1
0
mirror of https://github.com/postgres/postgres.git synced 2025-04-22 23:02:54 +03:00
Tom Lane a933ee38bb Change SearchSysCache coding conventions so that a reference count is
maintained for each cache entry.  A cache entry will not be freed until
the matching ReleaseSysCache call has been executed.  This eliminates
worries about cache entries getting dropped while still in use.  See
my posting to pg-hackers of even date for more info.
2000-11-16 22:30:52 +00:00

2089 lines
52 KiB
C

/*-------------------------------------------------------------------------
*
* selfuncs.c
* Selectivity functions and index cost estimation functions for
* standard operators and index access methods.
*
* Selectivity routines are registered in the pg_operator catalog
* in the "oprrest" and "oprjoin" attributes.
*
* Index cost functions are registered in the pg_am catalog
* in the "amcostestimate" attribute.
*
* Portions Copyright (c) 1996-2000, PostgreSQL, Inc
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/utils/adt/selfuncs.c,v 1.82 2000/11/16 22:30:31 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include <math.h>
#include "access/heapam.h"
#include "catalog/catname.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_statistic.h"
#include "catalog/pg_type.h"
#include "mb/pg_wchar.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "parser/parse_func.h"
#include "parser/parse_oper.h"
#include "utils/builtins.h"
#include "utils/date.h"
#include "utils/int8.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
/* N is not a valid var/constant or relation id */
#define NONVALUE(N) ((N) == 0)
/* default selectivity estimate for equalities such as "A = b" */
#define DEFAULT_EQ_SEL 0.01
/* default selectivity estimate for inequalities such as "A < b" */
#define DEFAULT_INEQ_SEL (1.0 / 3.0)
/* default selectivity estimate for pattern-match operators such as LIKE */
#define DEFAULT_MATCH_SEL 0.01
/* "fudge factor" for estimating frequency of not-most-common values */
#define NOT_MOST_COMMON_RATIO 0.1
static bool convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
Datum lobound, Datum hibound, Oid boundstypid,
double *scaledlobound, double *scaledhibound);
static double convert_numeric_to_scalar(Datum value, Oid typid);
static void convert_string_to_scalar(unsigned char *value,
double *scaledvalue,
unsigned char *lobound,
double *scaledlobound,
unsigned char *hibound,
double *scaledhibound);
static double convert_one_string_to_scalar(unsigned char *value,
int rangelo, int rangehi);
static unsigned char * convert_string_datum(Datum value, Oid typid);
static double convert_timevalue_to_scalar(Datum value, Oid typid);
static void getattproperties(Oid relid, AttrNumber attnum,
Oid *typid,
int *typlen,
bool *typbyval,
int32 *typmod);
static bool getattstatistics(Oid relid, AttrNumber attnum,
Oid typid, int32 typmod,
double *nullfrac,
double *commonfrac,
Datum *commonval,
Datum *loval,
Datum *hival);
static Selectivity prefix_selectivity(char *prefix,
Oid relid,
AttrNumber attno,
Oid datatype);
static Selectivity pattern_selectivity(char *patt, Pattern_Type ptype);
static bool string_lessthan(const char *str1, const char *str2,
Oid datatype);
static Oid find_operator(const char *opname, Oid datatype);
static Datum string_to_datum(const char *str, Oid datatype);
/*
* eqsel - Selectivity of "=" for any data types.
*
* Note: this routine is also used to estimate selectivity for some
* operators that are not "=" but have comparable selectivity behavior,
* such as "~=" (geometric approximate-match). Even for "=", we must
* keep in mind that the left and right datatypes may differ, so the type
* of the given constant "value" may be different from the type of the
* attribute.
*/
Datum
eqsel(PG_FUNCTION_ARGS)
{
Oid opid = PG_GETARG_OID(0);
Oid relid = PG_GETARG_OID(1);
AttrNumber attno = PG_GETARG_INT16(2);
Datum value = PG_GETARG_DATUM(3);
int32 flag = PG_GETARG_INT32(4);
float8 result;
if (NONVALUE(attno) || NONVALUE(relid))
result = DEFAULT_EQ_SEL;
else
{
Oid typid;
int typlen;
bool typbyval;
int32 typmod;
double nullfrac;
double commonfrac;
Datum commonval;
double selec;
/* get info about the attribute */
getattproperties(relid, attno,
&typid, &typlen, &typbyval, &typmod);
/* get stats for the attribute, if available */
if (getattstatistics(relid, attno, typid, typmod,
&nullfrac, &commonfrac, &commonval,
NULL, NULL))
{
if (flag & SEL_CONSTANT)
{
/*
* Is the constant "=" to the column's most common value?
* (Although the operator may not really be "=", we will
* assume that seeing whether it returns TRUE for the most
* common value is useful information. If you don't like
* it, maybe you shouldn't be using eqsel for your
* operator...)
*/
RegProcedure eqproc = get_opcode(opid);
bool mostcommon;
if (eqproc == (RegProcedure) NULL)
elog(ERROR, "eqsel: no procedure for operator %u",
opid);
/* be careful to apply operator right way 'round */
if (flag & SEL_RIGHT)
mostcommon = DatumGetBool(OidFunctionCall2(eqproc,
commonval,
value));
else
mostcommon = DatumGetBool(OidFunctionCall2(eqproc,
value,
commonval));
if (mostcommon)
{
/*
* Constant is "=" to the most common value. We know
* selectivity exactly (or as exactly as VACUUM could
* calculate it, anyway).
*/
selec = commonfrac;
}
else
{
/*
* Comparison is against a constant that is neither
* the most common value nor null. Its selectivity
* cannot be more than this:
*/
selec = 1.0 - commonfrac - nullfrac;
if (selec > commonfrac)
selec = commonfrac;
/*
* and in fact it's probably less, so we should apply
* a fudge factor. The only case where we don't is
* for a boolean column, where indeed we have
* estimated the less-common value's frequency
* exactly!
*/
if (typid != BOOLOID)
selec *= NOT_MOST_COMMON_RATIO;
}
}
else
{
/*
* Search is for a value that we do not know a priori, but
* we will assume it is not NULL. Selectivity cannot be
* more than this:
*/
selec = 1.0 - nullfrac;
if (selec > commonfrac)
selec = commonfrac;
/*
* and in fact it's probably less, so apply a fudge
* factor.
*/
selec *= NOT_MOST_COMMON_RATIO;
}
/* result should be in range, but make sure... */
if (selec < 0.0)
selec = 0.0;
else if (selec > 1.0)
selec = 1.0;
if (!typbyval)
pfree(DatumGetPointer(commonval));
}
else
{
/*
* No VACUUM ANALYZE stats available, so make a guess using
* the dispersion stat (if we have that, which is unlikely for
* a normal attribute; but for a system attribute we may be
* able to estimate it).
*/
selec = get_attdispersion(relid, attno, 0.01);
}
result = (float8) selec;
}
PG_RETURN_FLOAT8(result);
}
/*
* neqsel - Selectivity of "!=" for any data types.
*
* This routine is also used for some operators that are not "!="
* but have comparable selectivity behavior. See above comments
* for eqsel().
*/
Datum
neqsel(PG_FUNCTION_ARGS)
{
Oid opid = PG_GETARG_OID(0);
Oid relid = PG_GETARG_OID(1);
AttrNumber attno = PG_GETARG_INT16(2);
Datum value = PG_GETARG_DATUM(3);
int32 flag = PG_GETARG_INT32(4);
Oid eqopid;
float8 result;
/*
* We want 1 - eqsel() where the equality operator is the one associated
* with this != operator, that is, its negator.
*/
eqopid = get_negator(opid);
if (eqopid)
{
result = DatumGetFloat8(DirectFunctionCall5(eqsel,
ObjectIdGetDatum(eqopid),
ObjectIdGetDatum(relid),
Int16GetDatum(attno),
value,
Int32GetDatum(flag)));
}
else
{
/* Use default selectivity (should we raise an error instead?) */
result = DEFAULT_EQ_SEL;
}
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* scalarltsel - Selectivity of "<" (also "<=") for scalars.
*
* This routine works for any datatype (or pair of datatypes) known to
* convert_to_scalar(). If it is applied to some other datatype,
* it will return a default estimate.
*/
Datum
scalarltsel(PG_FUNCTION_ARGS)
{
Oid opid = PG_GETARG_OID(0);
Oid relid = PG_GETARG_OID(1);
AttrNumber attno = PG_GETARG_INT16(2);
Datum value = PG_GETARG_DATUM(3);
int32 flag = PG_GETARG_INT32(4);
float8 result;
if (!(flag & SEL_CONSTANT) || NONVALUE(attno) || NONVALUE(relid))
result = DEFAULT_INEQ_SEL;
else
{
HeapTuple oprtuple;
Oid ltype,
rtype,
contype;
Oid typid;
int typlen;
bool typbyval;
int32 typmod;
Datum hival,
loval;
double val,
high,
low,
numerator,
denominator;
/*
* Get left and right datatypes of the operator so we know what
* type the constant is.
*/
oprtuple = SearchSysCache(OPEROID,
ObjectIdGetDatum(opid),
0, 0, 0);
if (!HeapTupleIsValid(oprtuple))
elog(ERROR, "scalarltsel: no tuple for operator %u", opid);
ltype = ((Form_pg_operator) GETSTRUCT(oprtuple))->oprleft;
rtype = ((Form_pg_operator) GETSTRUCT(oprtuple))->oprright;
contype = (flag & SEL_RIGHT) ? rtype : ltype;
ReleaseSysCache(oprtuple);
/* Now get info and stats about the attribute */
getattproperties(relid, attno,
&typid, &typlen, &typbyval, &typmod);
if (!getattstatistics(relid, attno, typid, typmod,
NULL, NULL, NULL,
&loval, &hival))
{
/* no stats available, so default result */
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
/* Convert the values to a uniform comparison scale. */
if (!convert_to_scalar(value, contype, &val,
loval, hival, typid,
&low, &high))
{
/*
* Ideally we'd produce an error here, on the grounds that the
* given operator shouldn't have scalarltsel registered as its
* selectivity func unless we can deal with its operand types.
* But currently, all manner of stuff is invoking scalarltsel,
* so give a default estimate until that can be fixed.
*/
if (!typbyval)
{
pfree(DatumGetPointer(hival));
pfree(DatumGetPointer(loval));
}
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
/* release temp storage if needed */
if (!typbyval)
{
pfree(DatumGetPointer(hival));
pfree(DatumGetPointer(loval));
}
if (high <= low)
{
/*
* If we trusted the stats fully, we could return a small or
* large selec depending on which side of the single data
* point the constant is on. But it seems better to assume
* that the stats are wrong and return a default...
*/
result = DEFAULT_INEQ_SEL;
}
else if (val < low || val > high)
{
/*
* If given value is outside the statistical range, return a
* small or large value; but not 0.0/1.0 since there is a
* chance the stats are out of date.
*/
if (flag & SEL_RIGHT)
result = (val < low) ? 0.001 : 0.999;
else
result = (val < low) ? 0.999 : 0.001;
}
else
{
denominator = high - low;
if (flag & SEL_RIGHT)
numerator = val - low;
else
numerator = high - val;
result = numerator / denominator;
}
}
PG_RETURN_FLOAT8(result);
}
/*
* scalargtsel - Selectivity of ">" (also ">=") for integers.
*
* See above comments for scalarltsel.
*/
Datum
scalargtsel(PG_FUNCTION_ARGS)
{
Oid opid = PG_GETARG_OID(0);
Oid relid = PG_GETARG_OID(1);
AttrNumber attno = PG_GETARG_INT16(2);
Datum value = PG_GETARG_DATUM(3);
int32 flag = PG_GETARG_INT32(4);
Oid ltopid;
float8 result;
/*
* Compute selectivity of "<", then invert --- but only if we were
* able to produce a non-default estimate. Note that we get the
* negator which strictly speaking means we are looking at "<="
* for ">" or "<" for ">=". We assume this won't matter.
*/
ltopid = get_negator(opid);
if (ltopid)
{
result = DatumGetFloat8(DirectFunctionCall5(scalarltsel,
ObjectIdGetDatum(ltopid),
ObjectIdGetDatum(relid),
Int16GetDatum(attno),
value,
Int32GetDatum(flag)));
}
else
{
/* Use default selectivity (should we raise an error instead?) */
result = DEFAULT_INEQ_SEL;
}
if (result != DEFAULT_INEQ_SEL)
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* patternsel - Generic code for pattern-match selectivity.
*/
static Datum
patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype)
{
Oid opid = PG_GETARG_OID(0);
Oid relid = PG_GETARG_OID(1);
AttrNumber attno = PG_GETARG_INT16(2);
Datum value = PG_GETARG_DATUM(3);
int32 flag = PG_GETARG_INT32(4);
float8 result;
/* Must have a constant for the pattern, or cannot learn anything */
if ((flag & (SEL_CONSTANT | SEL_RIGHT)) != (SEL_CONSTANT | SEL_RIGHT))
result = DEFAULT_MATCH_SEL;
else
{
HeapTuple oprtuple;
Oid ltype,
rtype;
char *patt;
Pattern_Prefix_Status pstatus;
char *prefix;
char *rest;
/*
* Get left and right datatypes of the operator so we know what
* type the attribute is.
*/
oprtuple = SearchSysCache(OPEROID,
ObjectIdGetDatum(opid),
0, 0, 0);
if (!HeapTupleIsValid(oprtuple))
elog(ERROR, "patternsel: no tuple for operator %u", opid);
ltype = ((Form_pg_operator) GETSTRUCT(oprtuple))->oprleft;
rtype = ((Form_pg_operator) GETSTRUCT(oprtuple))->oprright;
ReleaseSysCache(oprtuple);
/* the right-hand const is type text for all supported operators */
Assert(rtype == TEXTOID);
patt = DatumGetCString(DirectFunctionCall1(textout, value));
/* divide pattern into fixed prefix and remainder */
pstatus = pattern_fixed_prefix(patt, ptype, &prefix, &rest);
if (pstatus == Pattern_Prefix_Exact)
{
/* Pattern specifies an exact match, so pretend operator is '=' */
Oid eqopr = find_operator("=", ltype);
Datum eqcon;
if (eqopr == InvalidOid)
elog(ERROR, "patternsel: no = operator for type %u", ltype);
eqcon = string_to_datum(prefix, ltype);
result = DatumGetFloat8(DirectFunctionCall5(eqsel,
ObjectIdGetDatum(eqopr),
ObjectIdGetDatum(relid),
Int16GetDatum(attno),
eqcon,
Int32GetDatum(SEL_CONSTANT|SEL_RIGHT)));
pfree(DatumGetPointer(eqcon));
}
else
{
/*
* Not exact-match pattern. We estimate selectivity of the
* fixed prefix and remainder of pattern separately, then
* combine the two.
*/
Selectivity prefixsel;
Selectivity restsel;
Selectivity selec;
if (pstatus == Pattern_Prefix_Partial)
prefixsel = prefix_selectivity(prefix, relid, attno, ltype);
else
prefixsel = 1.0;
restsel = pattern_selectivity(rest, ptype);
selec = prefixsel * restsel;
/* result should be in range, but make sure... */
if (selec < 0.0)
selec = 0.0;
else if (selec > 1.0)
selec = 1.0;
result = (float8) selec;
}
if (prefix)
pfree(prefix);
pfree(patt);
}
PG_RETURN_FLOAT8(result);
}
/*
* regexeqsel - Selectivity of regular-expression pattern match.
*/
Datum
regexeqsel(PG_FUNCTION_ARGS)
{
return patternsel(fcinfo, Pattern_Type_Regex);
}
/*
* icregexeqsel - Selectivity of case-insensitive regex match.
*/
Datum
icregexeqsel(PG_FUNCTION_ARGS)
{
return patternsel(fcinfo, Pattern_Type_Regex_IC);
}
/*
* likesel - Selectivity of LIKE pattern match.
*/
Datum
likesel(PG_FUNCTION_ARGS)
{
return patternsel(fcinfo, Pattern_Type_Like);
}
/*
* iclikesel - Selectivity of ILIKE pattern match.
*/
Datum
iclikesel(PG_FUNCTION_ARGS)
{
return patternsel(fcinfo, Pattern_Type_Like_IC);
}
/*
* regexnesel - Selectivity of regular-expression pattern non-match.
*/
Datum
regexnesel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(patternsel(fcinfo, Pattern_Type_Regex));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* icregexnesel - Selectivity of case-insensitive regex non-match.
*/
Datum
icregexnesel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(patternsel(fcinfo, Pattern_Type_Regex_IC));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* nlikesel - Selectivity of LIKE pattern non-match.
*/
Datum
nlikesel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(patternsel(fcinfo, Pattern_Type_Like));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* icnlikesel - Selectivity of ILIKE pattern non-match.
*/
Datum
icnlikesel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(patternsel(fcinfo, Pattern_Type_Like_IC));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* eqjoinsel - Join selectivity of "="
*/
Datum
eqjoinsel(PG_FUNCTION_ARGS)
{
#ifdef NOT_USED /* see neqjoinsel() before removing me! */
Oid opid = PG_GETARG_OID(0);
#endif
Oid relid1 = PG_GETARG_OID(1);
AttrNumber attno1 = PG_GETARG_INT16(2);
Oid relid2 = PG_GETARG_OID(3);
AttrNumber attno2 = PG_GETARG_INT16(4);
float8 result;
float8 num1,
num2,
min;
bool unknown1 = NONVALUE(relid1) || NONVALUE(attno1);
bool unknown2 = NONVALUE(relid2) || NONVALUE(attno2);
if (unknown1 && unknown2)
result = DEFAULT_EQ_SEL;
else
{
num1 = unknown1 ? 1.0 : get_attdispersion(relid1, attno1, 0.01);
num2 = unknown2 ? 1.0 : get_attdispersion(relid2, attno2, 0.01);
/*
* The join selectivity cannot be more than num2, since each tuple
* in table 1 could match no more than num2 fraction of tuples in
* table 2 (and that's only if the table-1 tuple matches the most
* common value in table 2, so probably it's less). By the same
* reasoning it is not more than num1. The min is therefore an
* upper bound.
*
* If we know the dispersion of only one side, use it; the reasoning
* above still works.
*
* XXX can we make a better estimate here? Using the nullfrac
* statistic might be helpful, for example. Assuming the operator
* is strict (does not succeed for null inputs) then the
* selectivity couldn't be more than (1-nullfrac1)*(1-nullfrac2),
* which might be usefully small if there are many nulls. How
* about applying the operator to the most common values?
*/
min = (num1 < num2) ? num1 : num2;
result = min;
}
PG_RETURN_FLOAT8(result);
}
/*
* neqjoinsel - Join selectivity of "!="
*/
Datum
neqjoinsel(PG_FUNCTION_ARGS)
{
float8 result;
/*
* XXX we skip looking up the negator operator here because we know
* eqjoinsel() won't look at it anyway. If eqjoinsel() ever does look,
* this routine will need to look more like neqsel() does.
*/
result = DatumGetFloat8(eqjoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* scalarltjoinsel - Join selectivity of "<" and "<=" for scalars
*/
Datum
scalarltjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
/*
* scalargtjoinsel - Join selectivity of ">" and ">=" for scalars
*/
Datum
scalargtjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
/*
* regexeqjoinsel - Join selectivity of regular-expression pattern match.
*/
Datum
regexeqjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
}
/*
* icregexeqjoinsel - Join selectivity of case-insensitive regex match.
*/
Datum
icregexeqjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
}
/*
* likejoinsel - Join selectivity of LIKE pattern match.
*/
Datum
likejoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
}
/*
* iclikejoinsel - Join selectivity of ILIKE pattern match.
*/
Datum
iclikejoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
}
/*
* regexnejoinsel - Join selectivity of regex non-match.
*/
Datum
regexnejoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(regexeqjoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* icregexnejoinsel - Join selectivity of case-insensitive regex non-match.
*/
Datum
icregexnejoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(icregexeqjoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* nlikejoinsel - Join selectivity of LIKE pattern non-match.
*/
Datum
nlikejoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(likejoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* icnlikejoinsel - Join selectivity of ILIKE pattern non-match.
*/
Datum
icnlikejoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(iclikejoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* convert_to_scalar
* Convert non-NULL values of the indicated types to the comparison
* scale needed by scalarltsel()/scalargtsel().
* Returns "true" if successful.
*
* All numeric datatypes are simply converted to their equivalent
* "double" values.
*
* String datatypes are converted by convert_string_to_scalar(),
* which is explained below. The reason why this routine deals with
* three values at a time, not just one, is that we need it for strings.
*
* The several datatypes representing absolute times are all converted
* to Timestamp, which is actually a double, and then we just use that
* double value. Note this will give bad results for the various "special"
* values of Timestamp --- what can we do with those?
*
* The several datatypes representing relative times (intervals) are all
* converted to measurements expressed in seconds.
*/
static bool
convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
Datum lobound, Datum hibound, Oid boundstypid,
double *scaledlobound, double *scaledhibound)
{
switch (valuetypid)
{
/*
* Built-in numeric types
*/
case BOOLOID:
case INT2OID:
case INT4OID:
case INT8OID:
case FLOAT4OID:
case FLOAT8OID:
case NUMERICOID:
case OIDOID:
case REGPROCOID:
*scaledvalue = convert_numeric_to_scalar(value, valuetypid);
*scaledlobound = convert_numeric_to_scalar(lobound, boundstypid);
*scaledhibound = convert_numeric_to_scalar(hibound, boundstypid);
return true;
/*
* Built-in string types
*/
case CHAROID:
case BPCHAROID:
case VARCHAROID:
case TEXTOID:
case NAMEOID:
{
unsigned char *valstr = convert_string_datum(value, valuetypid);
unsigned char *lostr = convert_string_datum(lobound, boundstypid);
unsigned char *histr = convert_string_datum(hibound, boundstypid);
convert_string_to_scalar(valstr, scaledvalue,
lostr, scaledlobound,
histr, scaledhibound);
pfree(valstr);
pfree(lostr);
pfree(histr);
return true;
}
/*
* Built-in time types
*/
case TIMESTAMPOID:
case ABSTIMEOID:
case DATEOID:
case INTERVALOID:
case RELTIMEOID:
case TINTERVALOID:
case TIMEOID:
*scaledvalue = convert_timevalue_to_scalar(value, valuetypid);
*scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid);
*scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid);
return true;
}
/* Don't know how to convert */
return false;
}
/*
* Do convert_to_scalar()'s work for any numeric data type.
*/
static double
convert_numeric_to_scalar(Datum value, Oid typid)
{
switch (typid)
{
case BOOLOID:
return (double) DatumGetBool(value);
case INT2OID:
return (double) DatumGetInt16(value);
case INT4OID:
return (double) DatumGetInt32(value);
case INT8OID:
return (double) DatumGetInt64(value);
case FLOAT4OID:
return (double) DatumGetFloat4(value);
case FLOAT8OID:
return (double) DatumGetFloat8(value);
case NUMERICOID:
return (double) DatumGetFloat8(DirectFunctionCall1(numeric_float8,
value));
case OIDOID:
case REGPROCOID:
/* we can treat OIDs as integers... */
return (double) DatumGetObjectId(value);
}
/* Can't get here unless someone tries to use scalarltsel/scalargtsel
* on an operator with one numeric and one non-numeric operand.
*/
elog(ERROR, "convert_numeric_to_scalar: unsupported type %u", typid);
return 0;
}
/*
* Do convert_to_scalar()'s work for any character-string data type.
*
* String datatypes are converted to a scale that ranges from 0 to 1,
* where we visualize the bytes of the string as fractional digits.
*
* We do not want the base to be 256, however, since that tends to
* generate inflated selectivity estimates; few databases will have
* occurrences of all 256 possible byte values at each position.
* Instead, use the smallest and largest byte values seen in the bounds
* as the estimated range for each byte, after some fudging to deal with
* the fact that we probably aren't going to see the full range that way.
*
* An additional refinement is that we discard any common prefix of the
* three strings before computing the scaled values. This allows us to
* "zoom in" when we encounter a narrow data range. An example is a phone
* number database where all the values begin with the same area code.
*/
static void
convert_string_to_scalar(unsigned char *value,
double *scaledvalue,
unsigned char *lobound,
double *scaledlobound,
unsigned char *hibound,
double *scaledhibound)
{
int rangelo,
rangehi;
unsigned char *sptr;
rangelo = rangehi = hibound[0];
for (sptr = lobound; *sptr; sptr++)
{
if (rangelo > *sptr)
rangelo = *sptr;
if (rangehi < *sptr)
rangehi = *sptr;
}
for (sptr = hibound; *sptr; sptr++)
{
if (rangelo > *sptr)
rangelo = *sptr;
if (rangehi < *sptr)
rangehi = *sptr;
}
/* If range includes any upper-case ASCII chars, make it include all */
if (rangelo <= 'Z' && rangehi >= 'A')
{
if (rangelo > 'A')
rangelo = 'A';
if (rangehi < 'Z')
rangehi = 'Z';
}
/* Ditto lower-case */
if (rangelo <= 'z' && rangehi >= 'a')
{
if (rangelo > 'a')
rangelo = 'a';
if (rangehi < 'z')
rangehi = 'z';
}
/* Ditto digits */
if (rangelo <= '9' && rangehi >= '0')
{
if (rangelo > '0')
rangelo = '0';
if (rangehi < '9')
rangehi = '9';
}
/* If range includes less than 10 chars, assume we have not got enough
* data, and make it include regular ASCII set.
*/
if (rangehi - rangelo < 9)
{
rangelo = ' ';
rangehi = 127;
}
/*
* Now strip any common prefix of the three strings.
*/
while (*lobound)
{
if (*lobound != *hibound || *lobound != *value)
break;
lobound++, hibound++, value++;
}
/*
* Now we can do the conversions.
*/
*scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi);
*scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi);
*scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi);
}
static double
convert_one_string_to_scalar(unsigned char *value, int rangelo, int rangehi)
{
int slen = strlen((char *) value);
double num,
denom,
base;
if (slen <= 0)
return 0.0; /* empty string has scalar value 0 */
/* Since base is at least 10, need not consider more than about 20 chars */
if (slen > 20)
slen = 20;
/* Convert initial characters to fraction */
base = rangehi - rangelo + 1;
num = 0.0;
denom = base;
while (slen-- > 0)
{
int ch = *value++;
if (ch < rangelo)
ch = rangelo-1;
else if (ch > rangehi)
ch = rangehi+1;
num += ((double) (ch - rangelo)) / denom;
denom *= base;
}
return num;
}
/*
* Convert a string-type Datum into a palloc'd, null-terminated string.
*
* If USE_LOCALE is defined, we must pass the string through strxfrm()
* before continuing, so as to generate correct locale-specific results.
*/
static unsigned char *
convert_string_datum(Datum value, Oid typid)
{
char *val;
#ifdef USE_LOCALE
char *xfrmstr;
size_t xfrmsize;
size_t xfrmlen;
#endif
switch (typid)
{
case CHAROID:
val = (char *) palloc(2);
val[0] = DatumGetChar(value);
val[1] = '\0';
break;
case BPCHAROID:
case VARCHAROID:
case TEXTOID:
{
char *str = (char *) VARDATA(DatumGetPointer(value));
int strlength = VARSIZE(DatumGetPointer(value)) - VARHDRSZ;
val = (char *) palloc(strlength+1);
memcpy(val, str, strlength);
val[strlength] = '\0';
break;
}
case NAMEOID:
{
NameData *nm = (NameData *) DatumGetPointer(value);
val = pstrdup(NameStr(*nm));
break;
}
default:
/* Can't get here unless someone tries to use scalarltsel
* on an operator with one string and one non-string operand.
*/
elog(ERROR, "convert_string_datum: unsupported type %u", typid);
return NULL;
}
#ifdef USE_LOCALE
/* Guess that transformed string is not much bigger than original */
xfrmsize = strlen(val) + 32; /* arbitrary pad value here... */
xfrmstr = (char *) palloc(xfrmsize);
xfrmlen = strxfrm(xfrmstr, val, xfrmsize);
if (xfrmlen >= xfrmsize)
{
/* Oops, didn't make it */
pfree(xfrmstr);
xfrmstr = (char *) palloc(xfrmlen + 1);
xfrmlen = strxfrm(xfrmstr, val, xfrmlen + 1);
}
pfree(val);
val = xfrmstr;
#endif
return (unsigned char *) val;
}
/*
* Do convert_to_scalar()'s work for any timevalue data type.
*/
static double
convert_timevalue_to_scalar(Datum value, Oid typid)
{
switch (typid)
{
case TIMESTAMPOID:
return DatumGetTimestamp(value);
case ABSTIMEOID:
return DatumGetTimestamp(DirectFunctionCall1(abstime_timestamp,
value));
case DATEOID:
return DatumGetTimestamp(DirectFunctionCall1(date_timestamp,
value));
case INTERVALOID:
{
Interval *interval = DatumGetIntervalP(value);
/*
* Convert the month part of Interval to days using
* assumed average month length of 365.25/12.0 days. Not
* too accurate, but plenty good enough for our purposes.
*/
return interval->time +
interval->month * (365.25 / 12.0 * 24.0 * 60.0 * 60.0);
}
case RELTIMEOID:
return DatumGetRelativeTime(value);
case TINTERVALOID:
{
TimeInterval interval = DatumGetTimeInterval(value);
if (interval->status != 0)
return interval->data[1] - interval->data[0];
return 0; /* for lack of a better idea */
}
case TIMEOID:
return DatumGetTimeADT(value);
}
/* Can't get here unless someone tries to use scalarltsel/scalargtsel
* on an operator with one timevalue and one non-timevalue operand.
*/
elog(ERROR, "convert_timevalue_to_scalar: unsupported type %u", typid);
return 0;
}
/*
* getattproperties
* Retrieve pg_attribute properties for an attribute,
* including type OID, type len, type byval flag, typmod.
*/
static void
getattproperties(Oid relid, AttrNumber attnum,
Oid *typid, int *typlen, bool *typbyval, int32 *typmod)
{
HeapTuple atp;
Form_pg_attribute att_tup;
atp = SearchSysCache(ATTNUM,
ObjectIdGetDatum(relid),
Int16GetDatum(attnum),
0, 0);
if (!HeapTupleIsValid(atp))
elog(ERROR, "getattproperties: no attribute tuple %u %d",
relid, (int) attnum);
att_tup = (Form_pg_attribute) GETSTRUCT(atp);
*typid = att_tup->atttypid;
*typlen = att_tup->attlen;
*typbyval = att_tup->attbyval;
*typmod = att_tup->atttypmod;
ReleaseSysCache(atp);
}
/*
* getattstatistics
* Retrieve the pg_statistic data for an attribute.
* Returns 'false' if no stats are available.
*
* Inputs:
* 'relid' and 'attnum' are the relation and attribute number.
* 'typid' and 'typmod' are the type and typmod of the column,
* which the caller must already have looked up.
*
* Outputs:
* The available stats are nullfrac, commonfrac, commonval, loval, hival.
* The caller need not retrieve all five --- pass NULL pointers for the
* unwanted values.
*
* commonval, loval, hival are returned as Datums holding the internal
* representation of the values. (Note that these should be pfree'd
* after use if the data type is not by-value.)
*/
static bool
getattstatistics(Oid relid,
AttrNumber attnum,
Oid typid,
int32 typmod,
double *nullfrac,
double *commonfrac,
Datum *commonval,
Datum *loval,
Datum *hival)
{
HeapTuple tuple;
HeapTuple typeTuple;
FmgrInfo inputproc;
Oid typelem;
bool isnull;
/*
* We assume that there will only be one entry in pg_statistic for the
* given rel/att, so we search WITHOUT considering the staop column.
* Someday, VACUUM might store more than one entry per rel/att,
* corresponding to more than one possible sort ordering defined for
* the column type. However, to make that work we will need to figure
* out which staop to search for --- it's not necessarily the one we
* have at hand! (For example, we might have a '>' operator rather
* than the '<' operator that will appear in staop.)
*/
tuple = SearchSysCache(STATRELID,
ObjectIdGetDatum(relid),
Int16GetDatum((int16) attnum),
0, 0);
if (!HeapTupleIsValid(tuple))
{
/* no such stats entry */
return false;
}
if (nullfrac)
*nullfrac = ((Form_pg_statistic) GETSTRUCT(tuple))->stanullfrac;
if (commonfrac)
*commonfrac = ((Form_pg_statistic) GETSTRUCT(tuple))->stacommonfrac;
/* Get the type input proc for the column datatype */
typeTuple = SearchSysCache(TYPEOID,
ObjectIdGetDatum(typid),
0, 0, 0);
if (!HeapTupleIsValid(typeTuple))
elog(ERROR, "getattstatistics: Cache lookup failed for type %u",
typid);
fmgr_info(((Form_pg_type) GETSTRUCT(typeTuple))->typinput, &inputproc);
typelem = ((Form_pg_type) GETSTRUCT(typeTuple))->typelem;
ReleaseSysCache(typeTuple);
/*
* Values are variable-length fields, so cannot access as struct
* fields. Must do it the hard way with SysCacheGetAttr.
*/
if (commonval)
{
Datum val = SysCacheGetAttr(STATRELID, tuple,
Anum_pg_statistic_stacommonval,
&isnull);
if (isnull)
{
elog(DEBUG, "getattstatistics: stacommonval is null");
*commonval = PointerGetDatum(NULL);
}
else
{
char *strval = DatumGetCString(DirectFunctionCall1(textout,
val));
*commonval = FunctionCall3(&inputproc,
CStringGetDatum(strval),
ObjectIdGetDatum(typelem),
Int32GetDatum(typmod));
pfree(strval);
}
}
if (loval)
{
Datum val = SysCacheGetAttr(STATRELID, tuple,
Anum_pg_statistic_staloval,
&isnull);
if (isnull)
{
elog(DEBUG, "getattstatistics: staloval is null");
*loval = PointerGetDatum(NULL);
}
else
{
char *strval = DatumGetCString(DirectFunctionCall1(textout,
val));
*loval = FunctionCall3(&inputproc,
CStringGetDatum(strval),
ObjectIdGetDatum(typelem),
Int32GetDatum(typmod));
pfree(strval);
}
}
if (hival)
{
Datum val = SysCacheGetAttr(STATRELID, tuple,
Anum_pg_statistic_stahival,
&isnull);
if (isnull)
{
elog(DEBUG, "getattstatistics: stahival is null");
*hival = PointerGetDatum(NULL);
}
else
{
char *strval = DatumGetCString(DirectFunctionCall1(textout,
val));
*hival = FunctionCall3(&inputproc,
CStringGetDatum(strval),
ObjectIdGetDatum(typelem),
Int32GetDatum(typmod));
pfree(strval);
}
}
ReleaseSysCache(tuple);
return true;
}
/*-------------------------------------------------------------------------
*
* Pattern analysis functions
*
* These routines support analysis of LIKE and regular-expression patterns
* by the planner/optimizer. It's important that they agree with the
* regular-expression code in backend/regex/ and the LIKE code in
* backend/utils/adt/like.c.
*
* Note that the prefix-analysis functions are called from
* backend/optimizer/path/indxpath.c as well as from routines in this file.
*
*-------------------------------------------------------------------------
*/
/*
* Extract the fixed prefix, if any, for a pattern.
* *prefix is set to a palloc'd prefix string,
* or to NULL if no fixed prefix exists for the pattern.
* *rest is set to point to the remainder of the pattern after the
* portion describing the fixed prefix.
* The return value distinguishes no fixed prefix, a partial prefix,
* or an exact-match-only pattern.
*/
static Pattern_Prefix_Status
like_fixed_prefix(char *patt, bool case_insensitive,
char **prefix, char **rest)
{
char *match;
int pos,
match_pos;
*prefix = match = palloc(strlen(patt) + 1);
match_pos = 0;
for (pos = 0; patt[pos]; pos++)
{
/* % and _ are wildcard characters in LIKE */
if (patt[pos] == '%' ||
patt[pos] == '_')
break;
/* Backslash quotes the next character */
if (patt[pos] == '\\')
{
pos++;
if (patt[pos] == '\0')
break;
}
/*
* XXX I suspect isalpha() is not an adequately locale-sensitive
* test for characters that can vary under case folding?
*/
if (case_insensitive && isalpha((int) patt[pos]))
break;
/*
* NOTE: this code used to think that %% meant a literal %, but
* textlike() itself does not think that, and the SQL92 spec
* doesn't say any such thing either.
*/
match[match_pos++] = patt[pos];
}
match[match_pos] = '\0';
*rest = &patt[pos];
/* in LIKE, an empty pattern is an exact match! */
if (patt[pos] == '\0')
return Pattern_Prefix_Exact; /* reached end of pattern, so exact */
if (match_pos > 0)
return Pattern_Prefix_Partial;
pfree(match);
*prefix = NULL;
return Pattern_Prefix_None;
}
static Pattern_Prefix_Status
regex_fixed_prefix(char *patt, bool case_insensitive,
char **prefix, char **rest)
{
char *match;
int pos,
match_pos,
paren_depth;
/* Pattern must be anchored left */
if (patt[0] != '^')
{
*prefix = NULL;
*rest = patt;
return Pattern_Prefix_None;
}
/* If unquoted | is present at paren level 0 in pattern, then there
* are multiple alternatives for the start of the string.
*/
paren_depth = 0;
for (pos = 1; patt[pos]; pos++)
{
if (patt[pos] == '|' && paren_depth == 0)
{
*prefix = NULL;
*rest = patt;
return Pattern_Prefix_None;
}
else if (patt[pos] == '(')
paren_depth++;
else if (patt[pos] == ')' && paren_depth > 0)
paren_depth--;
else if (patt[pos] == '\\')
{
/* backslash quotes the next character */
pos++;
if (patt[pos] == '\0')
break;
}
}
/* OK, allocate space for pattern */
*prefix = match = palloc(strlen(patt) + 1);
match_pos = 0;
/* note start at pos 1 to skip leading ^ */
for (pos = 1; patt[pos]; pos++)
{
/*
* Check for characters that indicate multiple possible matches here.
* XXX I suspect isalpha() is not an adequately locale-sensitive
* test for characters that can vary under case folding?
*/
if (patt[pos] == '.' ||
patt[pos] == '(' ||
patt[pos] == '[' ||
patt[pos] == '$' ||
(case_insensitive && isalpha((int) patt[pos])))
break;
/*
* Check for quantifiers. Except for +, this means the preceding
* character is optional, so we must remove it from the prefix too!
*/
if (patt[pos] == '*' ||
patt[pos] == '?' ||
patt[pos] == '{')
{
if (match_pos > 0)
match_pos--;
pos--;
break;
}
if (patt[pos] == '+')
{
pos--;
break;
}
if (patt[pos] == '\\')
{
/* backslash quotes the next character */
pos++;
if (patt[pos] == '\0')
break;
}
match[match_pos++] = patt[pos];
}
match[match_pos] = '\0';
*rest = &patt[pos];
if (patt[pos] == '$' && patt[pos + 1] == '\0')
{
*rest = &patt[pos + 1];
return Pattern_Prefix_Exact; /* pattern specifies exact match */
}
if (match_pos > 0)
return Pattern_Prefix_Partial;
pfree(match);
*prefix = NULL;
return Pattern_Prefix_None;
}
Pattern_Prefix_Status
pattern_fixed_prefix(char *patt, Pattern_Type ptype,
char **prefix, char **rest)
{
Pattern_Prefix_Status result;
switch (ptype)
{
case Pattern_Type_Like:
result = like_fixed_prefix(patt, false, prefix, rest);
break;
case Pattern_Type_Like_IC:
result = like_fixed_prefix(patt, true, prefix, rest);
break;
case Pattern_Type_Regex:
result = regex_fixed_prefix(patt, false, prefix, rest);
break;
case Pattern_Type_Regex_IC:
result = regex_fixed_prefix(patt, true, prefix, rest);
break;
default:
elog(ERROR, "pattern_fixed_prefix: bogus ptype");
result = Pattern_Prefix_None; /* keep compiler quiet */
break;
}
return result;
}
/*
* Estimate the selectivity of a fixed prefix for a pattern match.
*
* A fixed prefix "foo" is estimated as the selectivity of the expression
* "var >= 'foo' AND var < 'fop'" (see also indxqual.c).
*/
static Selectivity
prefix_selectivity(char *prefix,
Oid relid,
AttrNumber attno,
Oid datatype)
{
Selectivity prefixsel;
Oid cmpopr;
Datum prefixcon;
char *greaterstr;
cmpopr = find_operator(">=", datatype);
if (cmpopr == InvalidOid)
elog(ERROR, "prefix_selectivity: no >= operator for type %u",
datatype);
prefixcon = string_to_datum(prefix, datatype);
/* Assume scalargtsel is appropriate for all supported types */
prefixsel = DatumGetFloat8(DirectFunctionCall5(scalargtsel,
ObjectIdGetDatum(cmpopr),
ObjectIdGetDatum(relid),
Int16GetDatum(attno),
prefixcon,
Int32GetDatum(SEL_CONSTANT|SEL_RIGHT)));
pfree(DatumGetPointer(prefixcon));
/*
* If we can create a string larger than the prefix,
* say "x < greaterstr".
*/
greaterstr = make_greater_string(prefix, datatype);
if (greaterstr)
{
Selectivity topsel;
cmpopr = find_operator("<", datatype);
if (cmpopr == InvalidOid)
elog(ERROR, "prefix_selectivity: no < operator for type %u",
datatype);
prefixcon = string_to_datum(greaterstr, datatype);
/* Assume scalarltsel is appropriate for all supported types */
topsel = DatumGetFloat8(DirectFunctionCall5(scalarltsel,
ObjectIdGetDatum(cmpopr),
ObjectIdGetDatum(relid),
Int16GetDatum(attno),
prefixcon,
Int32GetDatum(SEL_CONSTANT|SEL_RIGHT)));
pfree(DatumGetPointer(prefixcon));
pfree(greaterstr);
/*
* Merge the two selectivities in the same way as for
* a range query (see clauselist_selectivity()).
*/
prefixsel = topsel + prefixsel - 1.0;
/*
* A zero or slightly negative prefixsel should be converted into a
* small positive value; we probably are dealing with a very
* tight range and got a bogus result due to roundoff errors.
* However, if prefixsel is very negative, then we probably have
* default selectivity estimates on one or both sides of the
* range. In that case, insert a not-so-wildly-optimistic
* default estimate.
*/
if (prefixsel <= 0.0)
{
if (prefixsel < -0.01)
{
/*
* No data available --- use a default estimate that
* is small, but not real small.
*/
prefixsel = 0.01;
}
else
{
/*
* It's just roundoff error; use a small positive value
*/
prefixsel = 1.0e-10;
}
}
}
return prefixsel;
}
/*
* Estimate the selectivity of a pattern of the specified type.
* Note that any fixed prefix of the pattern will have been removed already.
*
* For now, we use a very simplistic approach: fixed characters reduce the
* selectivity a good deal, character ranges reduce it a little,
* wildcards (such as % for LIKE or .* for regex) increase it.
*/
#define FIXED_CHAR_SEL 0.04 /* about 1/25 */
#define CHAR_RANGE_SEL 0.25
#define ANY_CHAR_SEL 0.9 /* not 1, since it won't match end-of-string */
#define FULL_WILDCARD_SEL 5.0
#define PARTIAL_WILDCARD_SEL 2.0
static Selectivity
like_selectivity(char *patt, bool case_insensitive)
{
Selectivity sel = 1.0;
int pos;
/* Skip any leading %; it's already factored into initial sel */
pos = (*patt == '%') ? 1 : 0;
for (; patt[pos]; pos++)
{
/* % and _ are wildcard characters in LIKE */
if (patt[pos] == '%')
sel *= FULL_WILDCARD_SEL;
else if (patt[pos] == '_')
sel *= ANY_CHAR_SEL;
else if (patt[pos] == '\\')
{
/* Backslash quotes the next character */
pos++;
if (patt[pos] == '\0')
break;
sel *= FIXED_CHAR_SEL;
}
else
sel *= FIXED_CHAR_SEL;
}
/* Could get sel > 1 if multiple wildcards */
if (sel > 1.0)
sel = 1.0;
return sel;
}
static Selectivity
regex_selectivity_sub(char *patt, int pattlen, bool case_insensitive)
{
Selectivity sel = 1.0;
int paren_depth = 0;
int paren_pos = 0; /* dummy init to keep compiler quiet */
int pos;
for (pos = 0; pos < pattlen; pos++)
{
if (patt[pos] == '(')
{
if (paren_depth == 0)
paren_pos = pos; /* remember start of parenthesized item */
paren_depth++;
}
else if (patt[pos] == ')' && paren_depth > 0)
{
paren_depth--;
if (paren_depth == 0)
sel *= regex_selectivity_sub(patt + (paren_pos + 1),
pos - (paren_pos + 1),
case_insensitive);
}
else if (patt[pos] == '|' && paren_depth == 0)
{
/*
* If unquoted | is present at paren level 0 in pattern,
* we have multiple alternatives; sum their probabilities.
*/
sel += regex_selectivity_sub(patt + (pos + 1),
pattlen - (pos + 1),
case_insensitive);
break; /* rest of pattern is now processed */
}
else if (patt[pos] == '[')
{
bool negclass = false;
if (patt[++pos] == '^')
{
negclass = true;
pos++;
}
if (patt[pos] == ']') /* ']' at start of class is not special */
pos++;
while (pos < pattlen && patt[pos] != ']')
pos++;
if (paren_depth == 0)
sel *= (negclass ? (1.0-CHAR_RANGE_SEL) : CHAR_RANGE_SEL);
}
else if (patt[pos] == '.')
{
if (paren_depth == 0)
sel *= ANY_CHAR_SEL;
}
else if (patt[pos] == '*' ||
patt[pos] == '?' ||
patt[pos] == '+')
{
/* Ought to be smarter about quantifiers... */
if (paren_depth == 0)
sel *= PARTIAL_WILDCARD_SEL;
}
else if (patt[pos] == '{')
{
while (pos < pattlen && patt[pos] != '}')
pos++;
if (paren_depth == 0)
sel *= PARTIAL_WILDCARD_SEL;
}
else if (patt[pos] == '\\')
{
/* backslash quotes the next character */
pos++;
if (pos >= pattlen)
break;
if (paren_depth == 0)
sel *= FIXED_CHAR_SEL;
}
else
{
if (paren_depth == 0)
sel *= FIXED_CHAR_SEL;
}
}
/* Could get sel > 1 if multiple wildcards */
if (sel > 1.0)
sel = 1.0;
return sel;
}
static Selectivity
regex_selectivity(char *patt, bool case_insensitive)
{
Selectivity sel;
int pattlen = strlen(patt);
/* If patt doesn't end with $, consider it to have a trailing wildcard */
if (pattlen > 0 && patt[pattlen-1] == '$' &&
(pattlen == 1 || patt[pattlen-2] != '\\'))
{
/* has trailing $ */
sel = regex_selectivity_sub(patt, pattlen-1, case_insensitive);
}
else
{
/* no trailing $ */
sel = regex_selectivity_sub(patt, pattlen, case_insensitive);
sel *= FULL_WILDCARD_SEL;
if (sel > 1.0)
sel = 1.0;
}
return sel;
}
static Selectivity
pattern_selectivity(char *patt, Pattern_Type ptype)
{
Selectivity result;
switch (ptype)
{
case Pattern_Type_Like:
result = like_selectivity(patt, false);
break;
case Pattern_Type_Like_IC:
result = like_selectivity(patt, true);
break;
case Pattern_Type_Regex:
result = regex_selectivity(patt, false);
break;
case Pattern_Type_Regex_IC:
result = regex_selectivity(patt, true);
break;
default:
elog(ERROR, "pattern_selectivity: bogus ptype");
result = 1.0; /* keep compiler quiet */
break;
}
return result;
}
/*
* Try to generate a string greater than the given string or any string it is
* a prefix of. If successful, return a palloc'd string; else return NULL.
*
* To work correctly in non-ASCII locales with weird collation orders,
* we cannot simply increment "foo" to "fop" --- we have to check whether
* we actually produced a string greater than the given one. If not,
* increment the righthand byte again and repeat. If we max out the righthand
* byte, truncate off the last character and start incrementing the next.
* For example, if "z" were the last character in the sort order, then we
* could produce "foo" as a string greater than "fonz".
*
* This could be rather slow in the worst case, but in most cases we won't
* have to try more than one or two strings before succeeding.
*
* XXX in a sufficiently weird locale, this might produce incorrect results?
* For example, in German I believe "ss" is treated specially --- if we are
* given "foos" and return "foot", will this actually be greater than "fooss"?
*/
char *
make_greater_string(const char *str, Oid datatype)
{
char *workstr;
int len;
/*
* Make a modifiable copy, which will be our return value if
* successful
*/
workstr = pstrdup((char *) str);
while ((len = strlen(workstr)) > 0)
{
unsigned char *lastchar = (unsigned char *) (workstr + len - 1);
/*
* Try to generate a larger string by incrementing the last byte.
*/
while (*lastchar < (unsigned char) 255)
{
(*lastchar)++;
if (string_lessthan(str, workstr, datatype))
return workstr; /* Success! */
}
/*
* Truncate off the last character, which might be more than 1
* byte in MULTIBYTE case.
*/
#ifdef MULTIBYTE
len = pg_mbcliplen((const unsigned char *) workstr, len, len - 1);
workstr[len] = '\0';
#else
*lastchar = '\0';
#endif
}
/* Failed... */
pfree(workstr);
return NULL;
}
/*
* Test whether two strings are "<" according to the rules of the given
* datatype. We do this the hard way, ie, actually calling the type's
* "<" operator function, to ensure we get the right result...
*/
static bool
string_lessthan(const char *str1, const char *str2, Oid datatype)
{
Datum datum1 = string_to_datum(str1, datatype);
Datum datum2 = string_to_datum(str2, datatype);
bool result;
switch (datatype)
{
case TEXTOID:
result = DatumGetBool(DirectFunctionCall2(text_lt,
datum1, datum2));
break;
case BPCHAROID:
result = DatumGetBool(DirectFunctionCall2(bpcharlt,
datum1, datum2));
break;
case VARCHAROID:
result = DatumGetBool(DirectFunctionCall2(varcharlt,
datum1, datum2));
break;
case NAMEOID:
result = DatumGetBool(DirectFunctionCall2(namelt,
datum1, datum2));
break;
default:
elog(ERROR, "string_lessthan: unexpected datatype %u", datatype);
result = false;
break;
}
pfree(DatumGetPointer(datum1));
pfree(DatumGetPointer(datum2));
return result;
}
/* See if there is a binary op of the given name for the given datatype */
static Oid
find_operator(const char *opname, Oid datatype)
{
return GetSysCacheOid(OPERNAME,
PointerGetDatum(opname),
ObjectIdGetDatum(datatype),
ObjectIdGetDatum(datatype),
CharGetDatum('b'));
}
/*
* Generate a Datum of the appropriate type from a C string.
* Note that all of the supported types are pass-by-ref, so the
* returned value should be pfree'd if no longer needed.
*/
static Datum
string_to_datum(const char *str, Oid datatype)
{
/*
* We cheat a little by assuming that textin() will do for bpchar and
* varchar constants too...
*/
if (datatype == NAMEOID)
return DirectFunctionCall1(namein, CStringGetDatum(str));
else
return DirectFunctionCall1(textin, CStringGetDatum(str));
}
/*-------------------------------------------------------------------------
*
* Index cost estimation functions
*
* genericcostestimate is a general-purpose estimator for use when we
* don't have any better idea about how to estimate. Index-type-specific
* knowledge can be incorporated in the type-specific routines.
*
*-------------------------------------------------------------------------
*/
static Datum
genericcostestimate(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
RelOptInfo *rel = (RelOptInfo *) PG_GETARG_POINTER(1);
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(2);
List *indexQuals = (List *) PG_GETARG_POINTER(3);
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(4);
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(5);
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(6);
double numIndexTuples;
double numIndexPages;
/* Estimate the fraction of main-table tuples that will be visited */
*indexSelectivity = clauselist_selectivity(root, indexQuals,
lfirsti(rel->relids));
/* Estimate the number of index tuples that will be visited */
numIndexTuples = *indexSelectivity * index->tuples;
/* Estimate the number of index pages that will be retrieved */
numIndexPages = *indexSelectivity * index->pages;
/*
* Always estimate at least one tuple and page are touched, even when
* indexSelectivity estimate is tiny.
*/
if (numIndexTuples < 1.0)
numIndexTuples = 1.0;
if (numIndexPages < 1.0)
numIndexPages = 1.0;
/*
* Compute the index access cost.
*
* Our generic assumption is that the index pages will be read
* sequentially, so they have cost 1.0 each, not random_page_cost.
* Also, we charge for evaluation of the indexquals at each index
* tuple. All the costs are assumed to be paid incrementally during
* the scan.
*/
*indexStartupCost = 0;
*indexTotalCost = numIndexPages +
(cpu_index_tuple_cost + cost_qual_eval(indexQuals)) * numIndexTuples;
PG_RETURN_VOID();
}
/*
* For first cut, just use generic function for all index types.
*/
Datum
btcostestimate(PG_FUNCTION_ARGS)
{
return genericcostestimate(fcinfo);
}
Datum
rtcostestimate(PG_FUNCTION_ARGS)
{
return genericcostestimate(fcinfo);
}
Datum
hashcostestimate(PG_FUNCTION_ARGS)
{
return genericcostestimate(fcinfo);
}
Datum
gistcostestimate(PG_FUNCTION_ARGS)
{
return genericcostestimate(fcinfo);
}