mirror of
				https://github.com/postgres/postgres.git
				synced 2025-10-24 01:29:19 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			688 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			688 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$OpenBSD: rijndael.c,v 1.6 2000/12/09 18:51:34 markus Exp $ */
 | |
| 
 | |
| /* $PostgreSQL: pgsql/contrib/pgcrypto/rijndael.c,v 1.12 2005/10/15 02:49:06 momjian Exp $ */
 | |
| 
 | |
| /* This is an independent implementation of the encryption algorithm:	*/
 | |
| /*																		*/
 | |
| /*		   RIJNDAEL by Joan Daemen and Vincent Rijmen					*/
 | |
| /*																		*/
 | |
| /* which is a candidate algorithm in the Advanced Encryption Standard	*/
 | |
| /* programme of the US National Institute of Standards and Technology.	*/
 | |
| /*																		*/
 | |
| /* Copyright in this implementation is held by Dr B R Gladman but I		*/
 | |
| /* hereby give permission for its free direct or derivative use subject */
 | |
| /* to acknowledgment of its origin and compliance with any conditions	*/
 | |
| /* that the originators of the algorithm place on its exploitation.		*/
 | |
| /*																		*/
 | |
| /* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999		*/
 | |
| 
 | |
| /* Timing data for Rijndael (rijndael.c)
 | |
| 
 | |
| Algorithm: rijndael (rijndael.c)
 | |
| 
 | |
| 128 bit key:
 | |
| Key Setup:	  305/1389 cycles (encrypt/decrypt)
 | |
| Encrypt:	   374 cycles =    68.4 mbits/sec
 | |
| Decrypt:	   352 cycles =    72.7 mbits/sec
 | |
| Mean:		   363 cycles =    70.5 mbits/sec
 | |
| 
 | |
| 192 bit key:
 | |
| Key Setup:	  277/1595 cycles (encrypt/decrypt)
 | |
| Encrypt:	   439 cycles =    58.3 mbits/sec
 | |
| Decrypt:	   425 cycles =    60.2 mbits/sec
 | |
| Mean:		   432 cycles =    59.3 mbits/sec
 | |
| 
 | |
| 256 bit key:
 | |
| Key Setup:	  374/1960 cycles (encrypt/decrypt)
 | |
| Encrypt:	   502 cycles =    51.0 mbits/sec
 | |
| Decrypt:	   498 cycles =    51.4 mbits/sec
 | |
| Mean:		   500 cycles =    51.2 mbits/sec
 | |
| 
 | |
| */
 | |
| 
 | |
| #include "postgres.h"
 | |
| 
 | |
| #include <sys/param.h>
 | |
| 
 | |
| #include "px.h"
 | |
| #include "rijndael.h"
 | |
| 
 | |
| /* sanity check */
 | |
| #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
 | |
| #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #define PRE_CALC_TABLES
 | |
| #define LARGE_TABLES
 | |
| 
 | |
| static void gen_tabs(void);
 | |
| 
 | |
| /* 3. Basic macros for speeding up generic operations				*/
 | |
| 
 | |
| /* Circular rotate of 32 bit values									*/
 | |
| 
 | |
| #define rotr(x,n)	(((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
 | |
| #define rotl(x,n)	(((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
 | |
| 
 | |
| /* Invert byte order in a 32 bit variable							*/
 | |
| 
 | |
| #define bswap(x)	((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00))
 | |
| 
 | |
| /* Extract byte from a 32 bit quantity (little endian notation)		*/
 | |
| 
 | |
| #define byte(x,n)	((u1byte)((x) >> (8 * (n))))
 | |
| 
 | |
| #if BYTE_ORDER != LITTLE_ENDIAN
 | |
| #define BYTE_SWAP
 | |
| #endif
 | |
| 
 | |
| #ifdef	BYTE_SWAP
 | |
| #define io_swap(x)	bswap(x)
 | |
| #else
 | |
| #define io_swap(x)	(x)
 | |
| #endif
 | |
| 
 | |
| #ifdef PRINT_TABS
 | |
| #undef PRE_CALC_TABLES
 | |
| #endif
 | |
| 
 | |
| #ifdef PRE_CALC_TABLES
 | |
| 
 | |
| #include "rijndael.tbl"
 | |
| #define tab_gen		1
 | |
| #else							/* !PRE_CALC_TABLES */
 | |
| 
 | |
| static u1byte pow_tab[256];
 | |
| static u1byte log_tab[256];
 | |
| static u1byte sbx_tab[256];
 | |
| static u1byte isb_tab[256];
 | |
| static u4byte rco_tab[10];
 | |
| static u4byte ft_tab[4][256];
 | |
| static u4byte it_tab[4][256];
 | |
| 
 | |
| #ifdef	LARGE_TABLES
 | |
| static u4byte fl_tab[4][256];
 | |
| static u4byte il_tab[4][256];
 | |
| #endif
 | |
| 
 | |
| static u4byte tab_gen = 0;
 | |
| #endif   /* !PRE_CALC_TABLES */
 | |
| 
 | |
| #define ff_mult(a,b)	((a) && (b) ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
 | |
| 
 | |
| #define f_rn(bo, bi, n, k)								\
 | |
| 	(bo)[n] =  ft_tab[0][byte((bi)[n],0)] ^				\
 | |
| 			 ft_tab[1][byte((bi)[((n) + 1) & 3],1)] ^	\
 | |
| 			 ft_tab[2][byte((bi)[((n) + 2) & 3],2)] ^	\
 | |
| 			 ft_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
 | |
| 
 | |
| #define i_rn(bo, bi, n, k)							\
 | |
| 	(bo)[n] =  it_tab[0][byte((bi)[n],0)] ^				\
 | |
| 			 it_tab[1][byte((bi)[((n) + 3) & 3],1)] ^	\
 | |
| 			 it_tab[2][byte((bi)[((n) + 2) & 3],2)] ^	\
 | |
| 			 it_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
 | |
| 
 | |
| #ifdef LARGE_TABLES
 | |
| 
 | |
| #define ls_box(x)				 \
 | |
| 	( fl_tab[0][byte(x, 0)] ^	 \
 | |
| 	  fl_tab[1][byte(x, 1)] ^	 \
 | |
| 	  fl_tab[2][byte(x, 2)] ^	 \
 | |
| 	  fl_tab[3][byte(x, 3)] )
 | |
| 
 | |
| #define f_rl(bo, bi, n, k)								\
 | |
| 	(bo)[n] =  fl_tab[0][byte((bi)[n],0)] ^				\
 | |
| 			 fl_tab[1][byte((bi)[((n) + 1) & 3],1)] ^	\
 | |
| 			 fl_tab[2][byte((bi)[((n) + 2) & 3],2)] ^	\
 | |
| 			 fl_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
 | |
| 
 | |
| #define i_rl(bo, bi, n, k)								\
 | |
| 	(bo)[n] =  il_tab[0][byte((bi)[n],0)] ^				\
 | |
| 			 il_tab[1][byte((bi)[((n) + 3) & 3],1)] ^	\
 | |
| 			 il_tab[2][byte((bi)[((n) + 2) & 3],2)] ^	\
 | |
| 			 il_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
 | |
| #else
 | |
| 
 | |
| #define ls_box(x)							 \
 | |
| 	((u4byte)sbx_tab[byte(x, 0)] <<  0) ^	 \
 | |
| 	((u4byte)sbx_tab[byte(x, 1)] <<  8) ^	 \
 | |
| 	((u4byte)sbx_tab[byte(x, 2)] << 16) ^	 \
 | |
| 	((u4byte)sbx_tab[byte(x, 3)] << 24)
 | |
| 
 | |
| #define f_rl(bo, bi, n, k)											\
 | |
| 	(bo)[n] = (u4byte)sbx_tab[byte((bi)[n],0)] ^					\
 | |
| 		rotl(((u4byte)sbx_tab[byte((bi)[((n) + 1) & 3],1)]),  8) ^	\
 | |
| 		rotl(((u4byte)sbx_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^	\
 | |
| 		rotl(((u4byte)sbx_tab[byte((bi)[((n) + 3) & 3],3)]), 24) ^ *((k) + (n))
 | |
| 
 | |
| #define i_rl(bo, bi, n, k)											\
 | |
| 	(bo)[n] = (u4byte)isb_tab[byte((bi)[n],0)] ^					\
 | |
| 		rotl(((u4byte)isb_tab[byte((bi)[((n) + 3) & 3],1)]),  8) ^	\
 | |
| 		rotl(((u4byte)isb_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^	\
 | |
| 		rotl(((u4byte)isb_tab[byte((bi)[((n) + 1) & 3],3)]), 24) ^ *((k) + (n))
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| gen_tabs(void)
 | |
| {
 | |
| #ifndef PRE_CALC_TABLES
 | |
| 	u4byte		i,
 | |
| 				t;
 | |
| 	u1byte		p,
 | |
| 				q;
 | |
| 
 | |
| 	/* log and power tables for GF(2**8) finite field with	*/
 | |
| 	/* 0x11b as modular polynomial - the simplest prmitive	*/
 | |
| 	/* root is 0x11, used here to generate the tables		*/
 | |
| 
 | |
| 	for (i = 0, p = 1; i < 256; ++i)
 | |
| 	{
 | |
| 		pow_tab[i] = (u1byte) p;
 | |
| 		log_tab[p] = (u1byte) i;
 | |
| 
 | |
| 		p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
 | |
| 	}
 | |
| 
 | |
| 	log_tab[1] = 0;
 | |
| 	p = 1;
 | |
| 
 | |
| 	for (i = 0; i < 10; ++i)
 | |
| 	{
 | |
| 		rco_tab[i] = p;
 | |
| 
 | |
| 		p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
 | |
| 	}
 | |
| 
 | |
| 	/* note that the affine byte transformation matrix in	*/
 | |
| 	/* rijndael specification is in big endian format with	*/
 | |
| 	/* bit 0 as the most significant bit. In the remainder	*/
 | |
| 	/* of the specification the bits are numbered from the	*/
 | |
| 	/* least significant end of a byte.						*/
 | |
| 
 | |
| 	for (i = 0; i < 256; ++i)
 | |
| 	{
 | |
| 		p = (i ? pow_tab[255 - log_tab[i]] : 0);
 | |
| 		q = p;
 | |
| 		q = (q >> 7) | (q << 1);
 | |
| 		p ^= q;
 | |
| 		q = (q >> 7) | (q << 1);
 | |
| 		p ^= q;
 | |
| 		q = (q >> 7) | (q << 1);
 | |
| 		p ^= q;
 | |
| 		q = (q >> 7) | (q << 1);
 | |
| 		p ^= q ^ 0x63;
 | |
| 		sbx_tab[i] = (u1byte) p;
 | |
| 		isb_tab[p] = (u1byte) i;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 256; ++i)
 | |
| 	{
 | |
| 		p = sbx_tab[i];
 | |
| 
 | |
| #ifdef	LARGE_TABLES
 | |
| 
 | |
| 		t = p;
 | |
| 		fl_tab[0][i] = t;
 | |
| 		fl_tab[1][i] = rotl(t, 8);
 | |
| 		fl_tab[2][i] = rotl(t, 16);
 | |
| 		fl_tab[3][i] = rotl(t, 24);
 | |
| #endif
 | |
| 		t = ((u4byte) ff_mult(2, p)) |
 | |
| 			((u4byte) p << 8) |
 | |
| 			((u4byte) p << 16) |
 | |
| 			((u4byte) ff_mult(3, p) << 24);
 | |
| 
 | |
| 		ft_tab[0][i] = t;
 | |
| 		ft_tab[1][i] = rotl(t, 8);
 | |
| 		ft_tab[2][i] = rotl(t, 16);
 | |
| 		ft_tab[3][i] = rotl(t, 24);
 | |
| 
 | |
| 		p = isb_tab[i];
 | |
| 
 | |
| #ifdef	LARGE_TABLES
 | |
| 
 | |
| 		t = p;
 | |
| 		il_tab[0][i] = t;
 | |
| 		il_tab[1][i] = rotl(t, 8);
 | |
| 		il_tab[2][i] = rotl(t, 16);
 | |
| 		il_tab[3][i] = rotl(t, 24);
 | |
| #endif
 | |
| 		t = ((u4byte) ff_mult(14, p)) |
 | |
| 			((u4byte) ff_mult(9, p) << 8) |
 | |
| 			((u4byte) ff_mult(13, p) << 16) |
 | |
| 			((u4byte) ff_mult(11, p) << 24);
 | |
| 
 | |
| 		it_tab[0][i] = t;
 | |
| 		it_tab[1][i] = rotl(t, 8);
 | |
| 		it_tab[2][i] = rotl(t, 16);
 | |
| 		it_tab[3][i] = rotl(t, 24);
 | |
| 	}
 | |
| 
 | |
| 	tab_gen = 1;
 | |
| #endif   /* !PRE_CALC_TABLES */
 | |
| }
 | |
| 
 | |
| 
 | |
| #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
 | |
| 
 | |
| #define imix_col(y,x)		\
 | |
| do { \
 | |
| 	u	= star_x(x);		\
 | |
| 	v	= star_x(u);		\
 | |
| 	w	= star_x(v);		\
 | |
| 	t	= w ^ (x);			\
 | |
|    (y)	= u ^ v ^ w;		\
 | |
|    (y) ^= rotr(u ^ t,  8) ^ \
 | |
| 		  rotr(v ^ t, 16) ^ \
 | |
| 		  rotr(t,24);		\
 | |
| } while (0)
 | |
| 
 | |
| /* initialise the key schedule from the user supplied key	*/
 | |
| 
 | |
| #define loop4(i)									\
 | |
| do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];		   \
 | |
| 	t ^= e_key[4 * i];	   e_key[4 * i + 4] = t;	\
 | |
| 	t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t;	\
 | |
| 	t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t;	\
 | |
| 	t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t;	\
 | |
| } while (0)
 | |
| 
 | |
| #define loop6(i)									\
 | |
| do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];		   \
 | |
| 	t ^= e_key[6 * (i)];	   e_key[6 * (i) + 6] = t;	\
 | |
| 	t ^= e_key[6 * (i) + 1]; e_key[6 * (i) + 7] = t;	\
 | |
| 	t ^= e_key[6 * (i) + 2]; e_key[6 * (i) + 8] = t;	\
 | |
| 	t ^= e_key[6 * (i) + 3]; e_key[6 * (i) + 9] = t;	\
 | |
| 	t ^= e_key[6 * (i) + 4]; e_key[6 * (i) + 10] = t;	\
 | |
| 	t ^= e_key[6 * (i) + 5]; e_key[6 * (i) + 11] = t;	\
 | |
| } while (0)
 | |
| 
 | |
| #define loop8(i)									\
 | |
| do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];		   \
 | |
| 	t ^= e_key[8 * (i)];	 e_key[8 * (i) + 8] = t;	\
 | |
| 	t ^= e_key[8 * (i) + 1]; e_key[8 * (i) + 9] = t;	\
 | |
| 	t ^= e_key[8 * (i) + 2]; e_key[8 * (i) + 10] = t;	\
 | |
| 	t ^= e_key[8 * (i) + 3]; e_key[8 * (i) + 11] = t;	\
 | |
| 	t  = e_key[8 * (i) + 4] ^ ls_box(t);				\
 | |
| 	e_key[8 * (i) + 12] = t;							\
 | |
| 	t ^= e_key[8 * (i) + 5]; e_key[8 * (i) + 13] = t;	\
 | |
| 	t ^= e_key[8 * (i) + 6]; e_key[8 * (i) + 14] = t;	\
 | |
| 	t ^= e_key[8 * (i) + 7]; e_key[8 * (i) + 15] = t;	\
 | |
| } while (0)
 | |
| 
 | |
| rijndael_ctx *
 | |
| rijndael_set_key(rijndael_ctx * ctx, const u4byte * in_key, const u4byte key_len,
 | |
| 				 int encrypt)
 | |
| {
 | |
| 	u4byte		i,
 | |
| 				t,
 | |
| 				u,
 | |
| 				v,
 | |
| 				w;
 | |
| 	u4byte	   *e_key = ctx->e_key;
 | |
| 	u4byte	   *d_key = ctx->d_key;
 | |
| 
 | |
| 	ctx->decrypt = !encrypt;
 | |
| 
 | |
| 	if (!tab_gen)
 | |
| 		gen_tabs();
 | |
| 
 | |
| 	ctx->k_len = (key_len + 31) / 32;
 | |
| 
 | |
| 	e_key[0] = io_swap(in_key[0]);
 | |
| 	e_key[1] = io_swap(in_key[1]);
 | |
| 	e_key[2] = io_swap(in_key[2]);
 | |
| 	e_key[3] = io_swap(in_key[3]);
 | |
| 
 | |
| 	switch (ctx->k_len)
 | |
| 	{
 | |
| 		case 4:
 | |
| 			t = e_key[3];
 | |
| 			for (i = 0; i < 10; ++i)
 | |
| 				loop4(i);
 | |
| 			break;
 | |
| 
 | |
| 		case 6:
 | |
| 			e_key[4] = io_swap(in_key[4]);
 | |
| 			t = e_key[5] = io_swap(in_key[5]);
 | |
| 			for (i = 0; i < 8; ++i)
 | |
| 				loop6(i);
 | |
| 			break;
 | |
| 
 | |
| 		case 8:
 | |
| 			e_key[4] = io_swap(in_key[4]);
 | |
| 			e_key[5] = io_swap(in_key[5]);
 | |
| 			e_key[6] = io_swap(in_key[6]);
 | |
| 			t = e_key[7] = io_swap(in_key[7]);
 | |
| 			for (i = 0; i < 7; ++i)
 | |
| 				loop8(i);
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!encrypt)
 | |
| 	{
 | |
| 		d_key[0] = e_key[0];
 | |
| 		d_key[1] = e_key[1];
 | |
| 		d_key[2] = e_key[2];
 | |
| 		d_key[3] = e_key[3];
 | |
| 
 | |
| 		for (i = 4; i < 4 * ctx->k_len + 24; ++i)
 | |
| 			imix_col(d_key[i], e_key[i]);
 | |
| 	}
 | |
| 
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| /* encrypt a block of text	*/
 | |
| 
 | |
| #define f_nround(bo, bi, k) \
 | |
| do { \
 | |
| 	f_rn(bo, bi, 0, k);		\
 | |
| 	f_rn(bo, bi, 1, k);		\
 | |
| 	f_rn(bo, bi, 2, k);		\
 | |
| 	f_rn(bo, bi, 3, k);		\
 | |
| 	k += 4;					\
 | |
| } while (0)
 | |
| 
 | |
| #define f_lround(bo, bi, k) \
 | |
| do { \
 | |
| 	f_rl(bo, bi, 0, k);		\
 | |
| 	f_rl(bo, bi, 1, k);		\
 | |
| 	f_rl(bo, bi, 2, k);		\
 | |
| 	f_rl(bo, bi, 3, k);		\
 | |
| } while (0)
 | |
| 
 | |
| void
 | |
| rijndael_encrypt(rijndael_ctx * ctx, const u4byte * in_blk, u4byte * out_blk)
 | |
| {
 | |
| 	u4byte		k_len = ctx->k_len;
 | |
| 	u4byte	   *e_key = ctx->e_key;
 | |
| 	u4byte		b0[4],
 | |
| 				b1[4],
 | |
| 			   *kp;
 | |
| 
 | |
| 	b0[0] = io_swap(in_blk[0]) ^ e_key[0];
 | |
| 	b0[1] = io_swap(in_blk[1]) ^ e_key[1];
 | |
| 	b0[2] = io_swap(in_blk[2]) ^ e_key[2];
 | |
| 	b0[3] = io_swap(in_blk[3]) ^ e_key[3];
 | |
| 
 | |
| 	kp = e_key + 4;
 | |
| 
 | |
| 	if (k_len > 6)
 | |
| 	{
 | |
| 		f_nround(b1, b0, kp);
 | |
| 		f_nround(b0, b1, kp);
 | |
| 	}
 | |
| 
 | |
| 	if (k_len > 4)
 | |
| 	{
 | |
| 		f_nround(b1, b0, kp);
 | |
| 		f_nround(b0, b1, kp);
 | |
| 	}
 | |
| 
 | |
| 	f_nround(b1, b0, kp);
 | |
| 	f_nround(b0, b1, kp);
 | |
| 	f_nround(b1, b0, kp);
 | |
| 	f_nround(b0, b1, kp);
 | |
| 	f_nround(b1, b0, kp);
 | |
| 	f_nround(b0, b1, kp);
 | |
| 	f_nround(b1, b0, kp);
 | |
| 	f_nround(b0, b1, kp);
 | |
| 	f_nround(b1, b0, kp);
 | |
| 	f_lround(b0, b1, kp);
 | |
| 
 | |
| 	out_blk[0] = io_swap(b0[0]);
 | |
| 	out_blk[1] = io_swap(b0[1]);
 | |
| 	out_blk[2] = io_swap(b0[2]);
 | |
| 	out_blk[3] = io_swap(b0[3]);
 | |
| }
 | |
| 
 | |
| /* decrypt a block of text	*/
 | |
| 
 | |
| #define i_nround(bo, bi, k) \
 | |
| do { \
 | |
| 	i_rn(bo, bi, 0, k);		\
 | |
| 	i_rn(bo, bi, 1, k);		\
 | |
| 	i_rn(bo, bi, 2, k);		\
 | |
| 	i_rn(bo, bi, 3, k);		\
 | |
| 	k -= 4;					\
 | |
| } while (0)
 | |
| 
 | |
| #define i_lround(bo, bi, k) \
 | |
| do { \
 | |
| 	i_rl(bo, bi, 0, k);		\
 | |
| 	i_rl(bo, bi, 1, k);		\
 | |
| 	i_rl(bo, bi, 2, k);		\
 | |
| 	i_rl(bo, bi, 3, k);		\
 | |
| } while (0)
 | |
| 
 | |
| void
 | |
| rijndael_decrypt(rijndael_ctx * ctx, const u4byte * in_blk, u4byte * out_blk)
 | |
| {
 | |
| 	u4byte		b0[4],
 | |
| 				b1[4],
 | |
| 			   *kp;
 | |
| 	u4byte		k_len = ctx->k_len;
 | |
| 	u4byte	   *e_key = ctx->e_key;
 | |
| 	u4byte	   *d_key = ctx->d_key;
 | |
| 
 | |
| 	b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
 | |
| 	b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
 | |
| 	b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
 | |
| 	b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
 | |
| 
 | |
| 	kp = d_key + 4 * (k_len + 5);
 | |
| 
 | |
| 	if (k_len > 6)
 | |
| 	{
 | |
| 		i_nround(b1, b0, kp);
 | |
| 		i_nround(b0, b1, kp);
 | |
| 	}
 | |
| 
 | |
| 	if (k_len > 4)
 | |
| 	{
 | |
| 		i_nround(b1, b0, kp);
 | |
| 		i_nround(b0, b1, kp);
 | |
| 	}
 | |
| 
 | |
| 	i_nround(b1, b0, kp);
 | |
| 	i_nround(b0, b1, kp);
 | |
| 	i_nround(b1, b0, kp);
 | |
| 	i_nround(b0, b1, kp);
 | |
| 	i_nround(b1, b0, kp);
 | |
| 	i_nround(b0, b1, kp);
 | |
| 	i_nround(b1, b0, kp);
 | |
| 	i_nround(b0, b1, kp);
 | |
| 	i_nround(b1, b0, kp);
 | |
| 	i_lround(b0, b1, kp);
 | |
| 
 | |
| 	out_blk[0] = io_swap(b0[0]);
 | |
| 	out_blk[1] = io_swap(b0[1]);
 | |
| 	out_blk[2] = io_swap(b0[2]);
 | |
| 	out_blk[3] = io_swap(b0[3]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * conventional interface
 | |
|  *
 | |
|  * ATM it hopes all data is 4-byte aligned - which
 | |
|  * should be true for PX.  -marko
 | |
|  */
 | |
| 
 | |
| void
 | |
| aes_set_key(rijndael_ctx * ctx, const uint8 *key, unsigned keybits, int enc)
 | |
| {
 | |
| 	uint32	   *k;
 | |
| 
 | |
| 	k = (uint32 *) key;
 | |
| 	rijndael_set_key(ctx, k, keybits, enc);
 | |
| }
 | |
| 
 | |
| void
 | |
| aes_ecb_encrypt(rijndael_ctx * ctx, uint8 *data, unsigned len)
 | |
| {
 | |
| 	unsigned	bs = 16;
 | |
| 	uint32	   *d;
 | |
| 
 | |
| 	while (len >= bs)
 | |
| 	{
 | |
| 		d = (uint32 *) data;
 | |
| 		rijndael_encrypt(ctx, d, d);
 | |
| 
 | |
| 		len -= bs;
 | |
| 		data += bs;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| aes_ecb_decrypt(rijndael_ctx * ctx, uint8 *data, unsigned len)
 | |
| {
 | |
| 	unsigned	bs = 16;
 | |
| 	uint32	   *d;
 | |
| 
 | |
| 	while (len >= bs)
 | |
| 	{
 | |
| 		d = (uint32 *) data;
 | |
| 		rijndael_decrypt(ctx, d, d);
 | |
| 
 | |
| 		len -= bs;
 | |
| 		data += bs;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| aes_cbc_encrypt(rijndael_ctx * ctx, uint8 *iva, uint8 *data, unsigned len)
 | |
| {
 | |
| 	uint32	   *iv = (uint32 *) iva;
 | |
| 	uint32	   *d = (uint32 *) data;
 | |
| 	unsigned	bs = 16;
 | |
| 
 | |
| 	while (len >= bs)
 | |
| 	{
 | |
| 		d[0] ^= iv[0];
 | |
| 		d[1] ^= iv[1];
 | |
| 		d[2] ^= iv[2];
 | |
| 		d[3] ^= iv[3];
 | |
| 
 | |
| 		rijndael_encrypt(ctx, d, d);
 | |
| 
 | |
| 		iv = d;
 | |
| 		d += bs / 4;
 | |
| 		len -= bs;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| aes_cbc_decrypt(rijndael_ctx * ctx, uint8 *iva, uint8 *data, unsigned len)
 | |
| {
 | |
| 	uint32	   *d = (uint32 *) data;
 | |
| 	unsigned	bs = 16;
 | |
| 	uint32		buf[4],
 | |
| 				iv[4];
 | |
| 
 | |
| 	memcpy(iv, iva, bs);
 | |
| 	while (len >= bs)
 | |
| 	{
 | |
| 		buf[0] = d[0];
 | |
| 		buf[1] = d[1];
 | |
| 		buf[2] = d[2];
 | |
| 		buf[3] = d[3];
 | |
| 
 | |
| 		rijndael_decrypt(ctx, buf, d);
 | |
| 
 | |
| 		d[0] ^= iv[0];
 | |
| 		d[1] ^= iv[1];
 | |
| 		d[2] ^= iv[2];
 | |
| 		d[3] ^= iv[3];
 | |
| 
 | |
| 		iv[0] = buf[0];
 | |
| 		iv[1] = buf[1];
 | |
| 		iv[2] = buf[2];
 | |
| 		iv[3] = buf[3];
 | |
| 		d += 4;
 | |
| 		len -= bs;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pre-calculate tables.
 | |
|  *
 | |
|  * On i386 lifts 17k from .bss to .rodata
 | |
|  * and avoids 1k code and setup time.
 | |
|  *	  -marko
 | |
|  */
 | |
| #ifdef PRINT_TABS
 | |
| 
 | |
| static void
 | |
| show256u8(char *name, uint8 *data)
 | |
| {
 | |
| 	int			i;
 | |
| 
 | |
| 	printf("static const u1byte  %s[256] = {\n  ", name);
 | |
| 	for (i = 0; i < 256;)
 | |
| 	{
 | |
| 		printf("%u", pow_tab[i++]);
 | |
| 		if (i < 256)
 | |
| 			printf(i % 16 ? ", " : ",\n  ");
 | |
| 	}
 | |
| 	printf("\n};\n\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| show4x256u32(char *name, uint32 data[4][256])
 | |
| {
 | |
| 	int			i,
 | |
| 				j;
 | |
| 
 | |
| 	printf("static const u4byte  %s[4][256] = {\n{\n  ", name);
 | |
| 	for (i = 0; i < 4; i++)
 | |
| 	{
 | |
| 		for (j = 0; j < 256;)
 | |
| 		{
 | |
| 			printf("0x%08x", data[i][j]);
 | |
| 			j++;
 | |
| 			if (j < 256)
 | |
| 				printf(j % 4 ? ", " : ",\n  ");
 | |
| 		}
 | |
| 		printf(i < 3 ? "\n}, {\n  " : "\n}\n");
 | |
| 	}
 | |
| 	printf("};\n\n");
 | |
| }
 | |
| 
 | |
| int
 | |
| main()
 | |
| {
 | |
| 	int			i;
 | |
| 	char	   *hdr = "/* Generated by rijndael.c */\n\n";
 | |
| 
 | |
| 	gen_tabs();
 | |
| 
 | |
| 	printf(hdr);
 | |
| 	show256u8("pow_tab", pow_tab);
 | |
| 	show256u8("log_tab", log_tab);
 | |
| 	show256u8("sbx_tab", sbx_tab);
 | |
| 	show256u8("isb_tab", isb_tab);
 | |
| 
 | |
| 	show4x256u32("ft_tab", ft_tab);
 | |
| 	show4x256u32("it_tab", it_tab);
 | |
| #ifdef LARGE_TABLES
 | |
| 	show4x256u32("fl_tab", fl_tab);
 | |
| 	show4x256u32("il_tab", il_tab);
 | |
| #endif
 | |
| 	printf("static const u4byte rco_tab[10] = {\n  ");
 | |
| 	for (i = 0; i < 10; i++)
 | |
| 	{
 | |
| 		printf("0x%08x", rco_tab[i]);
 | |
| 		if (i < 9)
 | |
| 			printf(", ");
 | |
| 		if (i == 4)
 | |
| 			printf("\n  ");
 | |
| 	}
 | |
| 	printf("\n};\n\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 |