mirror of
https://github.com/postgres/postgres.git
synced 2025-04-24 10:47:04 +03:00
769 lines
23 KiB
C
769 lines
23 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* setrefs.c
|
|
* Post-processing of a completed plan tree: fix references to subplan
|
|
* vars, and compute regproc values for operators
|
|
*
|
|
* Portions Copyright (c) 1996-2004, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/optimizer/plan/setrefs.c,v 1.104 2004/08/29 05:06:44 momjian Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "nodes/makefuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/planmain.h"
|
|
#include "optimizer/tlist.h"
|
|
#include "optimizer/var.h"
|
|
#include "parser/parsetree.h"
|
|
#include "utils/lsyscache.h"
|
|
|
|
|
|
typedef struct
|
|
{
|
|
List *rtable;
|
|
List *outer_tlist;
|
|
List *inner_tlist;
|
|
Index acceptable_rel;
|
|
bool tlists_have_non_vars;
|
|
} join_references_context;
|
|
|
|
typedef struct
|
|
{
|
|
Index subvarno;
|
|
List *subplan_targetlist;
|
|
bool tlist_has_non_vars;
|
|
} replace_vars_with_subplan_refs_context;
|
|
|
|
static void fix_expr_references(Plan *plan, Node *node);
|
|
static bool fix_expr_references_walker(Node *node, void *context);
|
|
static void set_join_references(Join *join, List *rtable);
|
|
static void set_uppernode_references(Plan *plan, Index subvarno);
|
|
static bool targetlist_has_non_vars(List *tlist);
|
|
static List *join_references(List *clauses,
|
|
List *rtable,
|
|
List *outer_tlist,
|
|
List *inner_tlist,
|
|
Index acceptable_rel,
|
|
bool tlists_have_non_vars);
|
|
static Node *join_references_mutator(Node *node,
|
|
join_references_context *context);
|
|
static Node *replace_vars_with_subplan_refs(Node *node,
|
|
Index subvarno,
|
|
List *subplan_targetlist,
|
|
bool tlist_has_non_vars);
|
|
static Node *replace_vars_with_subplan_refs_mutator(Node *node,
|
|
replace_vars_with_subplan_refs_context *context);
|
|
static bool fix_opfuncids_walker(Node *node, void *context);
|
|
static void set_sa_opfuncid(ScalarArrayOpExpr *opexpr);
|
|
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* SUBPLAN REFERENCES
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* set_plan_references
|
|
* This is the final processing pass of the planner/optimizer. The plan
|
|
* tree is complete; we just have to adjust some representational details
|
|
* for the convenience of the executor. We update Vars in upper plan nodes
|
|
* to refer to the outputs of their subplans, and we compute regproc OIDs
|
|
* for operators (ie, we look up the function that implements each op).
|
|
*
|
|
* set_plan_references recursively traverses the whole plan tree.
|
|
*
|
|
* Returns nothing of interest, but modifies internal fields of nodes.
|
|
*/
|
|
void
|
|
set_plan_references(Plan *plan, List *rtable)
|
|
{
|
|
ListCell *l;
|
|
|
|
if (plan == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Plan-type-specific fixes
|
|
*/
|
|
switch (nodeTag(plan))
|
|
{
|
|
case T_SeqScan:
|
|
fix_expr_references(plan, (Node *) plan->targetlist);
|
|
fix_expr_references(plan, (Node *) plan->qual);
|
|
break;
|
|
case T_IndexScan:
|
|
fix_expr_references(plan, (Node *) plan->targetlist);
|
|
fix_expr_references(plan, (Node *) plan->qual);
|
|
fix_expr_references(plan,
|
|
(Node *) ((IndexScan *) plan)->indxqual);
|
|
fix_expr_references(plan,
|
|
(Node *) ((IndexScan *) plan)->indxqualorig);
|
|
break;
|
|
case T_TidScan:
|
|
fix_expr_references(plan, (Node *) plan->targetlist);
|
|
fix_expr_references(plan, (Node *) plan->qual);
|
|
fix_expr_references(plan,
|
|
(Node *) ((TidScan *) plan)->tideval);
|
|
break;
|
|
case T_SubqueryScan:
|
|
{
|
|
RangeTblEntry *rte;
|
|
|
|
/*
|
|
* We do not do set_uppernode_references() here, because a
|
|
* SubqueryScan will always have been created with correct
|
|
* references to its subplan's outputs to begin with.
|
|
*/
|
|
fix_expr_references(plan, (Node *) plan->targetlist);
|
|
fix_expr_references(plan, (Node *) plan->qual);
|
|
|
|
/* Recurse into subplan too */
|
|
rte = rt_fetch(((SubqueryScan *) plan)->scan.scanrelid,
|
|
rtable);
|
|
Assert(rte->rtekind == RTE_SUBQUERY);
|
|
set_plan_references(((SubqueryScan *) plan)->subplan,
|
|
rte->subquery->rtable);
|
|
}
|
|
break;
|
|
case T_FunctionScan:
|
|
{
|
|
RangeTblEntry *rte;
|
|
|
|
fix_expr_references(plan, (Node *) plan->targetlist);
|
|
fix_expr_references(plan, (Node *) plan->qual);
|
|
rte = rt_fetch(((FunctionScan *) plan)->scan.scanrelid,
|
|
rtable);
|
|
Assert(rte->rtekind == RTE_FUNCTION);
|
|
fix_expr_references(plan, rte->funcexpr);
|
|
}
|
|
break;
|
|
case T_NestLoop:
|
|
set_join_references((Join *) plan, rtable);
|
|
fix_expr_references(plan, (Node *) plan->targetlist);
|
|
fix_expr_references(plan, (Node *) plan->qual);
|
|
fix_expr_references(plan, (Node *) ((Join *) plan)->joinqual);
|
|
break;
|
|
case T_MergeJoin:
|
|
set_join_references((Join *) plan, rtable);
|
|
fix_expr_references(plan, (Node *) plan->targetlist);
|
|
fix_expr_references(plan, (Node *) plan->qual);
|
|
fix_expr_references(plan, (Node *) ((Join *) plan)->joinqual);
|
|
fix_expr_references(plan,
|
|
(Node *) ((MergeJoin *) plan)->mergeclauses);
|
|
break;
|
|
case T_HashJoin:
|
|
set_join_references((Join *) plan, rtable);
|
|
fix_expr_references(plan, (Node *) plan->targetlist);
|
|
fix_expr_references(plan, (Node *) plan->qual);
|
|
fix_expr_references(plan, (Node *) ((Join *) plan)->joinqual);
|
|
fix_expr_references(plan,
|
|
(Node *) ((HashJoin *) plan)->hashclauses);
|
|
break;
|
|
case T_Hash:
|
|
case T_Material:
|
|
case T_Sort:
|
|
case T_Unique:
|
|
case T_SetOp:
|
|
|
|
/*
|
|
* These plan types don't actually bother to evaluate their
|
|
* targetlists or quals (because they just return their
|
|
* unmodified input tuples). The optimizer is lazy about
|
|
* creating really valid targetlists for them. Best to just
|
|
* leave the targetlist alone. In particular, we do not want
|
|
* to process subplans for them, since we will likely end up
|
|
* reprocessing subplans that also appear in lower levels of
|
|
* the plan tree!
|
|
*/
|
|
break;
|
|
case T_Limit:
|
|
|
|
/*
|
|
* Like the plan types above, Limit doesn't evaluate its tlist
|
|
* or quals. It does have live expressions for limit/offset,
|
|
* however.
|
|
*/
|
|
fix_expr_references(plan, ((Limit *) plan)->limitOffset);
|
|
fix_expr_references(plan, ((Limit *) plan)->limitCount);
|
|
break;
|
|
case T_Agg:
|
|
case T_Group:
|
|
set_uppernode_references(plan, (Index) 0);
|
|
fix_expr_references(plan, (Node *) plan->targetlist);
|
|
fix_expr_references(plan, (Node *) plan->qual);
|
|
break;
|
|
case T_Result:
|
|
|
|
/*
|
|
* Result may or may not have a subplan; no need to fix up
|
|
* subplan references if it hasn't got one...
|
|
*
|
|
* XXX why does Result use a different subvarno from Agg/Group?
|
|
*/
|
|
if (plan->lefttree != NULL)
|
|
set_uppernode_references(plan, (Index) OUTER);
|
|
fix_expr_references(plan, (Node *) plan->targetlist);
|
|
fix_expr_references(plan, (Node *) plan->qual);
|
|
fix_expr_references(plan, ((Result *) plan)->resconstantqual);
|
|
break;
|
|
case T_Append:
|
|
|
|
/*
|
|
* Append, like Sort et al, doesn't actually evaluate its
|
|
* targetlist or quals, and we haven't bothered to give it its
|
|
* own tlist copy. So, don't fix targetlist/qual. But do
|
|
* recurse into child plans.
|
|
*/
|
|
foreach(l, ((Append *) plan)->appendplans)
|
|
set_plan_references((Plan *) lfirst(l), rtable);
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized node type: %d",
|
|
(int) nodeTag(plan));
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Now recurse into child plans and initplans, if any
|
|
*
|
|
* NOTE: it is essential that we recurse into child plans AFTER we set
|
|
* subplan references in this plan's tlist and quals. If we did the
|
|
* reference-adjustments bottom-up, then we would fail to match this
|
|
* plan's var nodes against the already-modified nodes of the
|
|
* children. Fortunately, that consideration doesn't apply to SubPlan
|
|
* nodes; else we'd need two passes over the expression trees.
|
|
*/
|
|
set_plan_references(plan->lefttree, rtable);
|
|
set_plan_references(plan->righttree, rtable);
|
|
|
|
foreach(l, plan->initPlan)
|
|
{
|
|
SubPlan *sp = (SubPlan *) lfirst(l);
|
|
|
|
Assert(IsA(sp, SubPlan));
|
|
set_plan_references(sp->plan, sp->rtable);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fix_expr_references
|
|
* Do final cleanup on expressions (targetlists or quals).
|
|
*
|
|
* This consists of looking up operator opcode info for OpExpr nodes
|
|
* and recursively performing set_plan_references on subplans.
|
|
*
|
|
* The Plan argument is currently unused, but might be needed again someday.
|
|
*/
|
|
static void
|
|
fix_expr_references(Plan *plan, Node *node)
|
|
{
|
|
/* This tree walk requires no special setup, so away we go... */
|
|
fix_expr_references_walker(node, NULL);
|
|
}
|
|
|
|
static bool
|
|
fix_expr_references_walker(Node *node, void *context)
|
|
{
|
|
if (node == NULL)
|
|
return false;
|
|
if (IsA(node, OpExpr))
|
|
set_opfuncid((OpExpr *) node);
|
|
else if (IsA(node, DistinctExpr))
|
|
set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
|
|
else if (IsA(node, ScalarArrayOpExpr))
|
|
set_sa_opfuncid((ScalarArrayOpExpr *) node);
|
|
else if (IsA(node, NullIfExpr))
|
|
set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
|
|
else if (IsA(node, SubPlan))
|
|
{
|
|
SubPlan *sp = (SubPlan *) node;
|
|
|
|
set_plan_references(sp->plan, sp->rtable);
|
|
}
|
|
return expression_tree_walker(node, fix_expr_references_walker, context);
|
|
}
|
|
|
|
/*
|
|
* set_join_references
|
|
* Modifies the target list and quals of a join node to reference its
|
|
* subplans, by setting the varnos to OUTER or INNER and setting attno
|
|
* values to the result domain number of either the corresponding outer
|
|
* or inner join tuple item.
|
|
*
|
|
* In the case of a nestloop with inner indexscan, we will also need to
|
|
* apply the same transformation to any outer vars appearing in the
|
|
* quals of the child indexscan.
|
|
*
|
|
* 'join' is a join plan node
|
|
* 'rtable' is the associated range table
|
|
*/
|
|
static void
|
|
set_join_references(Join *join, List *rtable)
|
|
{
|
|
Plan *outer_plan = join->plan.lefttree;
|
|
Plan *inner_plan = join->plan.righttree;
|
|
List *outer_tlist = outer_plan->targetlist;
|
|
List *inner_tlist = inner_plan->targetlist;
|
|
bool tlists_have_non_vars;
|
|
|
|
tlists_have_non_vars = targetlist_has_non_vars(outer_tlist) ||
|
|
targetlist_has_non_vars(inner_tlist);
|
|
|
|
/* All join plans have tlist, qual, and joinqual */
|
|
join->plan.targetlist = join_references(join->plan.targetlist,
|
|
rtable,
|
|
outer_tlist,
|
|
inner_tlist,
|
|
(Index) 0,
|
|
tlists_have_non_vars);
|
|
join->plan.qual = join_references(join->plan.qual,
|
|
rtable,
|
|
outer_tlist,
|
|
inner_tlist,
|
|
(Index) 0,
|
|
tlists_have_non_vars);
|
|
join->joinqual = join_references(join->joinqual,
|
|
rtable,
|
|
outer_tlist,
|
|
inner_tlist,
|
|
(Index) 0,
|
|
tlists_have_non_vars);
|
|
|
|
/* Now do join-type-specific stuff */
|
|
if (IsA(join, NestLoop))
|
|
{
|
|
if (IsA(inner_plan, IndexScan))
|
|
{
|
|
/*
|
|
* An index is being used to reduce the number of tuples
|
|
* scanned in the inner relation. If there are join clauses
|
|
* being used with the index, we must update their outer-rel
|
|
* var nodes to refer to the outer side of the join.
|
|
*/
|
|
IndexScan *innerscan = (IndexScan *) inner_plan;
|
|
List *indxqualorig = innerscan->indxqualorig;
|
|
|
|
/* No work needed if indxqual refers only to its own rel... */
|
|
if (NumRelids((Node *) indxqualorig) > 1)
|
|
{
|
|
Index innerrel = innerscan->scan.scanrelid;
|
|
|
|
/* only refs to outer vars get changed in the inner qual */
|
|
innerscan->indxqualorig = join_references(indxqualorig,
|
|
rtable,
|
|
outer_tlist,
|
|
NIL,
|
|
innerrel,
|
|
tlists_have_non_vars);
|
|
innerscan->indxqual = join_references(innerscan->indxqual,
|
|
rtable,
|
|
outer_tlist,
|
|
NIL,
|
|
innerrel,
|
|
tlists_have_non_vars);
|
|
|
|
/*
|
|
* We must fix the inner qpqual too, if it has join
|
|
* clauses (this could happen if special operators are
|
|
* involved: some indxquals may get rechecked as qpquals).
|
|
*/
|
|
if (NumRelids((Node *) inner_plan->qual) > 1)
|
|
inner_plan->qual = join_references(inner_plan->qual,
|
|
rtable,
|
|
outer_tlist,
|
|
NIL,
|
|
innerrel,
|
|
tlists_have_non_vars);
|
|
}
|
|
}
|
|
else if (IsA(inner_plan, TidScan))
|
|
{
|
|
TidScan *innerscan = (TidScan *) inner_plan;
|
|
Index innerrel = innerscan->scan.scanrelid;
|
|
|
|
innerscan->tideval = join_references(innerscan->tideval,
|
|
rtable,
|
|
outer_tlist,
|
|
NIL,
|
|
innerrel,
|
|
tlists_have_non_vars);
|
|
}
|
|
}
|
|
else if (IsA(join, MergeJoin))
|
|
{
|
|
MergeJoin *mj = (MergeJoin *) join;
|
|
|
|
mj->mergeclauses = join_references(mj->mergeclauses,
|
|
rtable,
|
|
outer_tlist,
|
|
inner_tlist,
|
|
(Index) 0,
|
|
tlists_have_non_vars);
|
|
}
|
|
else if (IsA(join, HashJoin))
|
|
{
|
|
HashJoin *hj = (HashJoin *) join;
|
|
|
|
hj->hashclauses = join_references(hj->hashclauses,
|
|
rtable,
|
|
outer_tlist,
|
|
inner_tlist,
|
|
(Index) 0,
|
|
tlists_have_non_vars);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* set_uppernode_references
|
|
* Update the targetlist and quals of an upper-level plan node
|
|
* to refer to the tuples returned by its lefttree subplan.
|
|
*
|
|
* This is used for single-input plan types like Agg, Group, Result.
|
|
*
|
|
* In most cases, we have to match up individual Vars in the tlist and
|
|
* qual expressions with elements of the subplan's tlist (which was
|
|
* generated by flatten_tlist() from these selfsame expressions, so it
|
|
* should have all the required variables). There is an important exception,
|
|
* however: GROUP BY and ORDER BY expressions will have been pushed into the
|
|
* subplan tlist unflattened. If these values are also needed in the output
|
|
* then we want to reference the subplan tlist element rather than recomputing
|
|
* the expression.
|
|
*/
|
|
static void
|
|
set_uppernode_references(Plan *plan, Index subvarno)
|
|
{
|
|
Plan *subplan = plan->lefttree;
|
|
List *subplan_targetlist,
|
|
*output_targetlist;
|
|
ListCell *l;
|
|
bool tlist_has_non_vars;
|
|
|
|
if (subplan != NULL)
|
|
subplan_targetlist = subplan->targetlist;
|
|
else
|
|
subplan_targetlist = NIL;
|
|
|
|
tlist_has_non_vars = targetlist_has_non_vars(subplan_targetlist);
|
|
|
|
output_targetlist = NIL;
|
|
foreach(l, plan->targetlist)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(l);
|
|
Node *newexpr;
|
|
|
|
newexpr = replace_vars_with_subplan_refs((Node *) tle->expr,
|
|
subvarno,
|
|
subplan_targetlist,
|
|
tlist_has_non_vars);
|
|
output_targetlist = lappend(output_targetlist,
|
|
makeTargetEntry(tle->resdom,
|
|
(Expr *) newexpr));
|
|
}
|
|
plan->targetlist = output_targetlist;
|
|
|
|
plan->qual = (List *)
|
|
replace_vars_with_subplan_refs((Node *) plan->qual,
|
|
subvarno,
|
|
subplan_targetlist,
|
|
tlist_has_non_vars);
|
|
}
|
|
|
|
/*
|
|
* targetlist_has_non_vars --- are there any non-Var entries in tlist?
|
|
*
|
|
* In most cases, subplan tlists will be "flat" tlists with only Vars.
|
|
* Checking for this allows us to save comparisons in common cases.
|
|
*/
|
|
static bool
|
|
targetlist_has_non_vars(List *tlist)
|
|
{
|
|
ListCell *l;
|
|
|
|
foreach(l, tlist)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(l);
|
|
|
|
if (tle->expr && !IsA(tle->expr, Var))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* join_references
|
|
* Creates a new set of targetlist entries or join qual clauses by
|
|
* changing the varno/varattno values of variables in the clauses
|
|
* to reference target list values from the outer and inner join
|
|
* relation target lists.
|
|
*
|
|
* This is used in two different scenarios: a normal join clause, where
|
|
* all the Vars in the clause *must* be replaced by OUTER or INNER references;
|
|
* and an indexscan being used on the inner side of a nestloop join.
|
|
* In the latter case we want to replace the outer-relation Vars by OUTER
|
|
* references, but not touch the Vars of the inner relation.
|
|
*
|
|
* For a normal join, acceptable_rel should be zero so that any failure to
|
|
* match a Var will be reported as an error. For the indexscan case,
|
|
* pass inner_tlist = NIL and acceptable_rel = the ID of the inner relation.
|
|
*
|
|
* 'clauses' is the targetlist or list of join clauses
|
|
* 'rtable' is the current range table
|
|
* 'outer_tlist' is the target list of the outer join relation
|
|
* 'inner_tlist' is the target list of the inner join relation, or NIL
|
|
* 'acceptable_rel' is either zero or the rangetable index of a relation
|
|
* whose Vars may appear in the clause without provoking an error.
|
|
*
|
|
* Returns the new expression tree. The original clause structure is
|
|
* not modified.
|
|
*/
|
|
static List *
|
|
join_references(List *clauses,
|
|
List *rtable,
|
|
List *outer_tlist,
|
|
List *inner_tlist,
|
|
Index acceptable_rel,
|
|
bool tlists_have_non_vars)
|
|
{
|
|
join_references_context context;
|
|
|
|
context.rtable = rtable;
|
|
context.outer_tlist = outer_tlist;
|
|
context.inner_tlist = inner_tlist;
|
|
context.acceptable_rel = acceptable_rel;
|
|
context.tlists_have_non_vars = tlists_have_non_vars;
|
|
return (List *) join_references_mutator((Node *) clauses, &context);
|
|
}
|
|
|
|
static Node *
|
|
join_references_mutator(Node *node,
|
|
join_references_context *context)
|
|
{
|
|
if (node == NULL)
|
|
return NULL;
|
|
if (IsA(node, Var))
|
|
{
|
|
Var *var = (Var *) node;
|
|
Resdom *resdom;
|
|
|
|
/* First look for the var in the input tlists */
|
|
resdom = tlist_member((Node *) var, context->outer_tlist);
|
|
if (resdom)
|
|
{
|
|
Var *newvar = (Var *) copyObject(var);
|
|
|
|
newvar->varno = OUTER;
|
|
newvar->varattno = resdom->resno;
|
|
return (Node *) newvar;
|
|
}
|
|
resdom = tlist_member((Node *) var, context->inner_tlist);
|
|
if (resdom)
|
|
{
|
|
Var *newvar = (Var *) copyObject(var);
|
|
|
|
newvar->varno = INNER;
|
|
newvar->varattno = resdom->resno;
|
|
return (Node *) newvar;
|
|
}
|
|
|
|
/* Return the Var unmodified, if it's for acceptable_rel */
|
|
if (var->varno == context->acceptable_rel)
|
|
return (Node *) copyObject(var);
|
|
|
|
/* No referent found for Var */
|
|
elog(ERROR, "variable not found in subplan target lists");
|
|
}
|
|
/* Try matching more complex expressions too, if tlists have any */
|
|
if (context->tlists_have_non_vars)
|
|
{
|
|
Resdom *resdom;
|
|
|
|
resdom = tlist_member(node, context->outer_tlist);
|
|
if (resdom)
|
|
{
|
|
/* Found a matching subplan output expression */
|
|
Var *newvar;
|
|
|
|
newvar = makeVar(OUTER,
|
|
resdom->resno,
|
|
resdom->restype,
|
|
resdom->restypmod,
|
|
0);
|
|
newvar->varnoold = 0; /* wasn't ever a plain Var */
|
|
newvar->varoattno = 0;
|
|
return (Node *) newvar;
|
|
}
|
|
resdom = tlist_member(node, context->inner_tlist);
|
|
if (resdom)
|
|
{
|
|
/* Found a matching subplan output expression */
|
|
Var *newvar;
|
|
|
|
newvar = makeVar(INNER,
|
|
resdom->resno,
|
|
resdom->restype,
|
|
resdom->restypmod,
|
|
0);
|
|
newvar->varnoold = 0; /* wasn't ever a plain Var */
|
|
newvar->varoattno = 0;
|
|
return (Node *) newvar;
|
|
}
|
|
}
|
|
return expression_tree_mutator(node,
|
|
join_references_mutator,
|
|
(void *) context);
|
|
}
|
|
|
|
/*
|
|
* replace_vars_with_subplan_refs
|
|
* This routine modifies an expression tree so that all Var nodes
|
|
* reference target nodes of a subplan. It is used to fix up
|
|
* target and qual expressions of non-join upper-level plan nodes.
|
|
*
|
|
* An error is raised if no matching var can be found in the subplan tlist
|
|
* --- so this routine should only be applied to nodes whose subplans'
|
|
* targetlists were generated via flatten_tlist() or some such method.
|
|
*
|
|
* If tlist_has_non_vars is true, then we try to match whole subexpressions
|
|
* against elements of the subplan tlist, so that we can avoid recomputing
|
|
* expressions that were already computed by the subplan. (This is relatively
|
|
* expensive, so we don't want to try it in the common case where the
|
|
* subplan tlist is just a flattened list of Vars.)
|
|
*
|
|
* 'node': the tree to be fixed (a target item or qual)
|
|
* 'subvarno': varno to be assigned to all Vars
|
|
* 'subplan_targetlist': target list for subplan
|
|
* 'tlist_has_non_vars': true if subplan_targetlist contains non-Var exprs
|
|
*
|
|
* The resulting tree is a copy of the original in which all Var nodes have
|
|
* varno = subvarno, varattno = resno of corresponding subplan target.
|
|
* The original tree is not modified.
|
|
*/
|
|
static Node *
|
|
replace_vars_with_subplan_refs(Node *node,
|
|
Index subvarno,
|
|
List *subplan_targetlist,
|
|
bool tlist_has_non_vars)
|
|
{
|
|
replace_vars_with_subplan_refs_context context;
|
|
|
|
context.subvarno = subvarno;
|
|
context.subplan_targetlist = subplan_targetlist;
|
|
context.tlist_has_non_vars = tlist_has_non_vars;
|
|
return replace_vars_with_subplan_refs_mutator(node, &context);
|
|
}
|
|
|
|
static Node *
|
|
replace_vars_with_subplan_refs_mutator(Node *node,
|
|
replace_vars_with_subplan_refs_context *context)
|
|
{
|
|
if (node == NULL)
|
|
return NULL;
|
|
if (IsA(node, Var))
|
|
{
|
|
Var *var = (Var *) node;
|
|
Resdom *resdom;
|
|
Var *newvar;
|
|
|
|
resdom = tlist_member((Node *) var, context->subplan_targetlist);
|
|
if (!resdom)
|
|
elog(ERROR, "variable not found in subplan target list");
|
|
newvar = (Var *) copyObject(var);
|
|
newvar->varno = context->subvarno;
|
|
newvar->varattno = resdom->resno;
|
|
return (Node *) newvar;
|
|
}
|
|
/* Try matching more complex expressions too, if tlist has any */
|
|
if (context->tlist_has_non_vars)
|
|
{
|
|
Resdom *resdom;
|
|
|
|
resdom = tlist_member(node, context->subplan_targetlist);
|
|
if (resdom)
|
|
{
|
|
/* Found a matching subplan output expression */
|
|
Var *newvar;
|
|
|
|
newvar = makeVar(context->subvarno,
|
|
resdom->resno,
|
|
resdom->restype,
|
|
resdom->restypmod,
|
|
0);
|
|
newvar->varnoold = 0; /* wasn't ever a plain Var */
|
|
newvar->varoattno = 0;
|
|
return (Node *) newvar;
|
|
}
|
|
}
|
|
return expression_tree_mutator(node,
|
|
replace_vars_with_subplan_refs_mutator,
|
|
(void *) context);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* OPERATOR REGPROC LOOKUP
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* fix_opfuncids
|
|
* Calculate opfuncid field from opno for each OpExpr node in given tree.
|
|
* The given tree can be anything expression_tree_walker handles.
|
|
*
|
|
* The argument is modified in-place. (This is OK since we'd want the
|
|
* same change for any node, even if it gets visited more than once due to
|
|
* shared structure.)
|
|
*/
|
|
void
|
|
fix_opfuncids(Node *node)
|
|
{
|
|
/* This tree walk requires no special setup, so away we go... */
|
|
fix_opfuncids_walker(node, NULL);
|
|
}
|
|
|
|
static bool
|
|
fix_opfuncids_walker(Node *node, void *context)
|
|
{
|
|
if (node == NULL)
|
|
return false;
|
|
if (IsA(node, OpExpr))
|
|
set_opfuncid((OpExpr *) node);
|
|
else if (IsA(node, DistinctExpr))
|
|
set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
|
|
else if (IsA(node, ScalarArrayOpExpr))
|
|
set_sa_opfuncid((ScalarArrayOpExpr *) node);
|
|
else if (IsA(node, NullIfExpr))
|
|
set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
|
|
return expression_tree_walker(node, fix_opfuncids_walker, context);
|
|
}
|
|
|
|
/*
|
|
* set_opfuncid
|
|
* Set the opfuncid (procedure OID) in an OpExpr node,
|
|
* if it hasn't been set already.
|
|
*
|
|
* Because of struct equivalence, this can also be used for
|
|
* DistinctExpr and NullIfExpr nodes.
|
|
*/
|
|
void
|
|
set_opfuncid(OpExpr *opexpr)
|
|
{
|
|
if (opexpr->opfuncid == InvalidOid)
|
|
opexpr->opfuncid = get_opcode(opexpr->opno);
|
|
}
|
|
|
|
/*
|
|
* set_sa_opfuncid
|
|
* As above, for ScalarArrayOpExpr nodes.
|
|
*/
|
|
static void
|
|
set_sa_opfuncid(ScalarArrayOpExpr *opexpr)
|
|
{
|
|
if (opexpr->opfuncid == InvalidOid)
|
|
opexpr->opfuncid = get_opcode(opexpr->opno);
|
|
}
|