg;
|
|
Assert(leftmostSelect && IsA(leftmostSelect, SelectStmt) &&
|
|
leftmostSelect->larg == NULL);
|
|
if (leftmostSelect->into)
|
|
{
|
|
qry->into = leftmostSelect->into;
|
|
intoColNames = leftmostSelect->into->colNames;
|
|
}
|
|
|
|
/* clear this to prevent complaints in transformSetOperationTree() */
|
|
leftmostSelect->into = NULL;
|
|
|
|
/*
|
|
* These are not one-time, exactly, but we want to process them here and
|
|
* not let transformSetOperationTree() see them --- else it'll just
|
|
* recurse right back here!
|
|
*/
|
|
sortClause = stmt->sortClause;
|
|
limitOffset = stmt->limitOffset;
|
|
limitCount = stmt->limitCount;
|
|
lockingClause = stmt->lockingClause;
|
|
|
|
stmt->sortClause = NIL;
|
|
stmt->limitOffset = NULL;
|
|
stmt->limitCount = NULL;
|
|
stmt->lockingClause = NIL;
|
|
|
|
/* We don't support FOR UPDATE/SHARE with set ops at the moment. */
|
|
if (lockingClause)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
|
|
|
|
/*
|
|
* Recursively transform the components of the tree.
|
|
*/
|
|
sostmt = (SetOperationStmt *) transformSetOperationTree(pstate, stmt);
|
|
Assert(sostmt && IsA(sostmt, SetOperationStmt));
|
|
qry->setOperations = (Node *) sostmt;
|
|
|
|
/*
|
|
* Re-find leftmost SELECT (now it's a sub-query in rangetable)
|
|
*/
|
|
node = sostmt->larg;
|
|
while (node && IsA(node, SetOperationStmt))
|
|
node = ((SetOperationStmt *) node)->larg;
|
|
Assert(node && IsA(node, RangeTblRef));
|
|
leftmostRTI = ((RangeTblRef *) node)->rtindex;
|
|
leftmostQuery = rt_fetch(leftmostRTI, pstate->p_rtable)->subquery;
|
|
Assert(leftmostQuery != NULL);
|
|
|
|
/*
|
|
* Generate dummy targetlist for outer query using column names of
|
|
* leftmost select and common datatypes of topmost set operation. Also
|
|
* make lists of the dummy vars and their names for use in parsing ORDER
|
|
* BY.
|
|
*
|
|
* Note: we use leftmostRTI as the varno of the dummy variables. It
|
|
* shouldn't matter too much which RT index they have, as long as they
|
|
* have one that corresponds to a real RT entry; else funny things may
|
|
* happen when the tree is mashed by rule rewriting.
|
|
*/
|
|
qry->targetList = NIL;
|
|
targetvars = NIL;
|
|
targetnames = NIL;
|
|
left_tlist = list_head(leftmostQuery->targetList);
|
|
|
|
forboth(lct, sostmt->colTypes, lcm, sostmt->colTypmods)
|
|
{
|
|
Oid colType = lfirst_oid(lct);
|
|
int32 colTypmod = lfirst_int(lcm);
|
|
TargetEntry *lefttle = (TargetEntry *) lfirst(left_tlist);
|
|
char *colName;
|
|
TargetEntry *tle;
|
|
Expr *expr;
|
|
|
|
Assert(!lefttle->resjunk);
|
|
colName = pstrdup(lefttle->resname);
|
|
expr = (Expr *) makeVar(leftmostRTI,
|
|
lefttle->resno,
|
|
colType,
|
|
colTypmod,
|
|
0);
|
|
tle = makeTargetEntry(expr,
|
|
(AttrNumber) pstate->p_next_resno++,
|
|
colName,
|
|
false);
|
|
qry->targetList = lappend(qry->targetList, tle);
|
|
targetvars = lappend(targetvars, expr);
|
|
targetnames = lappend(targetnames, makeString(colName));
|
|
left_tlist = lnext(left_tlist);
|
|
}
|
|
|
|
/*
|
|
* As a first step towards supporting sort clauses that are expressions
|
|
* using the output columns, generate a varnamespace entry that makes the
|
|
* output columns visible. A Join RTE node is handy for this, since we
|
|
* can easily control the Vars generated upon matches.
|
|
*
|
|
* Note: we don't yet do anything useful with such cases, but at least
|
|
* "ORDER BY upper(foo)" will draw the right error message rather than
|
|
* "foo not found".
|
|
*/
|
|
jrte = addRangeTableEntryForJoin(NULL,
|
|
targetnames,
|
|
JOIN_INNER,
|
|
targetvars,
|
|
NULL,
|
|
false);
|
|
|
|
sv_rtable = pstate->p_rtable;
|
|
pstate->p_rtable = list_make1(jrte);
|
|
|
|
sv_relnamespace = pstate->p_relnamespace;
|
|
pstate->p_relnamespace = NIL; /* no qualified names allowed */
|
|
|
|
sv_varnamespace = pstate->p_varnamespace;
|
|
pstate->p_varnamespace = list_make1(jrte);
|
|
|
|
/*
|
|
* For now, we don't support resjunk sort clauses on the output of a
|
|
* setOperation tree --- you can only use the SQL92-spec options of
|
|
* selecting an output column by name or number. Enforce by checking that
|
|
* transformSortClause doesn't add any items to tlist.
|
|
*/
|
|
tllen = list_length(qry->targetList);
|
|
|
|
qry->sortClause = transformSortClause(pstate,
|
|
sortClause,
|
|
&qry->targetList,
|
|
false /* no unknowns expected */ );
|
|
|
|
pstate->p_rtable = sv_rtable;
|
|
pstate->p_relnamespace = sv_relnamespace;
|
|
pstate->p_varnamespace = sv_varnamespace;
|
|
|
|
if (tllen != list_length(qry->targetList))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("invalid UNION/INTERSECT/EXCEPT ORDER BY clause"),
|
|
errdetail("Only result column names can be used, not expressions or functions."),
|
|
errhint("Add the expression/function to every SELECT, or move the UNION into a FROM clause.")));
|
|
|
|
qry->limitOffset = transformLimitClause(pstate, limitOffset,
|
|
"OFFSET");
|
|
qry->limitCount = transformLimitClause(pstate, limitCount,
|
|
"LIMIT");
|
|
|
|
/*
|
|
* Handle SELECT INTO/CREATE TABLE AS.
|
|
*
|
|
* Any column names from CREATE TABLE AS need to be attached to both the
|
|
* top level and the leftmost subquery. We do not do this earlier because
|
|
* we do *not* want sortClause processing to be affected.
|
|
*/
|
|
if (intoColNames)
|
|
{
|
|
applyColumnNames(qry->targetList, intoColNames);
|
|
applyColumnNames(leftmostQuery->targetList, intoColNames);
|
|
}
|
|
|
|
qry->rtable = pstate->p_rtable;
|
|
qry->jointree = makeFromExpr(pstate->p_joinlist, NULL);
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
qry->hasAggs = pstate->p_hasAggs;
|
|
if (pstate->p_hasAggs || qry->groupClause || qry->havingQual)
|
|
parseCheckAggregates(pstate, qry);
|
|
|
|
foreach(l, lockingClause)
|
|
{
|
|
transformLockingClause(qry, (LockingClause *) lfirst(l));
|
|
}
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* transformSetOperationTree
|
|
* Recursively transform leaves and internal nodes of a set-op tree
|
|
*/
|
|
static Node *
|
|
transformSetOperationTree(ParseState *pstate, SelectStmt *stmt)
|
|
{
|
|
bool isLeaf;
|
|
|
|
Assert(stmt && IsA(stmt, SelectStmt));
|
|
|
|
/*
|
|
* Validity-check both leaf and internal SELECTs for disallowed ops.
|
|
*/
|
|
if (stmt->into)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("INTO is only allowed on first SELECT of UNION/INTERSECT/EXCEPT")));
|
|
/* We don't support FOR UPDATE/SHARE with set ops at the moment. */
|
|
if (stmt->lockingClause)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
|
|
|
|
/*
|
|
* If an internal node of a set-op tree has ORDER BY, UPDATE, or LIMIT
|
|
* clauses attached, we need to treat it like a leaf node to generate an
|
|
* independent sub-Query tree. Otherwise, it can be represented by a
|
|
* SetOperationStmt node underneath the parent Query.
|
|
*/
|
|
if (stmt->op == SETOP_NONE)
|
|
{
|
|
Assert(stmt->larg == NULL && stmt->rarg == NULL);
|
|
isLeaf = true;
|
|
}
|
|
else
|
|
{
|
|
Assert(stmt->larg != NULL && stmt->rarg != NULL);
|
|
if (stmt->sortClause || stmt->limitOffset || stmt->limitCount ||
|
|
stmt->lockingClause)
|
|
isLeaf = true;
|
|
else
|
|
isLeaf = false;
|
|
}
|
|
|
|
if (isLeaf)
|
|
{
|
|
/* Process leaf SELECT */
|
|
List *selectList;
|
|
Query *selectQuery;
|
|
char selectName[32];
|
|
RangeTblEntry *rte;
|
|
RangeTblRef *rtr;
|
|
|
|
/*
|
|
* Transform SelectStmt into a Query.
|
|
*
|
|
* Note: previously transformed sub-queries don't affect the parsing
|
|
* of this sub-query, because they are not in the toplevel pstate's
|
|
* namespace list.
|
|
*/
|
|
selectList = parse_sub_analyze((Node *) stmt, pstate);
|
|
|
|
Assert(list_length(selectList) == 1);
|
|
selectQuery = (Query *) linitial(selectList);
|
|
Assert(IsA(selectQuery, Query));
|
|
|
|
/*
|
|
* Check for bogus references to Vars on the current query level (but
|
|
* upper-level references are okay). Normally this can't happen
|
|
* because the namespace will be empty, but it could happen if we are
|
|
* inside a rule.
|
|
*/
|
|
if (pstate->p_relnamespace || pstate->p_varnamespace)
|
|
{
|
|
if (contain_vars_of_level((Node *) selectQuery, 1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
|
|
errmsg("UNION/INTERSECT/EXCEPT member statement cannot refer to other relations of same query level")));
|
|
}
|
|
|
|
/*
|
|
* Make the leaf query be a subquery in the top-level rangetable.
|
|
*/
|
|
snprintf(selectName, sizeof(selectName), "*SELECT* %d",
|
|
list_length(pstate->p_rtable) + 1);
|
|
rte = addRangeTableEntryForSubquery(pstate,
|
|
selectQuery,
|
|
makeAlias(selectName, NIL),
|
|
false);
|
|
|
|
/*
|
|
* Return a RangeTblRef to replace the SelectStmt in the set-op tree.
|
|
*/
|
|
rtr = makeNode(RangeTblRef);
|
|
/* assume new rte is at end */
|
|
rtr->rtindex = list_length(pstate->p_rtable);
|
|
Assert(rte == rt_fetch(rtr->rtindex, pstate->p_rtable));
|
|
return (Node *) rtr;
|
|
}
|
|
else
|
|
{
|
|
/* Process an internal node (set operation node) */
|
|
SetOperationStmt *op = makeNode(SetOperationStmt);
|
|
List *lcoltypes;
|
|
List *rcoltypes;
|
|
List *lcoltypmods;
|
|
List *rcoltypmods;
|
|
ListCell *lct;
|
|
ListCell *rct;
|
|
ListCell *lcm;
|
|
ListCell *rcm;
|
|
const char *context;
|
|
|
|
context = (stmt->op == SETOP_UNION ? "UNION" :
|
|
(stmt->op == SETOP_INTERSECT ? "INTERSECT" :
|
|
"EXCEPT"));
|
|
|
|
op->op = stmt->op;
|
|
op->all = stmt->all;
|
|
|
|
/*
|
|
* Recursively transform the child nodes.
|
|
*/
|
|
op->larg = transformSetOperationTree(pstate, stmt->larg);
|
|
op->rarg = transformSetOperationTree(pstate, stmt->rarg);
|
|
|
|
/*
|
|
* Verify that the two children have the same number of non-junk
|
|
* columns, and determine the types of the merged output columns.
|
|
*/
|
|
getSetColTypes(pstate, op->larg, &lcoltypes, &lcoltypmods);
|
|
getSetColTypes(pstate, op->rarg, &rcoltypes, &rcoltypmods);
|
|
if (list_length(lcoltypes) != list_length(rcoltypes))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("each %s query must have the same number of columns",
|
|
context)));
|
|
Assert(list_length(lcoltypes) == list_length(lcoltypmods));
|
|
Assert(list_length(rcoltypes) == list_length(rcoltypmods));
|
|
|
|
op->colTypes = NIL;
|
|
op->colTypmods = NIL;
|
|
/* don't have a "foreach4", so chase two of the lists by hand */
|
|
lcm = list_head(lcoltypmods);
|
|
rcm = list_head(rcoltypmods);
|
|
forboth(lct, lcoltypes, rct, rcoltypes)
|
|
{
|
|
Oid lcoltype = lfirst_oid(lct);
|
|
Oid rcoltype = lfirst_oid(rct);
|
|
int32 lcoltypmod = lfirst_int(lcm);
|
|
int32 rcoltypmod = lfirst_int(rcm);
|
|
Oid rescoltype;
|
|
int32 rescoltypmod;
|
|
|
|
/* select common type, same as CASE et al */
|
|
rescoltype = select_common_type(list_make2_oid(lcoltype, rcoltype),
|
|
context);
|
|
/* if same type and same typmod, use typmod; else default */
|
|
if (lcoltype == rcoltype && lcoltypmod == rcoltypmod)
|
|
rescoltypmod = lcoltypmod;
|
|
else
|
|
rescoltypmod = -1;
|
|
op->colTypes = lappend_oid(op->colTypes, rescoltype);
|
|
op->colTypmods = lappend_int(op->colTypmods, rescoltypmod);
|
|
|
|
lcm = lnext(lcm);
|
|
rcm = lnext(rcm);
|
|
}
|
|
|
|
return (Node *) op;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* getSetColTypes
|
|
* Get output column types/typmods of an (already transformed) set-op node
|
|
*/
|
|
static void
|
|
getSetColTypes(ParseState *pstate, Node *node,
|
|
List **colTypes, List **colTypmods)
|
|
{
|
|
*colTypes = NIL;
|
|
*colTypmods = NIL;
|
|
if (IsA(node, RangeTblRef))
|
|
{
|
|
RangeTblRef *rtr = (RangeTblRef *) node;
|
|
RangeTblEntry *rte = rt_fetch(rtr->rtindex, pstate->p_rtable);
|
|
Query *selectQuery = rte->subquery;
|
|
ListCell *tl;
|
|
|
|
Assert(selectQuery != NULL);
|
|
/* Get types of non-junk columns */
|
|
foreach(tl, selectQuery->targetList)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(tl);
|
|
|
|
if (tle->resjunk)
|
|
continue;
|
|
*colTypes = lappend_oid(*colTypes,
|
|
exprType((Node *) tle->expr));
|
|
*colTypmods = lappend_int(*colTypmods,
|
|
exprTypmod((Node *) tle->expr));
|
|
}
|
|
}
|
|
else if (IsA(node, SetOperationStmt))
|
|
{
|
|
SetOperationStmt *op = (SetOperationStmt *) node;
|
|
|
|
/* Result already computed during transformation of node */
|
|
Assert(op->colTypes != NIL);
|
|
*colTypes = op->colTypes;
|
|
*colTypmods = op->colTypmods;
|
|
}
|
|
else
|
|
elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
|
|
}
|
|
|
|
/* Attach column names from a ColumnDef list to a TargetEntry list */
|
|
static void
|
|
applyColumnNames(List *dst, List *src)
|
|
{
|
|
ListCell *dst_item;
|
|
ListCell *src_item;
|
|
|
|
src_item = list_head(src);
|
|
|
|
foreach(dst_item, dst)
|
|
{
|
|
TargetEntry *d = (TargetEntry *) lfirst(dst_item);
|
|
ColumnDef *s;
|
|
|
|
/* junk targets don't count */
|
|
if (d->resjunk)
|
|
continue;
|
|
|
|
/* fewer ColumnDefs than target entries is OK */
|
|
if (src_item == NULL)
|
|
break;
|
|
|
|
s = (ColumnDef *) lfirst(src_item);
|
|
src_item = lnext(src_item);
|
|
|
|
d->resname = pstrdup(s->colname);
|
|
}
|
|
|
|
/* more ColumnDefs than target entries is not OK */
|
|
if (src_item != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("CREATE TABLE AS specifies too many column names")));
|
|
}
|
|
|
|
|
|
/*
|
|
* transformUpdateStmt -
|
|
* transforms an update statement
|
|
*/
|
|
static Query *
|
|
transformUpdateStmt(ParseState *pstate, UpdateStmt *stmt)
|
|
{
|
|
Query *qry = makeNode(Query);
|
|
Node *qual;
|
|
ListCell *origTargetList;
|
|
ListCell *tl;
|
|
|
|
qry->commandType = CMD_UPDATE;
|
|
pstate->p_is_update = true;
|
|
|
|
qry->resultRelation = setTargetTable(pstate, stmt->relation,
|
|
interpretInhOption(stmt->relation->inhOpt),
|
|
true,
|
|
ACL_UPDATE);
|
|
|
|
/*
|
|
* the FROM clause is non-standard SQL syntax. We used to be able to do
|
|
* this with REPLACE in POSTQUEL so we keep the feature.
|
|
*/
|
|
transformFromClause(pstate, stmt->fromClause);
|
|
|
|
qry->targetList = transformTargetList(pstate, stmt->targetList);
|
|
|
|
qual = transformWhereClause(pstate, stmt->whereClause, "WHERE");
|
|
|
|
qry->returningList = transformReturningList(pstate, stmt->returningList);
|
|
|
|
qry->rtable = pstate->p_rtable;
|
|
qry->jointree = makeFromExpr(pstate->p_joinlist, qual);
|
|
|
|
qry->hasSubLinks = pstate->p_hasSubLinks;
|
|
|
|
/*
|
|
* Top-level aggregates are simply disallowed in UPDATE, per spec. (From
|
|
* an implementation point of view, this is forced because the implicit
|
|
* ctid reference would otherwise be an ungrouped variable.)
|
|
*/
|
|
if (pstate->p_hasAggs)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("cannot use aggregate function in UPDATE")));
|
|
|
|
/*
|
|
* Now we are done with SELECT-like processing, and can get on with
|
|
* transforming the target list to match the UPDATE target columns.
|
|
*/
|
|
|
|
/* Prepare to assign non-conflicting resnos to resjunk attributes */
|
|
if (pstate->p_next_resno <= pstate->p_target_relation->rd_rel->relnatts)
|
|
pstate->p_next_resno = pstate->p_target_relation->rd_rel->relnatts + 1;
|
|
|
|
/* Prepare non-junk columns for assignment to target table */
|
|
origTargetList = list_head(stmt->targetList);
|
|
|
|
foreach(tl, qry->targetList)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(tl);
|
|
ResTarget *origTarget;
|
|
int attrno;
|
|
|
|
if (tle->resjunk)
|
|
{
|
|
/*
|
|
* Resjunk nodes need no additional processing, but be sure they
|
|
* have resnos that do not match any target columns; else rewriter
|
|
* or planner might get confused. They don't need a resname
|
|
* either.
|
|
*/
|
|
tle->resno = (AttrNumber) pstate->p_next_resno++;
|
|
tle->resname = NULL;
|
|
continue;
|
|
}
|
|
if (origTargetList == NULL)
|
|
elog(ERROR, "UPDATE target count mismatch --- internal error");
|
|
origTarget = (ResTarget *) lfirst(origTargetList);
|
|
Assert(IsA(origTarget, ResTarget));
|
|
|
|
attrno = attnameAttNum(pstate->p_target_relation,
|
|
origTarget->name, true);
|
|
if (attrno == InvalidAttrNumber)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_COLUMN),
|
|
errmsg("column \"%s\" of relation \"%s\" does not exist",
|
|
origTarget->name,
|
|
RelationGetRelationName(pstate->p_target_relation)),
|
|
parser_errposition(pstate, origTarget->location)));
|
|
|
|
updateTargetListEntry(pstate, tle, origTarget->name,
|
|
attrno,
|
|
origTarget->indirection,
|
|
origTarget->location);
|
|
|
|
origTargetList = lnext(origTargetList);
|
|
}
|
|
if (origTargetList != NULL)
|
|
elog(ERROR, "UPDATE target count mismatch --- internal error");
|
|
|
|
return qry;
|
|
}
|
|
|
|
/*
|
|
* transformReturningList -
|
|
* handle a RETURNING clause in INSERT/UPDATE/DELETE
|
|
*/
|
|
static List *
|
|
transformReturningList(ParseState *pstate, List *returningList)
|
|
{
|
|
List *rlist;
|
|
int save_next_resno;
|
|
bool save_hasAggs;
|
|
int length_rtable;
|
|
|
|
if (returningList == NIL)
|
|
return NIL; /* nothing to do */
|
|
|
|
/*
|
|
* We need to assign resnos starting at one in the RETURNING list. Save
|
|
* and restore the main tlist's value of p_next_resno, just in case
|
|
* someone looks at it later (probably won't happen).
|
|
*/
|
|
save_next_resno = pstate->p_next_resno;
|
|
pstate->p_next_resno = 1;
|
|
|
|
/* save other state so that we can detect disallowed stuff */
|
|
save_hasAggs = pstate->p_hasAggs;
|
|
pstate->p_hasAggs = false;
|
|
length_rtable = list_length(pstate->p_rtable);
|
|
|
|
/* transform RETURNING identically to a SELECT targetlist */
|
|
rlist = transformTargetList(pstate, returningList);
|
|
|
|
/* check for disallowed stuff */
|
|
|
|
/* aggregates not allowed (but subselects are okay) */
|
|
if (pstate->p_hasAggs)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("cannot use aggregate function in RETURNING")));
|
|
|
|
/* no new relation references please */
|
|
if (list_length(pstate->p_rtable) != length_rtable)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("RETURNING cannot contain references to other relations")));
|
|
|
|
/* mark column origins */
|
|
markTargetListOrigins(pstate, rlist);
|
|
|
|
/* restore state */
|
|
pstate->p_next_resno = save_next_resno;
|
|
pstate->p_hasAggs = save_hasAggs;
|
|
|
|
return rlist;
|
|
}
|
|
|
|
/*
|
|
* transformAlterTableStmt -
|
|
* transform an Alter Table Statement
|
|
*
|
|
* CAUTION: resist the temptation to do any work here that depends on the
|
|
* current state of the table. Actual execution of the command might not
|
|
* occur till some future transaction. Hence, we do only purely syntactic
|
|
* transformations here, comparable to the processing of CREATE TABLE.
|
|
*/
|
|
static Query *
|
|
transformAlterTableStmt(ParseState *pstate, AlterTableStmt *stmt,
|
|
List **extras_before, List **extras_after)
|
|
{
|
|
CreateStmtContext cxt;
|
|
Query *qry;
|
|
ListCell *lcmd,
|
|
*l;
|
|
List *newcmds = NIL;
|
|
bool skipValidation = true;
|
|
AlterTableCmd *newcmd;
|
|
|
|
cxt.stmtType = "ALTER TABLE";
|
|
cxt.relation = stmt->relation;
|
|
cxt.inhRelations = NIL;
|
|
cxt.isalter = true;
|
|
cxt.hasoids = false; /* need not be right */
|
|
cxt.columns = NIL;
|
|
cxt.ckconstraints = NIL;
|
|
cxt.fkconstraints = NIL;
|
|
cxt.ixconstraints = NIL;
|
|
cxt.blist = NIL;
|
|
cxt.alist = NIL;
|
|
cxt.pkey = NULL;
|
|
|
|
/*
|
|
* The only subtypes that currently require parse transformation handling
|
|
* are ADD COLUMN and ADD CONSTRAINT. These largely re-use code from
|
|
* CREATE TABLE.
|
|
*/
|
|
foreach(lcmd, stmt->cmds)
|
|
{
|
|
AlterTableCmd *cmd = (AlterTableCmd *) lfirst(lcmd);
|
|
|
|
switch (cmd->subtype)
|
|
{
|
|
case AT_AddColumn:
|
|
{
|
|
ColumnDef *def = (ColumnDef *) cmd->def;
|
|
|
|
Assert(IsA(cmd->def, ColumnDef));
|
|
transformColumnDefinition(pstate, &cxt,
|
|
(ColumnDef *) cmd->def);
|
|
|
|
/*
|
|
* If the column has a non-null default, we can't skip
|
|
* validation of foreign keys.
|
|
*/
|
|
if (((ColumnDef *) cmd->def)->raw_default != NULL)
|
|
skipValidation = false;
|
|
|
|
newcmds = lappend(newcmds, cmd);
|
|
|
|
/*
|
|
* Convert an ADD COLUMN ... NOT NULL constraint to a
|
|
* separate command
|
|
*/
|
|
if (def->is_not_null)
|
|
{
|
|
/* Remove NOT NULL from AddColumn */
|
|
def->is_not_null = false;
|
|
|
|
/* Add as a separate AlterTableCmd */
|
|
newcmd = makeNode(AlterTableCmd);
|
|
newcmd->subtype = AT_SetNotNull;
|
|
newcmd->name = pstrdup(def->colname);
|
|
newcmds = lappend(newcmds, newcmd);
|
|
}
|
|
|
|
/*
|
|
* All constraints are processed in other ways. Remove the
|
|
* original list
|
|
*/
|
|
def->constraints = NIL;
|
|
|
|
break;
|
|
}
|
|
case AT_AddConstraint:
|
|
|
|
/*
|
|
* The original AddConstraint cmd node doesn't go to newcmds
|
|
*/
|
|
|
|
if (IsA(cmd->def, Constraint))
|
|
transformTableConstraint(pstate, &cxt,
|
|
(Constraint *) cmd->def);
|
|
else if (IsA(cmd->def, FkConstraint))
|
|
{
|
|
cxt.fkconstraints = lappend(cxt.fkconstraints, cmd->def);
|
|
skipValidation = false;
|
|
}
|
|
else
|
|
elog(ERROR, "unrecognized node type: %d",
|
|
(int) nodeTag(cmd->def));
|
|
break;
|
|
|
|
case AT_ProcessedConstraint:
|
|
|
|
/*
|
|
* Already-transformed ADD CONSTRAINT, so just make it look
|
|
* like the standard case.
|
|
*/
|
|
cmd->subtype = AT_AddConstraint;
|
|
newcmds = lappend(newcmds, cmd);
|
|
break;
|
|
|
|
default:
|
|
newcmds = lappend(newcmds, cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* transformIndexConstraints wants cxt.alist to contain only index
|
|
* statements, so transfer anything we already have into extras_after
|
|
* immediately.
|
|
*/
|
|
*extras_after = list_concat(cxt.alist, *extras_after);
|
|
cxt.alist = NIL;
|
|
|
|
/* Postprocess index and FK constraints */
|
|
transformIndexConstraints(pstate, &cxt);
|
|
|
|
transformFKConstraints(pstate, &cxt, skipValidation, true);
|
|
|
|
/*
|
|
* Push any index-creation commands into the ALTER, so that they can be
|
|
* scheduled nicely by tablecmds.c.
|
|
*/
|
|
foreach(l, cxt.alist)
|
|
{
|
|
Node *idxstmt = (Node *) lfirst(l);
|
|
|
|
Assert(IsA(idxstmt, IndexStmt));
|
|
newcmd = makeNode(AlterTableCmd);
|
|
newcmd->subtype = AT_AddIndex;
|
|
newcmd->def = idxstmt;
|
|
newcmds = lappend(newcmds, newcmd);
|
|
}
|
|
cxt.alist = NIL;
|
|
|
|
/* Append any CHECK or FK constraints to the commands list */
|
|
foreach(l, cxt.ckconstraints)
|
|
{
|
|
newcmd = makeNode(AlterTableCmd);
|
|
newcmd->subtype = AT_AddConstraint;
|
|
newcmd->def = (Node *) lfirst(l);
|
|
newcmds = lappend(newcmds, newcmd);
|
|
}
|
|
foreach(l, cxt.fkconstraints)
|
|
{
|
|
newcmd = makeNode(AlterTableCmd);
|
|
newcmd->subtype = AT_AddConstraint;
|
|
newcmd->def = (Node *) lfirst(l);
|
|
newcmds = lappend(newcmds, newcmd);
|
|
}
|
|
|
|
/* Update statement's commands list */
|
|
stmt->cmds = newcmds;
|
|
|
|
qry = makeNode(Query);
|
|
qry->commandType = CMD_UTILITY;
|
|
qry->utilityStmt = (Node *) stmt;
|
|
|
|
*extras_before = list_concat(*extras_before, cxt.blist);
|
|
*extras_after = list_concat(cxt.alist, *extras_after);
|
|
|
|
return qry;
|
|
}
|
|
|
|
|
|
/* exported so planner can check again after rewriting, query pullup, etc */
|
|
void
|
|
CheckSelectLocking(Query *qry)
|
|
{
|
|
if (qry->setOperations)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
|
|
if (qry->distinctClause != NIL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE is not allowed with DISTINCT clause")));
|
|
if (qry->groupClause != NIL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE is not allowed with GROUP BY clause")));
|
|
if (qry->havingQual != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE is not allowed with HAVING clause")));
|
|
if (qry->hasAggs)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE is not allowed with aggregate functions")));
|
|
}
|
|
|
|
/*
|
|
* Transform a FOR UPDATE/SHARE clause
|
|
*
|
|
* This basically involves replacing names by integer relids.
|
|
*
|
|
* NB: if you need to change this, see also markQueryForLocking()
|
|
* in rewriteHandler.c.
|
|
*/
|
|
static void
|
|
transformLockingClause(Query *qry, LockingClause *lc)
|
|
{
|
|
List *lockedRels = lc->lockedRels;
|
|
ListCell *l;
|
|
ListCell *rt;
|
|
Index i;
|
|
LockingClause *allrels;
|
|
|
|
CheckSelectLocking(qry);
|
|
|
|
/* make a clause we can pass down to subqueries to select all rels */
|
|
allrels = makeNode(LockingClause);
|
|
allrels->lockedRels = NIL; /* indicates all rels */
|
|
allrels->forUpdate = lc->forUpdate;
|
|
allrels->noWait = lc->noWait;
|
|
|
|
if (lockedRels == NIL)
|
|
{
|
|
/* all regular tables used in query */
|
|
i = 0;
|
|
foreach(rt, qry->rtable)
|
|
{
|
|
RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt);
|
|
|
|
++i;
|
|
switch (rte->rtekind)
|
|
{
|
|
case RTE_RELATION:
|
|
applyLockingClause(qry, i, lc->forUpdate, lc->noWait);
|
|
rte->requiredPerms |= ACL_SELECT_FOR_UPDATE;
|
|
break;
|
|
case RTE_SUBQUERY:
|
|
|
|
/*
|
|
* FOR UPDATE/SHARE of subquery is propagated to all of
|
|
* subquery's rels
|
|
*/
|
|
transformLockingClause(rte->subquery, allrels);
|
|
break;
|
|
default:
|
|
/* ignore JOIN, SPECIAL, FUNCTION RTEs */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* just the named tables */
|
|
foreach(l, lockedRels)
|
|
{
|
|
char *relname = strVal(lfirst(l));
|
|
|
|
i = 0;
|
|
foreach(rt, qry->rtable)
|
|
{
|
|
RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt);
|
|
|
|
++i;
|
|
if (strcmp(rte->eref->aliasname, relname) == 0)
|
|
{
|
|
switch (rte->rtekind)
|
|
{
|
|
case RTE_RELATION:
|
|
applyLockingClause(qry, i,
|
|
lc->forUpdate, lc->noWait);
|
|
rte->requiredPerms |= ACL_SELECT_FOR_UPDATE;
|
|
break;
|
|
case RTE_SUBQUERY:
|
|
|
|
/*
|
|
* FOR UPDATE/SHARE of subquery is propagated to
|
|
* all of subquery's rels
|
|
*/
|
|
transformLockingClause(rte->subquery, allrels);
|
|
break;
|
|
case RTE_JOIN:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE cannot be applied to a join")));
|
|
break;
|
|
case RTE_SPECIAL:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE cannot be applied to NEW or OLD")));
|
|
break;
|
|
case RTE_FUNCTION:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE cannot be applied to a function")));
|
|
break;
|
|
case RTE_VALUES:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("SELECT FOR UPDATE/SHARE cannot be applied to VALUES")));
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized RTE type: %d",
|
|
(int) rte->rtekind);
|
|
break;
|
|
}
|
|
break; /* out of foreach loop */
|
|
}
|
|
}
|
|
if (rt == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_TABLE),
|
|
errmsg("relation \"%s\" in FOR UPDATE/SHARE clause not found in FROM clause",
|
|
relname)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Record locking info for a single rangetable item
|
|
*/
|
|
void
|
|
applyLockingClause(Query *qry, Index rtindex, bool forUpdate, bool noWait)
|
|
{
|
|
RowMarkClause *rc;
|
|
|
|
/* Check for pre-existing entry for same rtindex */
|
|
if ((rc = get_rowmark(qry, rtindex)) != NULL)
|
|
{
|
|
/*
|
|
* If the same RTE is specified both FOR UPDATE and FOR SHARE, treat
|
|
* it as FOR UPDATE. (Reasonable, since you can't take both a shared
|
|
* and exclusive lock at the same time; it'll end up being exclusive
|
|
* anyway.)
|
|
*
|
|
* We also consider that NOWAIT wins if it's specified both ways. This
|
|
* is a bit more debatable but raising an error doesn't seem helpful.
|
|
* (Consider for instance SELECT FOR UPDATE NOWAIT from a view that
|
|
* internally contains a plain FOR UPDATE spec.)
|
|
*/
|
|
rc->forUpdate |= forUpdate;
|
|
rc->noWait |= noWait;
|
|
return;
|
|
}
|
|
|
|
/* Make a new RowMarkClause */
|
|
rc = makeNode(RowMarkClause);
|
|
rc->rti = rtindex;
|
|
rc->forUpdate = forUpdate;
|
|
rc->noWait = noWait;
|
|
qry->rowMarks = lappend(qry->rowMarks, rc);
|
|
}
|
|
|
|
|
|
/*
|
|
* Preprocess a list of column constraint clauses
|
|
* to attach constraint attributes to their primary constraint nodes
|
|
* and detect inconsistent/misplaced constraint attributes.
|
|
*
|
|
* NOTE: currently, attributes are only supported for FOREIGN KEY primary
|
|
* constraints, but someday they ought to be supported for other constraints.
|
|
*/
|
|
static void
|
|
transformConstraintAttrs(List *constraintList)
|
|
{
|
|
Node *lastprimarynode = NULL;
|
|
bool saw_deferrability = false;
|
|
bool saw_initially = false;
|
|
ListCell *clist;
|
|
|
|
foreach(clist, constraintList)
|
|
{
|
|
Node *node = lfirst(clist);
|
|
|
|
if (!IsA(node, Constraint))
|
|
{
|
|
lastprimarynode = node;
|
|
/* reset flags for new primary node */
|
|
saw_deferrability = false;
|
|
saw_initially = false;
|
|
}
|
|
else
|
|
{
|
|
Constraint *con = (Constraint *) node;
|
|
|
|
switch (con->contype)
|
|
{
|
|
case CONSTR_ATTR_DEFERRABLE:
|
|
if (lastprimarynode == NULL ||
|
|
!IsA(lastprimarynode, FkConstraint))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("misplaced DEFERRABLE clause")));
|
|
if (saw_deferrability)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("multiple DEFERRABLE/NOT DEFERRABLE clauses not allowed")));
|
|
saw_deferrability = true;
|
|
((FkConstraint *) lastprimarynode)->deferrable = true;
|
|
break;
|
|
case CONSTR_ATTR_NOT_DEFERRABLE:
|
|
if (lastprimarynode == NULL ||
|
|
!IsA(lastprimarynode, FkConstraint))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("misplaced NOT DEFERRABLE clause")));
|
|
if (saw_deferrability)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("multiple DEFERRABLE/NOT DEFERRABLE clauses not allowed")));
|
|
saw_deferrability = true;
|
|
((FkConstraint *) lastprimarynode)->deferrable = false;
|
|
if (saw_initially &&
|
|
((FkConstraint *) lastprimarynode)->initdeferred)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("constraint declared INITIALLY DEFERRED must be DEFERRABLE")));
|
|
break;
|
|
case CONSTR_ATTR_DEFERRED:
|
|
if (lastprimarynode == NULL ||
|
|
!IsA(lastprimarynode, FkConstraint))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("misplaced INITIALLY DEFERRED clause")));
|
|
if (saw_initially)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("multiple INITIALLY IMMEDIATE/DEFERRED clauses not allowed")));
|
|
saw_initially = true;
|
|
((FkConstraint *) lastprimarynode)->initdeferred = true;
|
|
|
|
/*
|
|
* If only INITIALLY DEFERRED appears, assume DEFERRABLE
|
|
*/
|
|
if (!saw_deferrability)
|
|
((FkConstraint *) lastprimarynode)->deferrable = true;
|
|
else if (!((FkConstraint *) lastprimarynode)->deferrable)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("constraint declared INITIALLY DEFERRED must be DEFERRABLE")));
|
|
break;
|
|
case CONSTR_ATTR_IMMEDIATE:
|
|
if (lastprimarynode == NULL ||
|
|
!IsA(lastprimarynode, FkConstraint))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("misplaced INITIALLY IMMEDIATE clause")));
|
|
if (saw_initially)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("multiple INITIALLY IMMEDIATE/DEFERRED clauses not allowed")));
|
|
saw_initially = true;
|
|
((FkConstraint *) lastprimarynode)->initdeferred = false;
|
|
break;
|
|
default:
|
|
/* Otherwise it's not an attribute */
|
|
lastprimarynode = node;
|
|
/* reset flags for new primary node */
|
|
saw_deferrability = false;
|
|
saw_initially = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Build a FromExpr node */
|
|
static FromExpr *
|
|
makeFromExpr(List *fromlist, Node *quals)
|
|
{
|
|
FromExpr *f = makeNode(FromExpr);
|
|
|
|
f->fromlist = fromlist;
|
|
f->quals = quals;
|
|
return f;
|
|
}
|
|
|
|
/*
|
|
* Special handling of type definition for a column
|
|
*/
|
|
static void
|
|
transformColumnType(ParseState *pstate, ColumnDef *column)
|
|
{
|
|
/*
|
|
* All we really need to do here is verify that the type is valid.
|
|
*/
|
|
Type ctype = typenameType(pstate, column->typename);
|
|
|
|
ReleaseSysCache(ctype);
|
|
}
|
|
|
|
static void
|
|
setSchemaName(char *context_schema, char **stmt_schema_name)
|
|
{
|
|
if (*stmt_schema_name == NULL)
|
|
*stmt_schema_name = context_schema;
|
|
else if (strcmp(context_schema, *stmt_schema_name) != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_SCHEMA_DEFINITION),
|
|
errmsg("CREATE specifies a schema (%s) "
|
|
"different from the one being created (%s)",
|
|
*stmt_schema_name, context_schema)));
|
|
}
|
|
|
|
/*
|
|
* analyzeCreateSchemaStmt -
|
|
* analyzes the "create schema" statement
|
|
*
|
|
* Split the schema element list into individual commands and place
|
|
* them in the result list in an order such that there are no forward
|
|
* references (e.g. GRANT to a table created later in the list). Note
|
|
* that the logic we use for determining forward references is
|
|
* presently quite incomplete.
|
|
*
|
|
* SQL92 also allows constraints to make forward references, so thumb through
|
|
* the table columns and move forward references to a posterior alter-table
|
|
* command.
|
|
*
|
|
* The result is a list of parse nodes that still need to be analyzed ---
|
|
* but we can't analyze the later commands until we've executed the earlier
|
|
* ones, because of possible inter-object references.
|
|
*
|
|
* Note: Called from commands/schemacmds.c
|
|
*/
|
|
List *
|
|
analyzeCreateSchemaStmt(CreateSchemaStmt *stmt)
|
|
{
|
|
CreateSchemaStmtContext cxt;
|
|
List *result;
|
|
ListCell *elements;
|
|
|
|
cxt.stmtType = "CREATE SCHEMA";
|
|
cxt.schemaname = stmt->schemaname;
|
|
cxt.authid = stmt->authid;
|
|
cxt.sequences = NIL;
|
|
cxt.tables = NIL;
|
|
cxt.views = NIL;
|
|
cxt.indexes = NIL;
|
|
cxt.grants = NIL;
|
|
cxt.triggers = NIL;
|
|
cxt.fwconstraints = NIL;
|
|
cxt.alters = NIL;
|
|
cxt.blist = NIL;
|
|
cxt.alist = NIL;
|
|
|
|
/*
|
|
* Run through each schema element in the schema element list. Separate
|
|
* statements by type, and do preliminary analysis.
|
|
*/
|
|
foreach(elements, stmt->schemaElts)
|
|
{
|
|
Node *element = lfirst(elements);
|
|
|
|
switch (nodeTag(element))
|
|
{
|
|
case T_CreateSeqStmt:
|
|
{
|
|
CreateSeqStmt *elp = (CreateSeqStmt *) element;
|
|
|
|
setSchemaName(cxt.schemaname, &elp->sequence->schemaname);
|
|
cxt.sequences = lappend(cxt.sequences, element);
|
|
}
|
|
break;
|
|
|
|
case T_CreateStmt:
|
|
{
|
|
CreateStmt *elp = (CreateStmt *) element;
|
|
|
|
setSchemaName(cxt.schemaname, &elp->relation->schemaname);
|
|
|
|
/*
|
|
* XXX todo: deal with constraints
|
|
*/
|
|
cxt.tables = lappend(cxt.tables, element);
|
|
}
|
|
break;
|
|
|
|
case T_ViewStmt:
|
|
{
|
|
ViewStmt *elp = (ViewStmt *) element;
|
|
|
|
setSchemaName(cxt.schemaname, &elp->view->schemaname);
|
|
|
|
/*
|
|
* XXX todo: deal with references between views
|
|
*/
|
|
cxt.views = lappend(cxt.views, element);
|
|
}
|
|
break;
|
|
|
|
case T_IndexStmt:
|
|
{
|
|
IndexStmt *elp = (IndexStmt *) element;
|
|
|
|
setSchemaName(cxt.schemaname, &elp->relation->schemaname);
|
|
cxt.indexes = lappend(cxt.indexes, element);
|
|
}
|
|
break;
|
|
|
|
case T_CreateTrigStmt:
|
|
{
|
|
CreateTrigStmt *elp = (CreateTrigStmt *) element;
|
|
|
|
setSchemaName(cxt.schemaname, &elp->relation->schemaname);
|
|
cxt.triggers = lappend(cxt.triggers, element);
|
|
}
|
|
break;
|
|
|
|
case T_GrantStmt:
|
|
cxt.grants = lappend(cxt.grants, element);
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized node type: %d",
|
|
(int) nodeTag(element));
|
|
}
|
|
}
|
|
|
|
result = NIL;
|
|
result = list_concat(result, cxt.sequences);
|
|
result = list_concat(result, cxt.tables);
|
|
result = list_concat(result, cxt.views);
|
|
result = list_concat(result, cxt.indexes);
|
|
result = list_concat(result, cxt.triggers);
|
|
result = list_concat(result, cxt.grants);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Traverse a fully-analyzed tree to verify that parameter symbols
|
|
* match their types. We need this because some Params might still
|
|
* be UNKNOWN, if there wasn't anything to force their coercion,
|
|
* and yet other instances seen later might have gotten coerced.
|
|
*/
|
|
static bool
|
|
check_parameter_resolution_walker(Node *node,
|
|
check_parameter_resolution_context *context)
|
|
{
|
|
if (node == NULL)
|
|
return false;
|
|
if (IsA(node, Param))
|
|
{
|
|
Param *param = (Param *) node;
|
|
|
|
if (param->paramkind == PARAM_EXTERN)
|
|
{
|
|
int paramno = param->paramid;
|
|
|
|
if (paramno <= 0 || /* shouldn't happen, but... */
|
|
paramno > context->numParams)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_PARAMETER),
|
|
errmsg("there is no parameter $%d", paramno)));
|
|
|
|
if (param->paramtype != context->paramTypes[paramno - 1])
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_AMBIGUOUS_PARAMETER),
|
|
errmsg("could not determine data type of parameter $%d",
|
|
paramno)));
|
|
}
|
|
return false;
|
|
}
|
|
if (IsA(node, Query))
|
|
{
|
|
/* Recurse into RTE subquery or not-yet-planned sublink subquery */
|
|
return query_tree_walker((Query *) node,
|
|
check_parameter_resolution_walker,
|
|
(void *) context, 0);
|
|
}
|
|
return expression_tree_walker(node, check_parameter_resolution_walker,
|
|
(void *) context);
|
|
}
|