mirror of
https://github.com/postgres/postgres.git
synced 2025-05-15 19:15:29 +03:00
This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
214 lines
6.0 KiB
C
214 lines
6.0 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* nodeWorktablescan.c
|
|
* routines to handle WorkTableScan nodes.
|
|
*
|
|
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/executor/nodeWorktablescan.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "executor/execdebug.h"
|
|
#include "executor/nodeWorktablescan.h"
|
|
|
|
static TupleTableSlot *WorkTableScanNext(WorkTableScanState *node);
|
|
|
|
/* ----------------------------------------------------------------
|
|
* WorkTableScanNext
|
|
*
|
|
* This is a workhorse for ExecWorkTableScan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
WorkTableScanNext(WorkTableScanState *node)
|
|
{
|
|
TupleTableSlot *slot;
|
|
Tuplestorestate *tuplestorestate;
|
|
|
|
/*
|
|
* get information from the estate and scan state
|
|
*
|
|
* Note: we intentionally do not support backward scan. Although it would
|
|
* take only a couple more lines here, it would force nodeRecursiveunion.c
|
|
* to create the tuplestore with backward scan enabled, which has a
|
|
* performance cost. In practice backward scan is never useful for a
|
|
* worktable plan node, since it cannot appear high enough in the plan
|
|
* tree of a scrollable cursor to be exposed to a backward-scan
|
|
* requirement. So it's not worth expending effort to support it.
|
|
*
|
|
* Note: we are also assuming that this node is the only reader of the
|
|
* worktable. Therefore, we don't need a private read pointer for the
|
|
* tuplestore, nor do we need to tell tuplestore_gettupleslot to copy.
|
|
*/
|
|
Assert(ScanDirectionIsForward(node->ss.ps.state->es_direction));
|
|
|
|
tuplestorestate = node->rustate->working_table;
|
|
|
|
/*
|
|
* Get the next tuple from tuplestore. Return NULL if no more tuples.
|
|
*/
|
|
slot = node->ss.ss_ScanTupleSlot;
|
|
(void) tuplestore_gettupleslot(tuplestorestate, true, false, slot);
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* WorkTableScanRecheck -- access method routine to recheck a tuple in EvalPlanQual
|
|
*/
|
|
static bool
|
|
WorkTableScanRecheck(WorkTableScanState *node, TupleTableSlot *slot)
|
|
{
|
|
/* nothing to check */
|
|
return true;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecWorkTableScan(node)
|
|
*
|
|
* Scans the worktable sequentially and returns the next qualifying tuple.
|
|
* We call the ExecScan() routine and pass it the appropriate
|
|
* access method functions.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecWorkTableScan(WorkTableScanState *node)
|
|
{
|
|
/*
|
|
* On the first call, find the ancestor RecursiveUnion's state via the
|
|
* Param slot reserved for it. (We can't do this during node init because
|
|
* there are corner cases where we'll get the init call before the
|
|
* RecursiveUnion does.)
|
|
*/
|
|
if (node->rustate == NULL)
|
|
{
|
|
WorkTableScan *plan = (WorkTableScan *) node->ss.ps.plan;
|
|
EState *estate = node->ss.ps.state;
|
|
ParamExecData *param;
|
|
|
|
param = &(estate->es_param_exec_vals[plan->wtParam]);
|
|
Assert(param->execPlan == NULL);
|
|
Assert(!param->isnull);
|
|
node->rustate = castNode(RecursiveUnionState, DatumGetPointer(param->value));
|
|
Assert(node->rustate);
|
|
|
|
/*
|
|
* The scan tuple type (ie, the rowtype we expect to find in the work
|
|
* table) is the same as the result rowtype of the ancestor
|
|
* RecursiveUnion node. Note this depends on the assumption that
|
|
* RecursiveUnion doesn't allow projection.
|
|
*/
|
|
ExecAssignScanType(&node->ss,
|
|
ExecGetResultType(&node->rustate->ps));
|
|
|
|
/*
|
|
* Now we can initialize the projection info. This must be completed
|
|
* before we can call ExecScan().
|
|
*/
|
|
ExecAssignScanProjectionInfo(&node->ss);
|
|
}
|
|
|
|
return ExecScan(&node->ss,
|
|
(ExecScanAccessMtd) WorkTableScanNext,
|
|
(ExecScanRecheckMtd) WorkTableScanRecheck);
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitWorkTableScan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
WorkTableScanState *
|
|
ExecInitWorkTableScan(WorkTableScan *node, EState *estate, int eflags)
|
|
{
|
|
WorkTableScanState *scanstate;
|
|
|
|
/* check for unsupported flags */
|
|
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
|
|
|
|
/*
|
|
* WorkTableScan should not have any children.
|
|
*/
|
|
Assert(outerPlan(node) == NULL);
|
|
Assert(innerPlan(node) == NULL);
|
|
|
|
/*
|
|
* create new WorkTableScanState for node
|
|
*/
|
|
scanstate = makeNode(WorkTableScanState);
|
|
scanstate->ss.ps.plan = (Plan *) node;
|
|
scanstate->ss.ps.state = estate;
|
|
scanstate->rustate = NULL; /* we'll set this later */
|
|
|
|
/*
|
|
* Miscellaneous initialization
|
|
*
|
|
* create expression context for node
|
|
*/
|
|
ExecAssignExprContext(estate, &scanstate->ss.ps);
|
|
|
|
/*
|
|
* initialize child expressions
|
|
*/
|
|
scanstate->ss.ps.qual =
|
|
ExecInitQual(node->scan.plan.qual, (PlanState *) scanstate);
|
|
|
|
/*
|
|
* tuple table initialization
|
|
*/
|
|
ExecInitResultTupleSlot(estate, &scanstate->ss.ps);
|
|
ExecInitScanTupleSlot(estate, &scanstate->ss);
|
|
|
|
/*
|
|
* Initialize result tuple type, but not yet projection info.
|
|
*/
|
|
ExecAssignResultTypeFromTL(&scanstate->ss.ps);
|
|
|
|
return scanstate;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndWorkTableScan
|
|
*
|
|
* frees any storage allocated through C routines.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndWorkTableScan(WorkTableScanState *node)
|
|
{
|
|
/*
|
|
* Free exprcontext
|
|
*/
|
|
ExecFreeExprContext(&node->ss.ps);
|
|
|
|
/*
|
|
* clean out the tuple table
|
|
*/
|
|
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
|
ExecClearTuple(node->ss.ss_ScanTupleSlot);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecReScanWorkTableScan
|
|
*
|
|
* Rescans the relation.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecReScanWorkTableScan(WorkTableScanState *node)
|
|
{
|
|
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
|
|
|
ExecScanReScan(&node->ss);
|
|
|
|
/* No need (or way) to rescan if ExecWorkTableScan not called yet */
|
|
if (node->rustate)
|
|
tuplestore_rescan(node->rustate->working_table);
|
|
}
|