mirror of
https://github.com/postgres/postgres.git
synced 2025-04-21 12:05:57 +03:00
with a plpgsql-defined cursor. The underlying mechanism for this is that the main SQL engine will now take "WHERE CURRENT OF $n" where $n is a refcursor parameter. Not sure if we should document that fact or consider it an implementation detail. Per discussion with Pavel Stehule.
2520 lines
65 KiB
C
2520 lines
65 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* parse_expr.c
|
|
* handle expressions in parser
|
|
*
|
|
* Portions Copyright (c) 1996-2007, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/parser/parse_expr.c,v 1.220 2007/06/11 22:22:42 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "commands/dbcommands.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "miscadmin.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/plannodes.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "parser/analyze.h"
|
|
#include "parser/gramparse.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_func.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "parser/parse_relation.h"
|
|
#include "parser/parse_target.h"
|
|
#include "parser/parse_type.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/xml.h"
|
|
|
|
|
|
bool Transform_null_equals = false;
|
|
|
|
static Node *transformParamRef(ParseState *pstate, ParamRef *pref);
|
|
static Node *transformAExprOp(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprAnd(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprOr(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprNot(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprOpAny(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprOpAll(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprDistinct(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprNullIf(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprOf(ParseState *pstate, A_Expr *a);
|
|
static Node *transformAExprIn(ParseState *pstate, A_Expr *a);
|
|
static Node *transformFuncCall(ParseState *pstate, FuncCall *fn);
|
|
static Node *transformCaseExpr(ParseState *pstate, CaseExpr *c);
|
|
static Node *transformSubLink(ParseState *pstate, SubLink *sublink);
|
|
static Node *transformArrayExpr(ParseState *pstate, ArrayExpr *a);
|
|
static Node *transformRowExpr(ParseState *pstate, RowExpr *r);
|
|
static Node *transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c);
|
|
static Node *transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m);
|
|
static Node *transformXmlExpr(ParseState *pstate, XmlExpr *x);
|
|
static Node *transformXmlSerialize(ParseState *pstate, XmlSerialize *xs);
|
|
static Node *transformBooleanTest(ParseState *pstate, BooleanTest *b);
|
|
static Node *transformCurrentOfExpr(ParseState *pstate, CurrentOfExpr *cexpr);
|
|
static Node *transformColumnRef(ParseState *pstate, ColumnRef *cref);
|
|
static Node *transformWholeRowRef(ParseState *pstate, char *schemaname,
|
|
char *relname, int location);
|
|
static Node *transformIndirection(ParseState *pstate, Node *basenode,
|
|
List *indirection);
|
|
static Node *typecast_expression(ParseState *pstate, Node *expr,
|
|
TypeName *typename);
|
|
static Node *make_row_comparison_op(ParseState *pstate, List *opname,
|
|
List *largs, List *rargs, int location);
|
|
static Node *make_row_distinct_op(ParseState *pstate, List *opname,
|
|
RowExpr *lrow, RowExpr *rrow, int location);
|
|
static Expr *make_distinct_op(ParseState *pstate, List *opname,
|
|
Node *ltree, Node *rtree, int location);
|
|
|
|
|
|
/*
|
|
* transformExpr -
|
|
* Analyze and transform expressions. Type checking and type casting is
|
|
* done here. The optimizer and the executor cannot handle the original
|
|
* (raw) expressions collected by the parse tree. Hence the transformation
|
|
* here.
|
|
*
|
|
* NOTE: there are various cases in which this routine will get applied to
|
|
* an already-transformed expression. Some examples:
|
|
* 1. At least one construct (BETWEEN/AND) puts the same nodes
|
|
* into two branches of the parse tree; hence, some nodes
|
|
* are transformed twice.
|
|
* 2. Another way it can happen is that coercion of an operator or
|
|
* function argument to the required type (via coerce_type())
|
|
* can apply transformExpr to an already-transformed subexpression.
|
|
* An example here is "SELECT count(*) + 1.0 FROM table".
|
|
* While it might be possible to eliminate these cases, the path of
|
|
* least resistance so far has been to ensure that transformExpr() does
|
|
* no damage if applied to an already-transformed tree. This is pretty
|
|
* easy for cases where the transformation replaces one node type with
|
|
* another, such as A_Const => Const; we just do nothing when handed
|
|
* a Const. More care is needed for node types that are used as both
|
|
* input and output of transformExpr; see SubLink for example.
|
|
*/
|
|
Node *
|
|
transformExpr(ParseState *pstate, Node *expr)
|
|
{
|
|
Node *result = NULL;
|
|
|
|
if (expr == NULL)
|
|
return NULL;
|
|
|
|
/* Guard against stack overflow due to overly complex expressions */
|
|
check_stack_depth();
|
|
|
|
switch (nodeTag(expr))
|
|
{
|
|
case T_ColumnRef:
|
|
result = transformColumnRef(pstate, (ColumnRef *) expr);
|
|
break;
|
|
|
|
case T_ParamRef:
|
|
result = transformParamRef(pstate, (ParamRef *) expr);
|
|
break;
|
|
|
|
case T_A_Const:
|
|
{
|
|
A_Const *con = (A_Const *) expr;
|
|
Value *val = &con->val;
|
|
|
|
result = (Node *) make_const(val);
|
|
if (con->typename != NULL)
|
|
result = typecast_expression(pstate, result,
|
|
con->typename);
|
|
break;
|
|
}
|
|
|
|
case T_A_Indirection:
|
|
{
|
|
A_Indirection *ind = (A_Indirection *) expr;
|
|
|
|
result = transformExpr(pstate, ind->arg);
|
|
result = transformIndirection(pstate, result,
|
|
ind->indirection);
|
|
break;
|
|
}
|
|
|
|
case T_TypeCast:
|
|
{
|
|
TypeCast *tc = (TypeCast *) expr;
|
|
Node *arg = transformExpr(pstate, tc->arg);
|
|
|
|
result = typecast_expression(pstate, arg, tc->typename);
|
|
break;
|
|
}
|
|
|
|
case T_A_Expr:
|
|
{
|
|
A_Expr *a = (A_Expr *) expr;
|
|
|
|
switch (a->kind)
|
|
{
|
|
case AEXPR_OP:
|
|
result = transformAExprOp(pstate, a);
|
|
break;
|
|
case AEXPR_AND:
|
|
result = transformAExprAnd(pstate, a);
|
|
break;
|
|
case AEXPR_OR:
|
|
result = transformAExprOr(pstate, a);
|
|
break;
|
|
case AEXPR_NOT:
|
|
result = transformAExprNot(pstate, a);
|
|
break;
|
|
case AEXPR_OP_ANY:
|
|
result = transformAExprOpAny(pstate, a);
|
|
break;
|
|
case AEXPR_OP_ALL:
|
|
result = transformAExprOpAll(pstate, a);
|
|
break;
|
|
case AEXPR_DISTINCT:
|
|
result = transformAExprDistinct(pstate, a);
|
|
break;
|
|
case AEXPR_NULLIF:
|
|
result = transformAExprNullIf(pstate, a);
|
|
break;
|
|
case AEXPR_OF:
|
|
result = transformAExprOf(pstate, a);
|
|
break;
|
|
case AEXPR_IN:
|
|
result = transformAExprIn(pstate, a);
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized A_Expr kind: %d", a->kind);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case T_FuncCall:
|
|
result = transformFuncCall(pstate, (FuncCall *) expr);
|
|
break;
|
|
|
|
case T_SubLink:
|
|
result = transformSubLink(pstate, (SubLink *) expr);
|
|
break;
|
|
|
|
case T_CaseExpr:
|
|
result = transformCaseExpr(pstate, (CaseExpr *) expr);
|
|
break;
|
|
|
|
case T_ArrayExpr:
|
|
result = transformArrayExpr(pstate, (ArrayExpr *) expr);
|
|
break;
|
|
|
|
case T_RowExpr:
|
|
result = transformRowExpr(pstate, (RowExpr *) expr);
|
|
break;
|
|
|
|
case T_CoalesceExpr:
|
|
result = transformCoalesceExpr(pstate, (CoalesceExpr *) expr);
|
|
break;
|
|
|
|
case T_MinMaxExpr:
|
|
result = transformMinMaxExpr(pstate, (MinMaxExpr *) expr);
|
|
break;
|
|
|
|
case T_XmlExpr:
|
|
result = transformXmlExpr(pstate, (XmlExpr *) expr);
|
|
break;
|
|
|
|
case T_XmlSerialize:
|
|
result = transformXmlSerialize(pstate, (XmlSerialize *) expr);
|
|
break;
|
|
|
|
case T_NullTest:
|
|
{
|
|
NullTest *n = (NullTest *) expr;
|
|
|
|
n->arg = (Expr *) transformExpr(pstate, (Node *) n->arg);
|
|
/* the argument can be any type, so don't coerce it */
|
|
result = expr;
|
|
break;
|
|
}
|
|
|
|
case T_BooleanTest:
|
|
result = transformBooleanTest(pstate, (BooleanTest *) expr);
|
|
break;
|
|
|
|
case T_CurrentOfExpr:
|
|
result = transformCurrentOfExpr(pstate, (CurrentOfExpr *) expr);
|
|
break;
|
|
|
|
/*********************************************
|
|
* Quietly accept node types that may be presented when we are
|
|
* called on an already-transformed tree.
|
|
*
|
|
* Do any other node types need to be accepted? For now we are
|
|
* taking a conservative approach, and only accepting node
|
|
* types that are demonstrably necessary to accept.
|
|
*********************************************/
|
|
case T_Var:
|
|
case T_Const:
|
|
case T_Param:
|
|
case T_Aggref:
|
|
case T_ArrayRef:
|
|
case T_FuncExpr:
|
|
case T_OpExpr:
|
|
case T_DistinctExpr:
|
|
case T_ScalarArrayOpExpr:
|
|
case T_NullIfExpr:
|
|
case T_BoolExpr:
|
|
case T_FieldSelect:
|
|
case T_FieldStore:
|
|
case T_RelabelType:
|
|
case T_CoerceViaIO:
|
|
case T_ArrayCoerceExpr:
|
|
case T_ConvertRowtypeExpr:
|
|
case T_CaseTestExpr:
|
|
case T_CoerceToDomain:
|
|
case T_CoerceToDomainValue:
|
|
case T_SetToDefault:
|
|
{
|
|
result = (Node *) expr;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
/* should not reach here */
|
|
elog(ERROR, "unrecognized node type: %d", (int) nodeTag(expr));
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformIndirection(ParseState *pstate, Node *basenode, List *indirection)
|
|
{
|
|
Node *result = basenode;
|
|
List *subscripts = NIL;
|
|
ListCell *i;
|
|
|
|
/*
|
|
* We have to split any field-selection operations apart from
|
|
* subscripting. Adjacent A_Indices nodes have to be treated as a single
|
|
* multidimensional subscript operation.
|
|
*/
|
|
foreach(i, indirection)
|
|
{
|
|
Node *n = lfirst(i);
|
|
|
|
if (IsA(n, A_Indices))
|
|
subscripts = lappend(subscripts, n);
|
|
else
|
|
{
|
|
Assert(IsA(n, String));
|
|
|
|
/* process subscripts before this field selection */
|
|
if (subscripts)
|
|
result = (Node *) transformArraySubscripts(pstate,
|
|
result,
|
|
exprType(result),
|
|
InvalidOid,
|
|
exprTypmod(result),
|
|
subscripts,
|
|
NULL);
|
|
subscripts = NIL;
|
|
|
|
result = ParseFuncOrColumn(pstate,
|
|
list_make1(n),
|
|
list_make1(result),
|
|
false, false, true,
|
|
-1);
|
|
}
|
|
}
|
|
/* process trailing subscripts, if any */
|
|
if (subscripts)
|
|
result = (Node *) transformArraySubscripts(pstate,
|
|
result,
|
|
exprType(result),
|
|
InvalidOid,
|
|
exprTypmod(result),
|
|
subscripts,
|
|
NULL);
|
|
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformColumnRef(ParseState *pstate, ColumnRef *cref)
|
|
{
|
|
int numnames = list_length(cref->fields);
|
|
Node *node;
|
|
int levels_up;
|
|
|
|
/*----------
|
|
* The allowed syntaxes are:
|
|
*
|
|
* A First try to resolve as unqualified column name;
|
|
* if no luck, try to resolve as unqualified table name (A.*).
|
|
* A.B A is an unqualified table name; B is either a
|
|
* column or function name (trying column name first).
|
|
* A.B.C schema A, table B, col or func name C.
|
|
* A.B.C.D catalog A, schema B, table C, col or func D.
|
|
* A.* A is an unqualified table name; means whole-row value.
|
|
* A.B.* whole-row value of table B in schema A.
|
|
* A.B.C.* whole-row value of table C in schema B in catalog A.
|
|
*
|
|
* We do not need to cope with bare "*"; that will only be accepted by
|
|
* the grammar at the top level of a SELECT list, and transformTargetList
|
|
* will take care of it before it ever gets here. Also, "A.*" etc will
|
|
* be expanded by transformTargetList if they appear at SELECT top level,
|
|
* so here we are only going to see them as function or operator inputs.
|
|
*
|
|
* Currently, if a catalog name is given then it must equal the current
|
|
* database name; we check it here and then discard it.
|
|
*----------
|
|
*/
|
|
switch (numnames)
|
|
{
|
|
case 1:
|
|
{
|
|
char *name = strVal(linitial(cref->fields));
|
|
|
|
/* Try to identify as an unqualified column */
|
|
node = colNameToVar(pstate, name, false, cref->location);
|
|
|
|
if (node == NULL)
|
|
{
|
|
/*
|
|
* Not known as a column of any range-table entry.
|
|
*
|
|
* Consider the possibility that it's VALUE in a domain
|
|
* check expression. (We handle VALUE as a name, not a
|
|
* keyword, to avoid breaking a lot of applications that
|
|
* have used VALUE as a column name in the past.)
|
|
*/
|
|
if (pstate->p_value_substitute != NULL &&
|
|
strcmp(name, "value") == 0)
|
|
{
|
|
node = (Node *) copyObject(pstate->p_value_substitute);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Try to find the name as a relation. Note that only
|
|
* relations already entered into the rangetable will be
|
|
* recognized.
|
|
*
|
|
* This is a hack for backwards compatibility with
|
|
* PostQUEL-inspired syntax. The preferred form now is
|
|
* "rel.*".
|
|
*/
|
|
if (refnameRangeTblEntry(pstate, NULL, name,
|
|
&levels_up) != NULL)
|
|
node = transformWholeRowRef(pstate, NULL, name,
|
|
cref->location);
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_COLUMN),
|
|
errmsg("column \"%s\" does not exist",
|
|
name),
|
|
parser_errposition(pstate, cref->location)));
|
|
}
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
char *name1 = strVal(linitial(cref->fields));
|
|
char *name2 = strVal(lsecond(cref->fields));
|
|
|
|
/* Whole-row reference? */
|
|
if (strcmp(name2, "*") == 0)
|
|
{
|
|
node = transformWholeRowRef(pstate, NULL, name1,
|
|
cref->location);
|
|
break;
|
|
}
|
|
|
|
/* Try to identify as a once-qualified column */
|
|
node = qualifiedNameToVar(pstate, NULL, name1, name2, true,
|
|
cref->location);
|
|
if (node == NULL)
|
|
{
|
|
/*
|
|
* Not known as a column of any range-table entry, so try
|
|
* it as a function call. Here, we will create an
|
|
* implicit RTE for tables not already entered.
|
|
*/
|
|
node = transformWholeRowRef(pstate, NULL, name1,
|
|
cref->location);
|
|
node = ParseFuncOrColumn(pstate,
|
|
list_make1(makeString(name2)),
|
|
list_make1(node),
|
|
false, false, true,
|
|
cref->location);
|
|
}
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
char *name1 = strVal(linitial(cref->fields));
|
|
char *name2 = strVal(lsecond(cref->fields));
|
|
char *name3 = strVal(lthird(cref->fields));
|
|
|
|
/* Whole-row reference? */
|
|
if (strcmp(name3, "*") == 0)
|
|
{
|
|
node = transformWholeRowRef(pstate, name1, name2,
|
|
cref->location);
|
|
break;
|
|
}
|
|
|
|
/* Try to identify as a twice-qualified column */
|
|
node = qualifiedNameToVar(pstate, name1, name2, name3, true,
|
|
cref->location);
|
|
if (node == NULL)
|
|
{
|
|
/* Try it as a function call */
|
|
node = transformWholeRowRef(pstate, name1, name2,
|
|
cref->location);
|
|
node = ParseFuncOrColumn(pstate,
|
|
list_make1(makeString(name3)),
|
|
list_make1(node),
|
|
false, false, true,
|
|
cref->location);
|
|
}
|
|
break;
|
|
}
|
|
case 4:
|
|
{
|
|
char *name1 = strVal(linitial(cref->fields));
|
|
char *name2 = strVal(lsecond(cref->fields));
|
|
char *name3 = strVal(lthird(cref->fields));
|
|
char *name4 = strVal(lfourth(cref->fields));
|
|
|
|
/*
|
|
* We check the catalog name and then ignore it.
|
|
*/
|
|
if (strcmp(name1, get_database_name(MyDatabaseId)) != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cross-database references are not implemented: %s",
|
|
NameListToString(cref->fields)),
|
|
parser_errposition(pstate, cref->location)));
|
|
|
|
/* Whole-row reference? */
|
|
if (strcmp(name4, "*") == 0)
|
|
{
|
|
node = transformWholeRowRef(pstate, name2, name3,
|
|
cref->location);
|
|
break;
|
|
}
|
|
|
|
/* Try to identify as a twice-qualified column */
|
|
node = qualifiedNameToVar(pstate, name2, name3, name4, true,
|
|
cref->location);
|
|
if (node == NULL)
|
|
{
|
|
/* Try it as a function call */
|
|
node = transformWholeRowRef(pstate, name2, name3,
|
|
cref->location);
|
|
node = ParseFuncOrColumn(pstate,
|
|
list_make1(makeString(name4)),
|
|
list_make1(node),
|
|
false, false, true,
|
|
cref->location);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("improper qualified name (too many dotted names): %s",
|
|
NameListToString(cref->fields)),
|
|
parser_errposition(pstate, cref->location)));
|
|
node = NULL; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
/*
|
|
* Locate the parameter type info for the given parameter number, and
|
|
* return a pointer to it.
|
|
*/
|
|
static Oid *
|
|
find_param_type(ParseState *pstate, int paramno)
|
|
{
|
|
Oid *result;
|
|
|
|
/*
|
|
* Find topmost ParseState, which is where paramtype info lives.
|
|
*/
|
|
while (pstate->parentParseState != NULL)
|
|
pstate = pstate->parentParseState;
|
|
|
|
/* Check parameter number is in range */
|
|
if (paramno <= 0) /* probably can't happen? */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_PARAMETER),
|
|
errmsg("there is no parameter $%d", paramno)));
|
|
if (paramno > pstate->p_numparams)
|
|
{
|
|
if (!pstate->p_variableparams)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_PARAMETER),
|
|
errmsg("there is no parameter $%d",
|
|
paramno)));
|
|
/* Okay to enlarge param array */
|
|
if (pstate->p_paramtypes)
|
|
pstate->p_paramtypes = (Oid *) repalloc(pstate->p_paramtypes,
|
|
paramno * sizeof(Oid));
|
|
else
|
|
pstate->p_paramtypes = (Oid *) palloc(paramno * sizeof(Oid));
|
|
/* Zero out the previously-unreferenced slots */
|
|
MemSet(pstate->p_paramtypes + pstate->p_numparams,
|
|
0,
|
|
(paramno - pstate->p_numparams) * sizeof(Oid));
|
|
pstate->p_numparams = paramno;
|
|
}
|
|
|
|
result = &pstate->p_paramtypes[paramno - 1];
|
|
|
|
if (pstate->p_variableparams)
|
|
{
|
|
/* If not seen before, initialize to UNKNOWN type */
|
|
if (*result == InvalidOid)
|
|
*result = UNKNOWNOID;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformParamRef(ParseState *pstate, ParamRef *pref)
|
|
{
|
|
int paramno = pref->number;
|
|
Oid *pptype = find_param_type(pstate, paramno);
|
|
Param *param;
|
|
|
|
param = makeNode(Param);
|
|
param->paramkind = PARAM_EXTERN;
|
|
param->paramid = paramno;
|
|
param->paramtype = *pptype;
|
|
param->paramtypmod = -1;
|
|
|
|
return (Node *) param;
|
|
}
|
|
|
|
static Node *
|
|
transformAExprOp(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = a->lexpr;
|
|
Node *rexpr = a->rexpr;
|
|
Node *result;
|
|
|
|
/*
|
|
* Special-case "foo = NULL" and "NULL = foo" for compatibility with
|
|
* standards-broken products (like Microsoft's). Turn these into IS NULL
|
|
* exprs.
|
|
*/
|
|
if (Transform_null_equals &&
|
|
list_length(a->name) == 1 &&
|
|
strcmp(strVal(linitial(a->name)), "=") == 0 &&
|
|
(exprIsNullConstant(lexpr) || exprIsNullConstant(rexpr)))
|
|
{
|
|
NullTest *n = makeNode(NullTest);
|
|
|
|
n->nulltesttype = IS_NULL;
|
|
|
|
if (exprIsNullConstant(lexpr))
|
|
n->arg = (Expr *) rexpr;
|
|
else
|
|
n->arg = (Expr *) lexpr;
|
|
|
|
result = transformExpr(pstate, (Node *) n);
|
|
}
|
|
else if (lexpr && IsA(lexpr, RowExpr) &&
|
|
rexpr && IsA(rexpr, SubLink) &&
|
|
((SubLink *) rexpr)->subLinkType == EXPR_SUBLINK)
|
|
{
|
|
/*
|
|
* Convert "row op subselect" into a ROWCOMPARE sublink. Formerly the
|
|
* grammar did this, but now that a row construct is allowed anywhere
|
|
* in expressions, it's easier to do it here.
|
|
*/
|
|
SubLink *s = (SubLink *) rexpr;
|
|
|
|
s->subLinkType = ROWCOMPARE_SUBLINK;
|
|
s->testexpr = lexpr;
|
|
s->operName = a->name;
|
|
result = transformExpr(pstate, (Node *) s);
|
|
}
|
|
else if (lexpr && IsA(lexpr, RowExpr) &&
|
|
rexpr && IsA(rexpr, RowExpr))
|
|
{
|
|
/* "row op row" */
|
|
lexpr = transformExpr(pstate, lexpr);
|
|
rexpr = transformExpr(pstate, rexpr);
|
|
Assert(IsA(lexpr, RowExpr));
|
|
Assert(IsA(rexpr, RowExpr));
|
|
|
|
result = make_row_comparison_op(pstate,
|
|
a->name,
|
|
((RowExpr *) lexpr)->args,
|
|
((RowExpr *) rexpr)->args,
|
|
a->location);
|
|
}
|
|
else
|
|
{
|
|
/* Ordinary scalar operator */
|
|
lexpr = transformExpr(pstate, lexpr);
|
|
rexpr = transformExpr(pstate, rexpr);
|
|
|
|
result = (Node *) make_op(pstate,
|
|
a->name,
|
|
lexpr,
|
|
rexpr,
|
|
a->location);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformAExprAnd(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = transformExpr(pstate, a->lexpr);
|
|
Node *rexpr = transformExpr(pstate, a->rexpr);
|
|
|
|
lexpr = coerce_to_boolean(pstate, lexpr, "AND");
|
|
rexpr = coerce_to_boolean(pstate, rexpr, "AND");
|
|
|
|
return (Node *) makeBoolExpr(AND_EXPR,
|
|
list_make2(lexpr, rexpr));
|
|
}
|
|
|
|
static Node *
|
|
transformAExprOr(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = transformExpr(pstate, a->lexpr);
|
|
Node *rexpr = transformExpr(pstate, a->rexpr);
|
|
|
|
lexpr = coerce_to_boolean(pstate, lexpr, "OR");
|
|
rexpr = coerce_to_boolean(pstate, rexpr, "OR");
|
|
|
|
return (Node *) makeBoolExpr(OR_EXPR,
|
|
list_make2(lexpr, rexpr));
|
|
}
|
|
|
|
static Node *
|
|
transformAExprNot(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *rexpr = transformExpr(pstate, a->rexpr);
|
|
|
|
rexpr = coerce_to_boolean(pstate, rexpr, "NOT");
|
|
|
|
return (Node *) makeBoolExpr(NOT_EXPR,
|
|
list_make1(rexpr));
|
|
}
|
|
|
|
static Node *
|
|
transformAExprOpAny(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = transformExpr(pstate, a->lexpr);
|
|
Node *rexpr = transformExpr(pstate, a->rexpr);
|
|
|
|
return (Node *) make_scalar_array_op(pstate,
|
|
a->name,
|
|
true,
|
|
lexpr,
|
|
rexpr,
|
|
a->location);
|
|
}
|
|
|
|
static Node *
|
|
transformAExprOpAll(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = transformExpr(pstate, a->lexpr);
|
|
Node *rexpr = transformExpr(pstate, a->rexpr);
|
|
|
|
return (Node *) make_scalar_array_op(pstate,
|
|
a->name,
|
|
false,
|
|
lexpr,
|
|
rexpr,
|
|
a->location);
|
|
}
|
|
|
|
static Node *
|
|
transformAExprDistinct(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = transformExpr(pstate, a->lexpr);
|
|
Node *rexpr = transformExpr(pstate, a->rexpr);
|
|
|
|
if (lexpr && IsA(lexpr, RowExpr) &&
|
|
rexpr && IsA(rexpr, RowExpr))
|
|
{
|
|
/* "row op row" */
|
|
return make_row_distinct_op(pstate, a->name,
|
|
(RowExpr *) lexpr,
|
|
(RowExpr *) rexpr,
|
|
a->location);
|
|
}
|
|
else
|
|
{
|
|
/* Ordinary scalar operator */
|
|
return (Node *) make_distinct_op(pstate,
|
|
a->name,
|
|
lexpr,
|
|
rexpr,
|
|
a->location);
|
|
}
|
|
}
|
|
|
|
static Node *
|
|
transformAExprNullIf(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr = transformExpr(pstate, a->lexpr);
|
|
Node *rexpr = transformExpr(pstate, a->rexpr);
|
|
Node *result;
|
|
|
|
result = (Node *) make_op(pstate,
|
|
a->name,
|
|
lexpr,
|
|
rexpr,
|
|
a->location);
|
|
if (((OpExpr *) result)->opresulttype != BOOLOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("NULLIF requires = operator to yield boolean"),
|
|
parser_errposition(pstate, a->location)));
|
|
|
|
/*
|
|
* We rely on NullIfExpr and OpExpr being the same struct
|
|
*/
|
|
NodeSetTag(result, T_NullIfExpr);
|
|
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformAExprOf(ParseState *pstate, A_Expr *a)
|
|
{
|
|
/*
|
|
* Checking an expression for match to a list of type names. Will result
|
|
* in a boolean constant node.
|
|
*/
|
|
Node *lexpr = transformExpr(pstate, a->lexpr);
|
|
ListCell *telem;
|
|
Oid ltype,
|
|
rtype;
|
|
bool matched = false;
|
|
|
|
ltype = exprType(lexpr);
|
|
foreach(telem, (List *) a->rexpr)
|
|
{
|
|
rtype = typenameTypeId(pstate, lfirst(telem));
|
|
matched = (rtype == ltype);
|
|
if (matched)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have two forms: equals or not equals. Flip the sense of the result
|
|
* for not equals.
|
|
*/
|
|
if (strcmp(strVal(linitial(a->name)), "<>") == 0)
|
|
matched = (!matched);
|
|
|
|
return makeBoolConst(matched, false);
|
|
}
|
|
|
|
static Node *
|
|
transformAExprIn(ParseState *pstate, A_Expr *a)
|
|
{
|
|
Node *lexpr;
|
|
List *rexprs;
|
|
List *typeids;
|
|
bool useOr;
|
|
bool haveRowExpr;
|
|
Node *result;
|
|
ListCell *l;
|
|
|
|
/*
|
|
* If the operator is <>, combine with AND not OR.
|
|
*/
|
|
if (strcmp(strVal(linitial(a->name)), "<>") == 0)
|
|
useOr = false;
|
|
else
|
|
useOr = true;
|
|
|
|
/*
|
|
* We try to generate a ScalarArrayOpExpr from IN/NOT IN, but this is only
|
|
* possible if the inputs are all scalars (no RowExprs) and there is a
|
|
* suitable array type available. If not, we fall back to a boolean
|
|
* condition tree with multiple copies of the lefthand expression.
|
|
*
|
|
* First step: transform all the inputs, and detect whether any are
|
|
* RowExprs.
|
|
*/
|
|
lexpr = transformExpr(pstate, a->lexpr);
|
|
haveRowExpr = (lexpr && IsA(lexpr, RowExpr));
|
|
typeids = list_make1_oid(exprType(lexpr));
|
|
rexprs = NIL;
|
|
foreach(l, (List *) a->rexpr)
|
|
{
|
|
Node *rexpr = transformExpr(pstate, lfirst(l));
|
|
|
|
haveRowExpr |= (rexpr && IsA(rexpr, RowExpr));
|
|
rexprs = lappend(rexprs, rexpr);
|
|
typeids = lappend_oid(typeids, exprType(rexpr));
|
|
}
|
|
|
|
/*
|
|
* If not forced by presence of RowExpr, try to resolve a common scalar
|
|
* type for all the expressions, and see if it has an array type. (But if
|
|
* there's only one righthand expression, we may as well just fall through
|
|
* and generate a simple = comparison.)
|
|
*/
|
|
if (!haveRowExpr && list_length(rexprs) != 1)
|
|
{
|
|
Oid scalar_type;
|
|
Oid array_type;
|
|
|
|
/*
|
|
* Select a common type for the array elements. Note that since the
|
|
* LHS' type is first in the list, it will be preferred when there is
|
|
* doubt (eg, when all the RHS items are unknown literals).
|
|
*/
|
|
scalar_type = select_common_type(typeids, "IN");
|
|
|
|
/* Do we have an array type to use? */
|
|
array_type = get_array_type(scalar_type);
|
|
if (array_type != InvalidOid)
|
|
{
|
|
/*
|
|
* OK: coerce all the right-hand inputs to the common type and
|
|
* build an ArrayExpr for them.
|
|
*/
|
|
List *aexprs;
|
|
ArrayExpr *newa;
|
|
|
|
aexprs = NIL;
|
|
foreach(l, rexprs)
|
|
{
|
|
Node *rexpr = (Node *) lfirst(l);
|
|
|
|
rexpr = coerce_to_common_type(pstate, rexpr,
|
|
scalar_type,
|
|
"IN");
|
|
aexprs = lappend(aexprs, rexpr);
|
|
}
|
|
newa = makeNode(ArrayExpr);
|
|
newa->array_typeid = array_type;
|
|
newa->element_typeid = scalar_type;
|
|
newa->elements = aexprs;
|
|
newa->multidims = false;
|
|
|
|
return (Node *) make_scalar_array_op(pstate,
|
|
a->name,
|
|
useOr,
|
|
lexpr,
|
|
(Node *) newa,
|
|
a->location);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Must do it the hard way, ie, with a boolean expression tree.
|
|
*/
|
|
result = NULL;
|
|
foreach(l, rexprs)
|
|
{
|
|
Node *rexpr = (Node *) lfirst(l);
|
|
Node *cmp;
|
|
|
|
if (haveRowExpr)
|
|
{
|
|
if (!IsA(lexpr, RowExpr) ||
|
|
!IsA(rexpr, RowExpr))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("arguments of row IN must all be row expressions"),
|
|
parser_errposition(pstate, a->location)));
|
|
cmp = make_row_comparison_op(pstate,
|
|
a->name,
|
|
(List *) copyObject(((RowExpr *) lexpr)->args),
|
|
((RowExpr *) rexpr)->args,
|
|
a->location);
|
|
}
|
|
else
|
|
cmp = (Node *) make_op(pstate,
|
|
a->name,
|
|
copyObject(lexpr),
|
|
rexpr,
|
|
a->location);
|
|
|
|
cmp = coerce_to_boolean(pstate, cmp, "IN");
|
|
if (result == NULL)
|
|
result = cmp;
|
|
else
|
|
result = (Node *) makeBoolExpr(useOr ? OR_EXPR : AND_EXPR,
|
|
list_make2(result, cmp));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformFuncCall(ParseState *pstate, FuncCall *fn)
|
|
{
|
|
List *targs;
|
|
ListCell *args;
|
|
|
|
/*
|
|
* Transform the list of arguments. We use a shallow list copy and then
|
|
* transform-in-place to avoid O(N^2) behavior from repeated lappend's.
|
|
*
|
|
* XXX: repeated lappend() would no longer result in O(n^2) behavior;
|
|
* worth reconsidering this design?
|
|
*/
|
|
targs = list_copy(fn->args);
|
|
foreach(args, targs)
|
|
{
|
|
lfirst(args) = transformExpr(pstate,
|
|
(Node *) lfirst(args));
|
|
}
|
|
|
|
return ParseFuncOrColumn(pstate,
|
|
fn->funcname,
|
|
targs,
|
|
fn->agg_star,
|
|
fn->agg_distinct,
|
|
false,
|
|
fn->location);
|
|
}
|
|
|
|
static Node *
|
|
transformCaseExpr(ParseState *pstate, CaseExpr *c)
|
|
{
|
|
CaseExpr *newc;
|
|
Node *arg;
|
|
CaseTestExpr *placeholder;
|
|
List *newargs;
|
|
List *typeids;
|
|
ListCell *l;
|
|
Node *defresult;
|
|
Oid ptype;
|
|
|
|
/* If we already transformed this node, do nothing */
|
|
if (OidIsValid(c->casetype))
|
|
return (Node *) c;
|
|
|
|
newc = makeNode(CaseExpr);
|
|
|
|
/* transform the test expression, if any */
|
|
arg = transformExpr(pstate, (Node *) c->arg);
|
|
|
|
/* generate placeholder for test expression */
|
|
if (arg)
|
|
{
|
|
/*
|
|
* If test expression is an untyped literal, force it to text. We have
|
|
* to do something now because we won't be able to do this coercion on
|
|
* the placeholder. This is not as flexible as what was done in 7.4
|
|
* and before, but it's good enough to handle the sort of silly coding
|
|
* commonly seen.
|
|
*/
|
|
if (exprType(arg) == UNKNOWNOID)
|
|
arg = coerce_to_common_type(pstate, arg, TEXTOID, "CASE");
|
|
|
|
placeholder = makeNode(CaseTestExpr);
|
|
placeholder->typeId = exprType(arg);
|
|
placeholder->typeMod = exprTypmod(arg);
|
|
}
|
|
else
|
|
placeholder = NULL;
|
|
|
|
newc->arg = (Expr *) arg;
|
|
|
|
/* transform the list of arguments */
|
|
newargs = NIL;
|
|
typeids = NIL;
|
|
foreach(l, c->args)
|
|
{
|
|
CaseWhen *w = (CaseWhen *) lfirst(l);
|
|
CaseWhen *neww = makeNode(CaseWhen);
|
|
Node *warg;
|
|
|
|
Assert(IsA(w, CaseWhen));
|
|
|
|
warg = (Node *) w->expr;
|
|
if (placeholder)
|
|
{
|
|
/* shorthand form was specified, so expand... */
|
|
warg = (Node *) makeSimpleA_Expr(AEXPR_OP, "=",
|
|
(Node *) placeholder,
|
|
warg,
|
|
-1);
|
|
}
|
|
neww->expr = (Expr *) transformExpr(pstate, warg);
|
|
|
|
neww->expr = (Expr *) coerce_to_boolean(pstate,
|
|
(Node *) neww->expr,
|
|
"CASE/WHEN");
|
|
|
|
warg = (Node *) w->result;
|
|
neww->result = (Expr *) transformExpr(pstate, warg);
|
|
|
|
newargs = lappend(newargs, neww);
|
|
typeids = lappend_oid(typeids, exprType((Node *) neww->result));
|
|
}
|
|
|
|
newc->args = newargs;
|
|
|
|
/* transform the default clause */
|
|
defresult = (Node *) c->defresult;
|
|
if (defresult == NULL)
|
|
{
|
|
A_Const *n = makeNode(A_Const);
|
|
|
|
n->val.type = T_Null;
|
|
defresult = (Node *) n;
|
|
}
|
|
newc->defresult = (Expr *) transformExpr(pstate, defresult);
|
|
|
|
/*
|
|
* Note: default result is considered the most significant type in
|
|
* determining preferred type. This is how the code worked before, but it
|
|
* seems a little bogus to me --- tgl
|
|
*/
|
|
typeids = lcons_oid(exprType((Node *) newc->defresult), typeids);
|
|
|
|
ptype = select_common_type(typeids, "CASE");
|
|
Assert(OidIsValid(ptype));
|
|
newc->casetype = ptype;
|
|
|
|
/* Convert default result clause, if necessary */
|
|
newc->defresult = (Expr *)
|
|
coerce_to_common_type(pstate,
|
|
(Node *) newc->defresult,
|
|
ptype,
|
|
"CASE/ELSE");
|
|
|
|
/* Convert when-clause results, if necessary */
|
|
foreach(l, newc->args)
|
|
{
|
|
CaseWhen *w = (CaseWhen *) lfirst(l);
|
|
|
|
w->result = (Expr *)
|
|
coerce_to_common_type(pstate,
|
|
(Node *) w->result,
|
|
ptype,
|
|
"CASE/WHEN");
|
|
}
|
|
|
|
return (Node *) newc;
|
|
}
|
|
|
|
static Node *
|
|
transformSubLink(ParseState *pstate, SubLink *sublink)
|
|
{
|
|
List *qtrees;
|
|
Query *qtree;
|
|
Node *result = (Node *) sublink;
|
|
|
|
/* If we already transformed this node, do nothing */
|
|
if (IsA(sublink->subselect, Query))
|
|
return result;
|
|
|
|
pstate->p_hasSubLinks = true;
|
|
qtrees = parse_sub_analyze(sublink->subselect, pstate);
|
|
if (list_length(qtrees) != 1)
|
|
elog(ERROR, "bad query in sub-select");
|
|
qtree = (Query *) linitial(qtrees);
|
|
if (qtree->commandType != CMD_SELECT ||
|
|
qtree->utilityStmt != NULL ||
|
|
qtree->intoClause != NULL)
|
|
elog(ERROR, "bad query in sub-select");
|
|
sublink->subselect = (Node *) qtree;
|
|
|
|
if (sublink->subLinkType == EXISTS_SUBLINK)
|
|
{
|
|
/*
|
|
* EXISTS needs no test expression or combining operator. These fields
|
|
* should be null already, but make sure.
|
|
*/
|
|
sublink->testexpr = NULL;
|
|
sublink->operName = NIL;
|
|
}
|
|
else if (sublink->subLinkType == EXPR_SUBLINK ||
|
|
sublink->subLinkType == ARRAY_SUBLINK)
|
|
{
|
|
ListCell *tlist_item = list_head(qtree->targetList);
|
|
|
|
/*
|
|
* Make sure the subselect delivers a single column (ignoring resjunk
|
|
* targets).
|
|
*/
|
|
if (tlist_item == NULL ||
|
|
((TargetEntry *) lfirst(tlist_item))->resjunk)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("subquery must return a column")));
|
|
while ((tlist_item = lnext(tlist_item)) != NULL)
|
|
{
|
|
if (!((TargetEntry *) lfirst(tlist_item))->resjunk)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("subquery must return only one column")));
|
|
}
|
|
|
|
/*
|
|
* EXPR and ARRAY need no test expression or combining operator. These
|
|
* fields should be null already, but make sure.
|
|
*/
|
|
sublink->testexpr = NULL;
|
|
sublink->operName = NIL;
|
|
}
|
|
else
|
|
{
|
|
/* ALL, ANY, or ROWCOMPARE: generate row-comparing expression */
|
|
Node *lefthand;
|
|
List *left_list;
|
|
List *right_list;
|
|
ListCell *l;
|
|
|
|
/*
|
|
* Transform lefthand expression, and convert to a list
|
|
*/
|
|
lefthand = transformExpr(pstate, sublink->testexpr);
|
|
if (lefthand && IsA(lefthand, RowExpr))
|
|
left_list = ((RowExpr *) lefthand)->args;
|
|
else
|
|
left_list = list_make1(lefthand);
|
|
|
|
/*
|
|
* Build a list of PARAM_SUBLINK nodes representing the output columns
|
|
* of the subquery.
|
|
*/
|
|
right_list = NIL;
|
|
foreach(l, qtree->targetList)
|
|
{
|
|
TargetEntry *tent = (TargetEntry *) lfirst(l);
|
|
Param *param;
|
|
|
|
if (tent->resjunk)
|
|
continue;
|
|
|
|
param = makeNode(Param);
|
|
param->paramkind = PARAM_SUBLINK;
|
|
param->paramid = tent->resno;
|
|
param->paramtype = exprType((Node *) tent->expr);
|
|
param->paramtypmod = exprTypmod((Node *) tent->expr);
|
|
|
|
right_list = lappend(right_list, param);
|
|
}
|
|
|
|
/*
|
|
* We could rely on make_row_comparison_op to complain if the list
|
|
* lengths differ, but we prefer to generate a more specific error
|
|
* message.
|
|
*/
|
|
if (list_length(left_list) < list_length(right_list))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("subquery has too many columns")));
|
|
if (list_length(left_list) > list_length(right_list))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("subquery has too few columns")));
|
|
|
|
/*
|
|
* Identify the combining operator(s) and generate a suitable
|
|
* row-comparison expression.
|
|
*/
|
|
sublink->testexpr = make_row_comparison_op(pstate,
|
|
sublink->operName,
|
|
left_list,
|
|
right_list,
|
|
-1);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static Node *
|
|
transformArrayExpr(ParseState *pstate, ArrayExpr *a)
|
|
{
|
|
ArrayExpr *newa = makeNode(ArrayExpr);
|
|
List *newelems = NIL;
|
|
List *newcoercedelems = NIL;
|
|
List *typeids = NIL;
|
|
ListCell *element;
|
|
Oid array_type;
|
|
Oid element_type;
|
|
|
|
/* Transform the element expressions */
|
|
foreach(element, a->elements)
|
|
{
|
|
Node *e = (Node *) lfirst(element);
|
|
Node *newe;
|
|
|
|
newe = transformExpr(pstate, e);
|
|
newelems = lappend(newelems, newe);
|
|
typeids = lappend_oid(typeids, exprType(newe));
|
|
}
|
|
|
|
/* Select a common type for the elements */
|
|
element_type = select_common_type(typeids, "ARRAY");
|
|
|
|
/* Coerce arguments to common type if necessary */
|
|
foreach(element, newelems)
|
|
{
|
|
Node *e = (Node *) lfirst(element);
|
|
Node *newe;
|
|
|
|
newe = coerce_to_common_type(pstate, e,
|
|
element_type,
|
|
"ARRAY");
|
|
newcoercedelems = lappend(newcoercedelems, newe);
|
|
}
|
|
|
|
/* Do we have an array type to use? */
|
|
array_type = get_array_type(element_type);
|
|
if (array_type != InvalidOid)
|
|
{
|
|
/* Elements are presumably of scalar type */
|
|
newa->multidims = false;
|
|
}
|
|
else
|
|
{
|
|
/* Must be nested array expressions */
|
|
newa->multidims = true;
|
|
|
|
array_type = element_type;
|
|
element_type = get_element_type(array_type);
|
|
if (!OidIsValid(element_type))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_OBJECT),
|
|
errmsg("could not find array type for data type %s",
|
|
format_type_be(array_type))));
|
|
}
|
|
|
|
newa->array_typeid = array_type;
|
|
newa->element_typeid = element_type;
|
|
newa->elements = newcoercedelems;
|
|
|
|
return (Node *) newa;
|
|
}
|
|
|
|
static Node *
|
|
transformRowExpr(ParseState *pstate, RowExpr *r)
|
|
{
|
|
RowExpr *newr = makeNode(RowExpr);
|
|
|
|
/* Transform the field expressions */
|
|
newr->args = transformExpressionList(pstate, r->args);
|
|
|
|
/* Barring later casting, we consider the type RECORD */
|
|
newr->row_typeid = RECORDOID;
|
|
newr->row_format = COERCE_IMPLICIT_CAST;
|
|
|
|
return (Node *) newr;
|
|
}
|
|
|
|
static Node *
|
|
transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c)
|
|
{
|
|
CoalesceExpr *newc = makeNode(CoalesceExpr);
|
|
List *newargs = NIL;
|
|
List *newcoercedargs = NIL;
|
|
List *typeids = NIL;
|
|
ListCell *args;
|
|
|
|
foreach(args, c->args)
|
|
{
|
|
Node *e = (Node *) lfirst(args);
|
|
Node *newe;
|
|
|
|
newe = transformExpr(pstate, e);
|
|
newargs = lappend(newargs, newe);
|
|
typeids = lappend_oid(typeids, exprType(newe));
|
|
}
|
|
|
|
newc->coalescetype = select_common_type(typeids, "COALESCE");
|
|
|
|
/* Convert arguments if necessary */
|
|
foreach(args, newargs)
|
|
{
|
|
Node *e = (Node *) lfirst(args);
|
|
Node *newe;
|
|
|
|
newe = coerce_to_common_type(pstate, e,
|
|
newc->coalescetype,
|
|
"COALESCE");
|
|
newcoercedargs = lappend(newcoercedargs, newe);
|
|
}
|
|
|
|
newc->args = newcoercedargs;
|
|
return (Node *) newc;
|
|
}
|
|
|
|
static Node *
|
|
transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m)
|
|
{
|
|
MinMaxExpr *newm = makeNode(MinMaxExpr);
|
|
List *newargs = NIL;
|
|
List *newcoercedargs = NIL;
|
|
List *typeids = NIL;
|
|
ListCell *args;
|
|
|
|
newm->op = m->op;
|
|
foreach(args, m->args)
|
|
{
|
|
Node *e = (Node *) lfirst(args);
|
|
Node *newe;
|
|
|
|
newe = transformExpr(pstate, e);
|
|
newargs = lappend(newargs, newe);
|
|
typeids = lappend_oid(typeids, exprType(newe));
|
|
}
|
|
|
|
newm->minmaxtype = select_common_type(typeids, "GREATEST/LEAST");
|
|
|
|
/* Convert arguments if necessary */
|
|
foreach(args, newargs)
|
|
{
|
|
Node *e = (Node *) lfirst(args);
|
|
Node *newe;
|
|
|
|
newe = coerce_to_common_type(pstate, e,
|
|
newm->minmaxtype,
|
|
"GREATEST/LEAST");
|
|
newcoercedargs = lappend(newcoercedargs, newe);
|
|
}
|
|
|
|
newm->args = newcoercedargs;
|
|
return (Node *) newm;
|
|
}
|
|
|
|
static Node *
|
|
transformXmlExpr(ParseState *pstate, XmlExpr *x)
|
|
{
|
|
XmlExpr *newx = makeNode(XmlExpr);
|
|
ListCell *lc;
|
|
int i;
|
|
|
|
newx->op = x->op;
|
|
if (x->name)
|
|
newx->name = map_sql_identifier_to_xml_name(x->name, false, false);
|
|
else
|
|
newx->name = NULL;
|
|
|
|
/*
|
|
* gram.y built the named args as a list of ResTarget. Transform each,
|
|
* and break the names out as a separate list.
|
|
*/
|
|
newx->named_args = NIL;
|
|
newx->arg_names = NIL;
|
|
|
|
foreach(lc, x->named_args)
|
|
{
|
|
ResTarget *r = (ResTarget *) lfirst(lc);
|
|
Node *expr;
|
|
char *argname;
|
|
|
|
Assert(IsA(r, ResTarget));
|
|
|
|
expr = transformExpr(pstate, r->val);
|
|
|
|
if (r->name)
|
|
argname = map_sql_identifier_to_xml_name(r->name, false, false);
|
|
else if (IsA(r->val, ColumnRef))
|
|
argname = map_sql_identifier_to_xml_name(FigureColname(r->val),
|
|
true, false);
|
|
else
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
x->op == IS_XMLELEMENT
|
|
? errmsg("unnamed XML attribute value must be a column reference")
|
|
: errmsg("unnamed XML element value must be a column reference")));
|
|
argname = NULL; /* keep compiler quiet */
|
|
}
|
|
|
|
newx->named_args = lappend(newx->named_args, expr);
|
|
newx->arg_names = lappend(newx->arg_names, makeString(argname));
|
|
}
|
|
|
|
newx->xmloption = x->xmloption;
|
|
|
|
if (x->op == IS_XMLELEMENT)
|
|
{
|
|
foreach(lc, newx->arg_names)
|
|
{
|
|
ListCell *lc2;
|
|
|
|
for_each_cell(lc2, lnext(lc))
|
|
{
|
|
if (strcmp(strVal(lfirst(lc)), strVal(lfirst(lc2))) == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("XML attribute name \"%s\" appears more than once", strVal(lfirst(lc)))));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The other arguments are of varying types depending on the function */
|
|
newx->args = NIL;
|
|
i = 0;
|
|
foreach(lc, x->args)
|
|
{
|
|
Node *e = (Node *) lfirst(lc);
|
|
Node *newe;
|
|
|
|
newe = transformExpr(pstate, e);
|
|
switch (x->op)
|
|
{
|
|
case IS_XMLCONCAT:
|
|
newe = coerce_to_specific_type(pstate, newe, XMLOID,
|
|
"XMLCONCAT");
|
|
break;
|
|
case IS_XMLELEMENT:
|
|
/* no coercion necessary */
|
|
break;
|
|
case IS_XMLFOREST:
|
|
newe = coerce_to_specific_type(pstate, newe, XMLOID,
|
|
"XMLFOREST");
|
|
break;
|
|
case IS_XMLPARSE:
|
|
if (i == 0)
|
|
newe = coerce_to_specific_type(pstate, newe, TEXTOID,
|
|
"XMLPARSE");
|
|
else
|
|
newe = coerce_to_boolean(pstate, newe, "XMLPARSE");
|
|
break;
|
|
case IS_XMLPI:
|
|
newe = coerce_to_specific_type(pstate, newe, TEXTOID,
|
|
"XMLPI");
|
|
break;
|
|
case IS_XMLROOT:
|
|
if (i == 0)
|
|
newe = coerce_to_specific_type(pstate, newe, XMLOID,
|
|
"XMLROOT");
|
|
else if (i == 1)
|
|
newe = coerce_to_specific_type(pstate, newe, TEXTOID,
|
|
"XMLROOT");
|
|
else
|
|
newe = coerce_to_specific_type(pstate, newe, INT4OID,
|
|
"XMLROOT");
|
|
break;
|
|
case IS_XMLSERIALIZE:
|
|
/* not handled here */
|
|
break;
|
|
case IS_DOCUMENT:
|
|
newe = coerce_to_specific_type(pstate, newe, XMLOID,
|
|
"IS DOCUMENT");
|
|
break;
|
|
}
|
|
newx->args = lappend(newx->args, newe);
|
|
i++;
|
|
}
|
|
|
|
return (Node *) newx;
|
|
}
|
|
|
|
static Node *
|
|
transformXmlSerialize(ParseState *pstate, XmlSerialize *xs)
|
|
{
|
|
Oid targetType;
|
|
int32 targetTypmod;
|
|
XmlExpr *xexpr;
|
|
|
|
xexpr = makeNode(XmlExpr);
|
|
xexpr->op = IS_XMLSERIALIZE;
|
|
xexpr->args = list_make1(coerce_to_specific_type(pstate,
|
|
transformExpr(pstate, xs->expr),
|
|
XMLOID,
|
|
"XMLSERIALIZE"));
|
|
|
|
targetType = typenameTypeId(pstate, xs->typename);
|
|
targetTypmod = typenameTypeMod(pstate, xs->typename, targetType);
|
|
|
|
xexpr->xmloption = xs->xmloption;
|
|
/* We actually only need these to be able to parse back the expression. */
|
|
xexpr->type = targetType;
|
|
xexpr->typmod = targetTypmod;
|
|
|
|
/*
|
|
* The actual target type is determined this way. SQL allows char
|
|
* and varchar as target types. We allow anything that can be
|
|
* cast implicitly from text. This way, user-defined text-like
|
|
* data types automatically fit in.
|
|
*/
|
|
return (Node *) coerce_to_target_type(pstate, (Node *) xexpr, TEXTOID, targetType, targetTypmod,
|
|
COERCION_IMPLICIT, COERCE_IMPLICIT_CAST);
|
|
}
|
|
|
|
static Node *
|
|
transformBooleanTest(ParseState *pstate, BooleanTest *b)
|
|
{
|
|
const char *clausename;
|
|
|
|
switch (b->booltesttype)
|
|
{
|
|
case IS_TRUE:
|
|
clausename = "IS TRUE";
|
|
break;
|
|
case IS_NOT_TRUE:
|
|
clausename = "IS NOT TRUE";
|
|
break;
|
|
case IS_FALSE:
|
|
clausename = "IS FALSE";
|
|
break;
|
|
case IS_NOT_FALSE:
|
|
clausename = "IS NOT FALSE";
|
|
break;
|
|
case IS_UNKNOWN:
|
|
clausename = "IS UNKNOWN";
|
|
break;
|
|
case IS_NOT_UNKNOWN:
|
|
clausename = "IS NOT UNKNOWN";
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized booltesttype: %d",
|
|
(int) b->booltesttype);
|
|
clausename = NULL; /* keep compiler quiet */
|
|
}
|
|
|
|
b->arg = (Expr *) transformExpr(pstate, (Node *) b->arg);
|
|
|
|
b->arg = (Expr *) coerce_to_boolean(pstate,
|
|
(Node *) b->arg,
|
|
clausename);
|
|
|
|
return (Node *) b;
|
|
}
|
|
|
|
static Node *
|
|
transformCurrentOfExpr(ParseState *pstate, CurrentOfExpr *cexpr)
|
|
{
|
|
int sublevels_up;
|
|
|
|
/* CURRENT OF can only appear at top level of UPDATE/DELETE */
|
|
Assert(pstate->p_target_rangetblentry != NULL);
|
|
cexpr->cvarno = RTERangeTablePosn(pstate,
|
|
pstate->p_target_rangetblentry,
|
|
&sublevels_up);
|
|
Assert(sublevels_up == 0);
|
|
|
|
/* If a parameter is used, it must be of type REFCURSOR */
|
|
if (cexpr->cursor_name == NULL)
|
|
{
|
|
Oid *pptype = find_param_type(pstate, cexpr->cursor_param);
|
|
|
|
if (pstate->p_variableparams && *pptype == UNKNOWNOID)
|
|
{
|
|
/* resolve unknown param type as REFCURSOR */
|
|
*pptype = REFCURSOROID;
|
|
}
|
|
else if (*pptype != REFCURSOROID)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_AMBIGUOUS_PARAMETER),
|
|
errmsg("inconsistent types deduced for parameter $%d",
|
|
cexpr->cursor_param),
|
|
errdetail("%s versus %s",
|
|
format_type_be(*pptype),
|
|
format_type_be(REFCURSOROID))));
|
|
}
|
|
}
|
|
|
|
return (Node *) cexpr;
|
|
}
|
|
|
|
/*
|
|
* Construct a whole-row reference to represent the notation "relation.*".
|
|
*
|
|
* A whole-row reference is a Var with varno set to the correct range
|
|
* table entry, and varattno == 0 to signal that it references the whole
|
|
* tuple. (Use of zero here is unclean, since it could easily be confused
|
|
* with error cases, but it's not worth changing now.) The vartype indicates
|
|
* a rowtype; either a named composite type, or RECORD.
|
|
*/
|
|
static Node *
|
|
transformWholeRowRef(ParseState *pstate, char *schemaname, char *relname,
|
|
int location)
|
|
{
|
|
Node *result;
|
|
RangeTblEntry *rte;
|
|
int vnum;
|
|
int sublevels_up;
|
|
Oid toid;
|
|
|
|
/* Look up the referenced RTE, creating it if needed */
|
|
|
|
rte = refnameRangeTblEntry(pstate, schemaname, relname,
|
|
&sublevels_up);
|
|
|
|
if (rte == NULL)
|
|
rte = addImplicitRTE(pstate, makeRangeVar(schemaname, relname),
|
|
location);
|
|
|
|
vnum = RTERangeTablePosn(pstate, rte, &sublevels_up);
|
|
|
|
/* Build the appropriate referencing node */
|
|
|
|
switch (rte->rtekind)
|
|
{
|
|
case RTE_RELATION:
|
|
/* relation: the rowtype is a named composite type */
|
|
toid = get_rel_type_id(rte->relid);
|
|
if (!OidIsValid(toid))
|
|
elog(ERROR, "could not find type OID for relation %u",
|
|
rte->relid);
|
|
result = (Node *) makeVar(vnum,
|
|
InvalidAttrNumber,
|
|
toid,
|
|
-1,
|
|
sublevels_up);
|
|
break;
|
|
case RTE_FUNCTION:
|
|
toid = exprType(rte->funcexpr);
|
|
if (type_is_rowtype(toid))
|
|
{
|
|
/* func returns composite; same as relation case */
|
|
result = (Node *) makeVar(vnum,
|
|
InvalidAttrNumber,
|
|
toid,
|
|
-1,
|
|
sublevels_up);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* func returns scalar; instead of making a whole-row Var,
|
|
* just reference the function's scalar output. (XXX this
|
|
* seems a tad inconsistent, especially if "f.*" was
|
|
* explicitly written ...)
|
|
*/
|
|
result = (Node *) makeVar(vnum,
|
|
1,
|
|
toid,
|
|
-1,
|
|
sublevels_up);
|
|
}
|
|
break;
|
|
case RTE_VALUES:
|
|
toid = RECORDOID;
|
|
/* returns composite; same as relation case */
|
|
result = (Node *) makeVar(vnum,
|
|
InvalidAttrNumber,
|
|
toid,
|
|
-1,
|
|
sublevels_up);
|
|
break;
|
|
default:
|
|
|
|
/*
|
|
* RTE is a join or subselect. We represent this as a whole-row
|
|
* Var of RECORD type. (Note that in most cases the Var will be
|
|
* expanded to a RowExpr during planning, but that is not our
|
|
* concern here.)
|
|
*/
|
|
result = (Node *) makeVar(vnum,
|
|
InvalidAttrNumber,
|
|
RECORDOID,
|
|
-1,
|
|
sublevels_up);
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* exprType -
|
|
* returns the Oid of the type of the expression. (Used for typechecking.)
|
|
*/
|
|
Oid
|
|
exprType(Node *expr)
|
|
{
|
|
Oid type;
|
|
|
|
if (!expr)
|
|
return InvalidOid;
|
|
|
|
switch (nodeTag(expr))
|
|
{
|
|
case T_Var:
|
|
type = ((Var *) expr)->vartype;
|
|
break;
|
|
case T_Const:
|
|
type = ((Const *) expr)->consttype;
|
|
break;
|
|
case T_Param:
|
|
type = ((Param *) expr)->paramtype;
|
|
break;
|
|
case T_Aggref:
|
|
type = ((Aggref *) expr)->aggtype;
|
|
break;
|
|
case T_ArrayRef:
|
|
{
|
|
ArrayRef *arrayref = (ArrayRef *) expr;
|
|
|
|
/* slice and/or store operations yield the array type */
|
|
if (arrayref->reflowerindexpr || arrayref->refassgnexpr)
|
|
type = arrayref->refarraytype;
|
|
else
|
|
type = arrayref->refelemtype;
|
|
}
|
|
break;
|
|
case T_FuncExpr:
|
|
type = ((FuncExpr *) expr)->funcresulttype;
|
|
break;
|
|
case T_OpExpr:
|
|
type = ((OpExpr *) expr)->opresulttype;
|
|
break;
|
|
case T_DistinctExpr:
|
|
type = ((DistinctExpr *) expr)->opresulttype;
|
|
break;
|
|
case T_ScalarArrayOpExpr:
|
|
type = BOOLOID;
|
|
break;
|
|
case T_BoolExpr:
|
|
type = BOOLOID;
|
|
break;
|
|
case T_SubLink:
|
|
{
|
|
SubLink *sublink = (SubLink *) expr;
|
|
|
|
if (sublink->subLinkType == EXPR_SUBLINK ||
|
|
sublink->subLinkType == ARRAY_SUBLINK)
|
|
{
|
|
/* get the type of the subselect's first target column */
|
|
Query *qtree = (Query *) sublink->subselect;
|
|
TargetEntry *tent;
|
|
|
|
if (!qtree || !IsA(qtree, Query))
|
|
elog(ERROR, "cannot get type for untransformed sublink");
|
|
tent = (TargetEntry *) linitial(qtree->targetList);
|
|
Assert(IsA(tent, TargetEntry));
|
|
Assert(!tent->resjunk);
|
|
type = exprType((Node *) tent->expr);
|
|
if (sublink->subLinkType == ARRAY_SUBLINK)
|
|
{
|
|
type = get_array_type(type);
|
|
if (!OidIsValid(type))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_OBJECT),
|
|
errmsg("could not find array type for data type %s",
|
|
format_type_be(exprType((Node *) tent->expr)))));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* for all other sublink types, result is boolean */
|
|
type = BOOLOID;
|
|
}
|
|
}
|
|
break;
|
|
case T_SubPlan:
|
|
{
|
|
/*
|
|
* Although the parser does not ever deal with already-planned
|
|
* expression trees, we support SubPlan nodes in this routine
|
|
* for the convenience of ruleutils.c.
|
|
*/
|
|
SubPlan *subplan = (SubPlan *) expr;
|
|
|
|
if (subplan->subLinkType == EXPR_SUBLINK ||
|
|
subplan->subLinkType == ARRAY_SUBLINK)
|
|
{
|
|
/* get the type of the subselect's first target column */
|
|
type = subplan->firstColType;
|
|
if (subplan->subLinkType == ARRAY_SUBLINK)
|
|
{
|
|
type = get_array_type(type);
|
|
if (!OidIsValid(type))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_OBJECT),
|
|
errmsg("could not find array type for data type %s",
|
|
format_type_be(subplan->firstColType))));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* for all other subplan types, result is boolean */
|
|
type = BOOLOID;
|
|
}
|
|
}
|
|
break;
|
|
case T_FieldSelect:
|
|
type = ((FieldSelect *) expr)->resulttype;
|
|
break;
|
|
case T_FieldStore:
|
|
type = ((FieldStore *) expr)->resulttype;
|
|
break;
|
|
case T_RelabelType:
|
|
type = ((RelabelType *) expr)->resulttype;
|
|
break;
|
|
case T_CoerceViaIO:
|
|
type = ((CoerceViaIO *) expr)->resulttype;
|
|
break;
|
|
case T_ArrayCoerceExpr:
|
|
type = ((ArrayCoerceExpr *) expr)->resulttype;
|
|
break;
|
|
case T_ConvertRowtypeExpr:
|
|
type = ((ConvertRowtypeExpr *) expr)->resulttype;
|
|
break;
|
|
case T_CaseExpr:
|
|
type = ((CaseExpr *) expr)->casetype;
|
|
break;
|
|
case T_CaseTestExpr:
|
|
type = ((CaseTestExpr *) expr)->typeId;
|
|
break;
|
|
case T_ArrayExpr:
|
|
type = ((ArrayExpr *) expr)->array_typeid;
|
|
break;
|
|
case T_RowExpr:
|
|
type = ((RowExpr *) expr)->row_typeid;
|
|
break;
|
|
case T_RowCompareExpr:
|
|
type = BOOLOID;
|
|
break;
|
|
case T_CoalesceExpr:
|
|
type = ((CoalesceExpr *) expr)->coalescetype;
|
|
break;
|
|
case T_MinMaxExpr:
|
|
type = ((MinMaxExpr *) expr)->minmaxtype;
|
|
break;
|
|
case T_XmlExpr:
|
|
if (((XmlExpr *) expr)->op == IS_DOCUMENT)
|
|
type = BOOLOID;
|
|
else if (((XmlExpr *) expr)->op == IS_XMLSERIALIZE)
|
|
type = TEXTOID;
|
|
else
|
|
type = XMLOID;
|
|
break;
|
|
case T_NullIfExpr:
|
|
type = exprType((Node *) linitial(((NullIfExpr *) expr)->args));
|
|
break;
|
|
case T_NullTest:
|
|
type = BOOLOID;
|
|
break;
|
|
case T_BooleanTest:
|
|
type = BOOLOID;
|
|
break;
|
|
case T_CoerceToDomain:
|
|
type = ((CoerceToDomain *) expr)->resulttype;
|
|
break;
|
|
case T_CoerceToDomainValue:
|
|
type = ((CoerceToDomainValue *) expr)->typeId;
|
|
break;
|
|
case T_SetToDefault:
|
|
type = ((SetToDefault *) expr)->typeId;
|
|
break;
|
|
case T_CurrentOfExpr:
|
|
type = BOOLOID;
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized node type: %d", (int) nodeTag(expr));
|
|
type = InvalidOid; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
/*
|
|
* exprTypmod -
|
|
* returns the type-specific attrmod of the expression, if it can be
|
|
* determined. In most cases, it can't and we return -1.
|
|
*/
|
|
int32
|
|
exprTypmod(Node *expr)
|
|
{
|
|
if (!expr)
|
|
return -1;
|
|
|
|
switch (nodeTag(expr))
|
|
{
|
|
case T_Var:
|
|
return ((Var *) expr)->vartypmod;
|
|
case T_Const:
|
|
return ((Const *) expr)->consttypmod;
|
|
case T_Param:
|
|
return ((Param *) expr)->paramtypmod;
|
|
case T_ArrayRef:
|
|
/* typmod is the same for array or element */
|
|
return ((ArrayRef *) expr)->reftypmod;
|
|
case T_FuncExpr:
|
|
{
|
|
int32 coercedTypmod;
|
|
|
|
/* Be smart about length-coercion functions... */
|
|
if (exprIsLengthCoercion(expr, &coercedTypmod))
|
|
return coercedTypmod;
|
|
}
|
|
break;
|
|
case T_SubLink:
|
|
{
|
|
SubLink *sublink = (SubLink *) expr;
|
|
|
|
if (sublink->subLinkType == EXPR_SUBLINK ||
|
|
sublink->subLinkType == ARRAY_SUBLINK)
|
|
{
|
|
/* get the typmod of the subselect's first target column */
|
|
Query *qtree = (Query *) sublink->subselect;
|
|
TargetEntry *tent;
|
|
|
|
if (!qtree || !IsA(qtree, Query))
|
|
elog(ERROR, "cannot get type for untransformed sublink");
|
|
tent = (TargetEntry *) linitial(qtree->targetList);
|
|
Assert(IsA(tent, TargetEntry));
|
|
Assert(!tent->resjunk);
|
|
return exprTypmod((Node *) tent->expr);
|
|
/* note we don't need to care if it's an array */
|
|
}
|
|
}
|
|
break;
|
|
case T_FieldSelect:
|
|
return ((FieldSelect *) expr)->resulttypmod;
|
|
case T_RelabelType:
|
|
return ((RelabelType *) expr)->resulttypmod;
|
|
case T_ArrayCoerceExpr:
|
|
return ((ArrayCoerceExpr *) expr)->resulttypmod;
|
|
case T_CaseExpr:
|
|
{
|
|
/*
|
|
* If all the alternatives agree on type/typmod, return that
|
|
* typmod, else use -1
|
|
*/
|
|
CaseExpr *cexpr = (CaseExpr *) expr;
|
|
Oid casetype = cexpr->casetype;
|
|
int32 typmod;
|
|
ListCell *arg;
|
|
|
|
if (!cexpr->defresult)
|
|
return -1;
|
|
if (exprType((Node *) cexpr->defresult) != casetype)
|
|
return -1;
|
|
typmod = exprTypmod((Node *) cexpr->defresult);
|
|
if (typmod < 0)
|
|
return -1; /* no point in trying harder */
|
|
foreach(arg, cexpr->args)
|
|
{
|
|
CaseWhen *w = (CaseWhen *) lfirst(arg);
|
|
|
|
Assert(IsA(w, CaseWhen));
|
|
if (exprType((Node *) w->result) != casetype)
|
|
return -1;
|
|
if (exprTypmod((Node *) w->result) != typmod)
|
|
return -1;
|
|
}
|
|
return typmod;
|
|
}
|
|
break;
|
|
case T_CaseTestExpr:
|
|
return ((CaseTestExpr *) expr)->typeMod;
|
|
case T_ArrayExpr:
|
|
{
|
|
/*
|
|
* If all the elements agree on type/typmod, return that
|
|
* typmod, else use -1
|
|
*/
|
|
ArrayExpr *arrayexpr = (ArrayExpr *) expr;
|
|
Oid commontype;
|
|
int32 typmod;
|
|
ListCell *elem;
|
|
|
|
if (arrayexpr->elements == NIL)
|
|
return -1;
|
|
typmod = exprTypmod((Node *) linitial(arrayexpr->elements));
|
|
if (typmod < 0)
|
|
return -1; /* no point in trying harder */
|
|
if (arrayexpr->multidims)
|
|
commontype = arrayexpr->array_typeid;
|
|
else
|
|
commontype = arrayexpr->element_typeid;
|
|
foreach(elem, arrayexpr->elements)
|
|
{
|
|
Node *e = (Node *) lfirst(elem);
|
|
|
|
if (exprType(e) != commontype)
|
|
return -1;
|
|
if (exprTypmod(e) != typmod)
|
|
return -1;
|
|
}
|
|
return typmod;
|
|
}
|
|
break;
|
|
case T_CoalesceExpr:
|
|
{
|
|
/*
|
|
* If all the alternatives agree on type/typmod, return that
|
|
* typmod, else use -1
|
|
*/
|
|
CoalesceExpr *cexpr = (CoalesceExpr *) expr;
|
|
Oid coalescetype = cexpr->coalescetype;
|
|
int32 typmod;
|
|
ListCell *arg;
|
|
|
|
if (exprType((Node *) linitial(cexpr->args)) != coalescetype)
|
|
return -1;
|
|
typmod = exprTypmod((Node *) linitial(cexpr->args));
|
|
if (typmod < 0)
|
|
return -1; /* no point in trying harder */
|
|
for_each_cell(arg, lnext(list_head(cexpr->args)))
|
|
{
|
|
Node *e = (Node *) lfirst(arg);
|
|
|
|
if (exprType(e) != coalescetype)
|
|
return -1;
|
|
if (exprTypmod(e) != typmod)
|
|
return -1;
|
|
}
|
|
return typmod;
|
|
}
|
|
break;
|
|
case T_MinMaxExpr:
|
|
{
|
|
/*
|
|
* If all the alternatives agree on type/typmod, return that
|
|
* typmod, else use -1
|
|
*/
|
|
MinMaxExpr *mexpr = (MinMaxExpr *) expr;
|
|
Oid minmaxtype = mexpr->minmaxtype;
|
|
int32 typmod;
|
|
ListCell *arg;
|
|
|
|
if (exprType((Node *) linitial(mexpr->args)) != minmaxtype)
|
|
return -1;
|
|
typmod = exprTypmod((Node *) linitial(mexpr->args));
|
|
if (typmod < 0)
|
|
return -1; /* no point in trying harder */
|
|
for_each_cell(arg, lnext(list_head(mexpr->args)))
|
|
{
|
|
Node *e = (Node *) lfirst(arg);
|
|
|
|
if (exprType(e) != minmaxtype)
|
|
return -1;
|
|
if (exprTypmod(e) != typmod)
|
|
return -1;
|
|
}
|
|
return typmod;
|
|
}
|
|
break;
|
|
case T_NullIfExpr:
|
|
{
|
|
NullIfExpr *nexpr = (NullIfExpr *) expr;
|
|
|
|
return exprTypmod((Node *) linitial(nexpr->args));
|
|
}
|
|
break;
|
|
case T_CoerceToDomain:
|
|
return ((CoerceToDomain *) expr)->resulttypmod;
|
|
case T_CoerceToDomainValue:
|
|
return ((CoerceToDomainValue *) expr)->typeMod;
|
|
case T_SetToDefault:
|
|
return ((SetToDefault *) expr)->typeMod;
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* exprIsLengthCoercion
|
|
* Detect whether an expression tree is an application of a datatype's
|
|
* typmod-coercion function. Optionally extract the result's typmod.
|
|
*
|
|
* If coercedTypmod is not NULL, the typmod is stored there if the expression
|
|
* is a length-coercion function, else -1 is stored there.
|
|
*
|
|
* Note that a combined type-and-length coercion will be treated as a
|
|
* length coercion by this routine.
|
|
*/
|
|
bool
|
|
exprIsLengthCoercion(Node *expr, int32 *coercedTypmod)
|
|
{
|
|
if (coercedTypmod != NULL)
|
|
*coercedTypmod = -1; /* default result on failure */
|
|
|
|
/*
|
|
* Scalar-type length coercions are FuncExprs, array-type length
|
|
* coercions are ArrayCoerceExprs
|
|
*/
|
|
if (expr && IsA(expr, FuncExpr))
|
|
{
|
|
FuncExpr *func = (FuncExpr *) expr;
|
|
int nargs;
|
|
Const *second_arg;
|
|
|
|
/*
|
|
* If it didn't come from a coercion context, reject.
|
|
*/
|
|
if (func->funcformat != COERCE_EXPLICIT_CAST &&
|
|
func->funcformat != COERCE_IMPLICIT_CAST)
|
|
return false;
|
|
|
|
/*
|
|
* If it's not a two-argument or three-argument function with the
|
|
* second argument being an int4 constant, it can't have been created
|
|
* from a length coercion (it must be a type coercion, instead).
|
|
*/
|
|
nargs = list_length(func->args);
|
|
if (nargs < 2 || nargs > 3)
|
|
return false;
|
|
|
|
second_arg = (Const *) lsecond(func->args);
|
|
if (!IsA(second_arg, Const) ||
|
|
second_arg->consttype != INT4OID ||
|
|
second_arg->constisnull)
|
|
return false;
|
|
|
|
/*
|
|
* OK, it is indeed a length-coercion function.
|
|
*/
|
|
if (coercedTypmod != NULL)
|
|
*coercedTypmod = DatumGetInt32(second_arg->constvalue);
|
|
|
|
return true;
|
|
}
|
|
|
|
if (expr && IsA(expr, ArrayCoerceExpr))
|
|
{
|
|
ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) expr;
|
|
|
|
/* It's not a length coercion unless there's a nondefault typmod */
|
|
if (acoerce->resulttypmod < 0)
|
|
return false;
|
|
|
|
/*
|
|
* OK, it is indeed a length-coercion expression.
|
|
*/
|
|
if (coercedTypmod != NULL)
|
|
*coercedTypmod = acoerce->resulttypmod;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Handle an explicit CAST construct.
|
|
*
|
|
* The given expr has already been transformed, but we need to lookup
|
|
* the type name and then apply any necessary coercion function(s).
|
|
*/
|
|
static Node *
|
|
typecast_expression(ParseState *pstate, Node *expr, TypeName *typename)
|
|
{
|
|
Oid inputType = exprType(expr);
|
|
Oid targetType;
|
|
int32 targetTypmod;
|
|
|
|
targetType = typenameTypeId(pstate, typename);
|
|
targetTypmod = typenameTypeMod(pstate, typename, targetType);
|
|
|
|
if (inputType == InvalidOid)
|
|
return expr; /* do nothing if NULL input */
|
|
|
|
expr = coerce_to_target_type(pstate, expr, inputType,
|
|
targetType, targetTypmod,
|
|
COERCION_EXPLICIT,
|
|
COERCE_EXPLICIT_CAST);
|
|
if (expr == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CANNOT_COERCE),
|
|
errmsg("cannot cast type %s to %s",
|
|
format_type_be(inputType),
|
|
format_type_be(targetType)),
|
|
parser_errposition(pstate, typename->location)));
|
|
|
|
return expr;
|
|
}
|
|
|
|
/*
|
|
* Transform a "row compare-op row" construct
|
|
*
|
|
* The inputs are lists of already-transformed expressions.
|
|
* As with coerce_type, pstate may be NULL if no special unknown-Param
|
|
* processing is wanted.
|
|
*
|
|
* The output may be a single OpExpr, an AND or OR combination of OpExprs,
|
|
* or a RowCompareExpr. In all cases it is guaranteed to return boolean.
|
|
* The AND, OR, and RowCompareExpr cases further imply things about the
|
|
* behavior of the operators (ie, they behave as =, <>, or < <= > >=).
|
|
*/
|
|
static Node *
|
|
make_row_comparison_op(ParseState *pstate, List *opname,
|
|
List *largs, List *rargs, int location)
|
|
{
|
|
RowCompareExpr *rcexpr;
|
|
RowCompareType rctype;
|
|
List *opexprs;
|
|
List *opnos;
|
|
List *opfamilies;
|
|
ListCell *l,
|
|
*r;
|
|
List **opfamily_lists;
|
|
List **opstrat_lists;
|
|
Bitmapset *strats;
|
|
int nopers;
|
|
int i;
|
|
|
|
nopers = list_length(largs);
|
|
if (nopers != list_length(rargs))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("unequal number of entries in row expressions"),
|
|
parser_errposition(pstate, location)));
|
|
|
|
/*
|
|
* We can't compare zero-length rows because there is no principled basis
|
|
* for figuring out what the operator is.
|
|
*/
|
|
if (nopers == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot compare rows of zero length"),
|
|
parser_errposition(pstate, location)));
|
|
|
|
/*
|
|
* Identify all the pairwise operators, using make_op so that behavior is
|
|
* the same as in the simple scalar case.
|
|
*/
|
|
opexprs = NIL;
|
|
forboth(l, largs, r, rargs)
|
|
{
|
|
Node *larg = (Node *) lfirst(l);
|
|
Node *rarg = (Node *) lfirst(r);
|
|
OpExpr *cmp;
|
|
|
|
cmp = (OpExpr *) make_op(pstate, opname, larg, rarg, location);
|
|
Assert(IsA(cmp, OpExpr));
|
|
|
|
/*
|
|
* We don't use coerce_to_boolean here because we insist on the
|
|
* operator yielding boolean directly, not via coercion. If it
|
|
* doesn't yield bool it won't be in any index opfamilies...
|
|
*/
|
|
if (cmp->opresulttype != BOOLOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("row comparison operator must yield type boolean, "
|
|
"not type %s",
|
|
format_type_be(cmp->opresulttype)),
|
|
parser_errposition(pstate, location)));
|
|
if (expression_returns_set((Node *) cmp))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("row comparison operator must not return a set"),
|
|
parser_errposition(pstate, location)));
|
|
opexprs = lappend(opexprs, cmp);
|
|
}
|
|
|
|
/*
|
|
* If rows are length 1, just return the single operator. In this case we
|
|
* don't insist on identifying btree semantics for the operator (but we
|
|
* still require it to return boolean).
|
|
*/
|
|
if (nopers == 1)
|
|
return (Node *) linitial(opexprs);
|
|
|
|
/*
|
|
* Now we must determine which row comparison semantics (= <> < <= > >=)
|
|
* apply to this set of operators. We look for btree opfamilies containing
|
|
* the operators, and see which interpretations (strategy numbers) exist
|
|
* for each operator.
|
|
*/
|
|
opfamily_lists = (List **) palloc(nopers * sizeof(List *));
|
|
opstrat_lists = (List **) palloc(nopers * sizeof(List *));
|
|
strats = NULL;
|
|
i = 0;
|
|
foreach(l, opexprs)
|
|
{
|
|
Oid opno = ((OpExpr *) lfirst(l))->opno;
|
|
Bitmapset *this_strats;
|
|
ListCell *j;
|
|
|
|
get_op_btree_interpretation(opno,
|
|
&opfamily_lists[i], &opstrat_lists[i]);
|
|
|
|
/*
|
|
* convert strategy number list to a Bitmapset to make the
|
|
* intersection calculation easy.
|
|
*/
|
|
this_strats = NULL;
|
|
foreach(j, opstrat_lists[i])
|
|
{
|
|
this_strats = bms_add_member(this_strats, lfirst_int(j));
|
|
}
|
|
if (i == 0)
|
|
strats = this_strats;
|
|
else
|
|
strats = bms_int_members(strats, this_strats);
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* If there are multiple common interpretations, we may use any one of
|
|
* them ... this coding arbitrarily picks the lowest btree strategy
|
|
* number.
|
|
*/
|
|
i = bms_first_member(strats);
|
|
if (i < 0)
|
|
{
|
|
/* No common interpretation, so fail */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("could not determine interpretation of row comparison operator %s",
|
|
strVal(llast(opname))),
|
|
errhint("Row comparison operators must be associated with btree operator families."),
|
|
parser_errposition(pstate, location)));
|
|
}
|
|
rctype = (RowCompareType) i;
|
|
|
|
/*
|
|
* For = and <> cases, we just combine the pairwise operators with AND or
|
|
* OR respectively.
|
|
*
|
|
* Note: this is presently the only place where the parser generates
|
|
* BoolExpr with more than two arguments. Should be OK since the rest of
|
|
* the system thinks BoolExpr is N-argument anyway.
|
|
*/
|
|
if (rctype == ROWCOMPARE_EQ)
|
|
return (Node *) makeBoolExpr(AND_EXPR, opexprs);
|
|
if (rctype == ROWCOMPARE_NE)
|
|
return (Node *) makeBoolExpr(OR_EXPR, opexprs);
|
|
|
|
/*
|
|
* Otherwise we need to choose exactly which opfamily to associate with
|
|
* each operator.
|
|
*/
|
|
opfamilies = NIL;
|
|
for (i = 0; i < nopers; i++)
|
|
{
|
|
Oid opfamily = InvalidOid;
|
|
|
|
forboth(l, opfamily_lists[i], r, opstrat_lists[i])
|
|
{
|
|
int opstrat = lfirst_int(r);
|
|
|
|
if (opstrat == rctype)
|
|
{
|
|
opfamily = lfirst_oid(l);
|
|
break;
|
|
}
|
|
}
|
|
if (OidIsValid(opfamily))
|
|
opfamilies = lappend_oid(opfamilies, opfamily);
|
|
else /* should not happen */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("could not determine interpretation of row comparison operator %s",
|
|
strVal(llast(opname))),
|
|
errdetail("There are multiple equally-plausible candidates."),
|
|
parser_errposition(pstate, location)));
|
|
}
|
|
|
|
/*
|
|
* Now deconstruct the OpExprs and create a RowCompareExpr.
|
|
*
|
|
* Note: can't just reuse the passed largs/rargs lists, because of
|
|
* possibility that make_op inserted coercion operations.
|
|
*/
|
|
opnos = NIL;
|
|
largs = NIL;
|
|
rargs = NIL;
|
|
foreach(l, opexprs)
|
|
{
|
|
OpExpr *cmp = (OpExpr *) lfirst(l);
|
|
|
|
opnos = lappend_oid(opnos, cmp->opno);
|
|
largs = lappend(largs, linitial(cmp->args));
|
|
rargs = lappend(rargs, lsecond(cmp->args));
|
|
}
|
|
|
|
rcexpr = makeNode(RowCompareExpr);
|
|
rcexpr->rctype = rctype;
|
|
rcexpr->opnos = opnos;
|
|
rcexpr->opfamilies = opfamilies;
|
|
rcexpr->largs = largs;
|
|
rcexpr->rargs = rargs;
|
|
|
|
return (Node *) rcexpr;
|
|
}
|
|
|
|
/*
|
|
* Transform a "row IS DISTINCT FROM row" construct
|
|
*
|
|
* The input RowExprs are already transformed
|
|
*/
|
|
static Node *
|
|
make_row_distinct_op(ParseState *pstate, List *opname,
|
|
RowExpr *lrow, RowExpr *rrow,
|
|
int location)
|
|
{
|
|
Node *result = NULL;
|
|
List *largs = lrow->args;
|
|
List *rargs = rrow->args;
|
|
ListCell *l,
|
|
*r;
|
|
|
|
if (list_length(largs) != list_length(rargs))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("unequal number of entries in row expressions"),
|
|
parser_errposition(pstate, location)));
|
|
|
|
forboth(l, largs, r, rargs)
|
|
{
|
|
Node *larg = (Node *) lfirst(l);
|
|
Node *rarg = (Node *) lfirst(r);
|
|
Node *cmp;
|
|
|
|
cmp = (Node *) make_distinct_op(pstate, opname, larg, rarg, location);
|
|
if (result == NULL)
|
|
result = cmp;
|
|
else
|
|
result = (Node *) makeBoolExpr(OR_EXPR,
|
|
list_make2(result, cmp));
|
|
}
|
|
|
|
if (result == NULL)
|
|
{
|
|
/* zero-length rows? Generate constant FALSE */
|
|
result = makeBoolConst(false, false);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* make the node for an IS DISTINCT FROM operator
|
|
*/
|
|
static Expr *
|
|
make_distinct_op(ParseState *pstate, List *opname, Node *ltree, Node *rtree,
|
|
int location)
|
|
{
|
|
Expr *result;
|
|
|
|
result = make_op(pstate, opname, ltree, rtree, location);
|
|
if (((OpExpr *) result)->opresulttype != BOOLOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("IS DISTINCT FROM requires = operator to yield boolean"),
|
|
parser_errposition(pstate, location)));
|
|
|
|
/*
|
|
* We rely on DistinctExpr and OpExpr being same struct
|
|
*/
|
|
NodeSetTag(result, T_DistinctExpr);
|
|
|
|
return result;
|
|
}
|