mirror of
				https://github.com/postgres/postgres.git
				synced 2025-10-29 22:49:41 +03:00 
			
		
		
		
	works properly for 1-D comparisons. Fix some other errors such as bogus commutator specifications.
		
			
				
	
	
		
			1095 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1095 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /******************************************************************************
 | |
|   This file contains routines that can be bound to a Postgres backend and
 | |
|   called by the backend in the process of processing queries.  The calling
 | |
|   format for these routines is dictated by Postgres architecture.
 | |
| ******************************************************************************/
 | |
| 
 | |
| #include "postgres.h"
 | |
| 
 | |
| #include <float.h>
 | |
| 
 | |
| #include "access/gist.h"
 | |
| #include "access/rtree.h"
 | |
| #include "utils/builtins.h"
 | |
| 
 | |
| #include "segdata.h"
 | |
| 
 | |
| /*
 | |
| #define GIST_DEBUG
 | |
| #define GIST_QUERY_DEBUG
 | |
| */
 | |
| 
 | |
| extern int	seg_yyparse();
 | |
| extern void seg_yyerror(const char *message);
 | |
| extern void seg_scanner_init(const char *str);
 | |
| extern void seg_scanner_finish(void);
 | |
| 
 | |
| /*
 | |
| extern int	 seg_yydebug;
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Input/Output routines
 | |
| */
 | |
| SEG		   *seg_in(char *str);
 | |
| char	   *seg_out(SEG * seg);
 | |
| float32		seg_lower(SEG * seg);
 | |
| float32		seg_upper(SEG * seg);
 | |
| float32		seg_center(SEG * seg);
 | |
| 
 | |
| /*
 | |
| ** GiST support methods
 | |
| */
 | |
| bool		gseg_consistent(GISTENTRY *entry, SEG * query, StrategyNumber strategy);
 | |
| GISTENTRY  *gseg_compress(GISTENTRY *entry);
 | |
| GISTENTRY  *gseg_decompress(GISTENTRY *entry);
 | |
| float	   *gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
 | |
| GIST_SPLITVEC *gseg_picksplit(GistEntryVector *entryvec, GIST_SPLITVEC *v);
 | |
| bool		gseg_leaf_consistent(SEG * key, SEG * query, StrategyNumber strategy);
 | |
| bool		gseg_internal_consistent(SEG * key, SEG * query, StrategyNumber strategy);
 | |
| SEG		   *gseg_union(GistEntryVector *entryvec, int *sizep);
 | |
| SEG		   *gseg_binary_union(SEG * r1, SEG * r2, int *sizep);
 | |
| bool	   *gseg_same(SEG * b1, SEG * b2, bool *result);
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** R-tree suport functions
 | |
| */
 | |
| bool		seg_same(SEG * a, SEG * b);
 | |
| bool		seg_contains_int(SEG * a, int *b);
 | |
| bool		seg_contains_float4(SEG * a, float4 *b);
 | |
| bool		seg_contains_float8(SEG * a, float8 *b);
 | |
| bool		seg_contains(SEG * a, SEG * b);
 | |
| bool		seg_contained(SEG * a, SEG * b);
 | |
| bool		seg_overlap(SEG * a, SEG * b);
 | |
| bool		seg_left(SEG * a, SEG * b);
 | |
| bool		seg_over_left(SEG * a, SEG * b);
 | |
| bool		seg_right(SEG * a, SEG * b);
 | |
| bool		seg_over_right(SEG * a, SEG * b);
 | |
| SEG		   *seg_union(SEG * a, SEG * b);
 | |
| SEG		   *seg_inter(SEG * a, SEG * b);
 | |
| void		rt_seg_size(SEG * a, float *sz);
 | |
| float	   *seg_size(SEG * a);
 | |
| 
 | |
| /*
 | |
| ** Various operators
 | |
| */
 | |
| int32		seg_cmp(SEG * a, SEG * b);
 | |
| bool		seg_lt(SEG * a, SEG * b);
 | |
| bool		seg_le(SEG * a, SEG * b);
 | |
| bool		seg_gt(SEG * a, SEG * b);
 | |
| bool		seg_ge(SEG * a, SEG * b);
 | |
| bool		seg_different(SEG * a, SEG * b);
 | |
| 
 | |
| /*
 | |
| ** Auxiliary funxtions
 | |
| */
 | |
| static int	restore(char *s, float val, int n);
 | |
| int			significant_digits(char *s);
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Input/Output functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| SEG *
 | |
| seg_in(char *str)
 | |
| {
 | |
| 	SEG		   *result = palloc(sizeof(SEG));
 | |
| 
 | |
| 	seg_scanner_init(str);
 | |
| 
 | |
| 	if (seg_yyparse(result) != 0)
 | |
| 		seg_yyerror("bogus input");
 | |
| 
 | |
| 	seg_scanner_finish();
 | |
| 
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| char *
 | |
| seg_out(SEG * seg)
 | |
| {
 | |
| 	char	   *result;
 | |
| 	char	   *p;
 | |
| 
 | |
| 	if (seg == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	p = result = (char *) palloc(40);
 | |
| 
 | |
| 	if (seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~')
 | |
| 		p += sprintf(p, "%c", seg->l_ext);
 | |
| 
 | |
| 	if (seg->lower == seg->upper && seg->l_ext == seg->u_ext)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * indicates that this interval was built by seg_in off a single
 | |
| 		 * point
 | |
| 		 */
 | |
| 		p += restore(p, seg->lower, seg->l_sigd);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (seg->l_ext != '-')
 | |
| 		{
 | |
| 			/* print the lower boudary if exists */
 | |
| 			p += restore(p, seg->lower, seg->l_sigd);
 | |
| 			p += sprintf(p, " ");
 | |
| 		}
 | |
| 		p += sprintf(p, "..");
 | |
| 		if (seg->u_ext != '-')
 | |
| 		{
 | |
| 			/* print the upper boudary if exists */
 | |
| 			p += sprintf(p, " ");
 | |
| 			if (seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~')
 | |
| 				p += sprintf(p, "%c", seg->u_ext);
 | |
| 			p += restore(p, seg->upper, seg->u_sigd);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| float32
 | |
| seg_center(SEG * seg)
 | |
| {
 | |
| 	float32		result = (float32) palloc(sizeof(float32data));
 | |
| 
 | |
| 	if (!seg)
 | |
| 		return (float32) NULL;
 | |
| 
 | |
| 	*result = ((float) seg->lower + (float) seg->upper) / 2.0;
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| float32
 | |
| seg_lower(SEG * seg)
 | |
| {
 | |
| 	float32		result = (float32) palloc(sizeof(float32data));
 | |
| 
 | |
| 	if (!seg)
 | |
| 		return (float32) NULL;
 | |
| 
 | |
| 	*result = (float) seg->lower;
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| float32
 | |
| seg_upper(SEG * seg)
 | |
| {
 | |
| 	float32		result = (float32) palloc(sizeof(float32data));
 | |
| 
 | |
| 	if (!seg)
 | |
| 		return (float32) NULL;
 | |
| 
 | |
| 	*result = (float) seg->upper;
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *						   GiST functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /*
 | |
| ** The GiST Consistent method for segments
 | |
| ** Should return false if for all data items x below entry,
 | |
| ** the predicate x op query == FALSE, where op is the oper
 | |
| ** corresponding to strategy in the pg_amop table.
 | |
| */
 | |
| bool
 | |
| gseg_consistent(GISTENTRY *entry,
 | |
| 				SEG * query,
 | |
| 				StrategyNumber strategy)
 | |
| {
 | |
| 	/*
 | |
| 	 * if entry is not leaf, use gseg_internal_consistent, else use
 | |
| 	 * gseg_leaf_consistent
 | |
| 	 */
 | |
| 	if (GIST_LEAF(entry))
 | |
| 		return (gseg_leaf_consistent((SEG *) DatumGetPointer(entry->key), query, strategy));
 | |
| 	else
 | |
| 		return (gseg_internal_consistent((SEG *) DatumGetPointer(entry->key), query, strategy));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The GiST Union method for segments
 | |
| ** returns the minimal bounding seg that encloses all the entries in entryvec
 | |
| */
 | |
| SEG *
 | |
| gseg_union(GistEntryVector *entryvec, int *sizep)
 | |
| {
 | |
| 	int			numranges,
 | |
| 				i;
 | |
| 	SEG		   *out = (SEG *) NULL;
 | |
| 	SEG		   *tmp;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
| 	fprintf(stderr, "union\n");
 | |
| #endif
 | |
| 
 | |
| 	numranges = entryvec->n;
 | |
| 	tmp = (SEG *) DatumGetPointer(entryvec->vector[0].key);
 | |
| 	*sizep = sizeof(SEG);
 | |
| 
 | |
| 	for (i = 1; i < numranges; i++)
 | |
| 	{
 | |
| 		out = gseg_binary_union(tmp, (SEG *)
 | |
| 								DatumGetPointer(entryvec->vector[i].key),
 | |
| 								sizep);
 | |
| 		tmp = out;
 | |
| 	}
 | |
| 
 | |
| 	return (out);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** GiST Compress and Decompress methods for segments
 | |
| ** do not do anything.
 | |
| */
 | |
| GISTENTRY *
 | |
| gseg_compress(GISTENTRY *entry)
 | |
| {
 | |
| 	return (entry);
 | |
| }
 | |
| 
 | |
| GISTENTRY *
 | |
| gseg_decompress(GISTENTRY *entry)
 | |
| {
 | |
| 	return (entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The GiST Penalty method for segments
 | |
| ** As in the R-tree paper, we use change in area as our penalty metric
 | |
| */
 | |
| float *
 | |
| gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
 | |
| {
 | |
| 	SEG		   *ud;
 | |
| 	float		tmp1,
 | |
| 				tmp2;
 | |
| 
 | |
| 	ud = seg_union((SEG *) DatumGetPointer(origentry->key),
 | |
| 				   (SEG *) DatumGetPointer(newentry->key));
 | |
| 	rt_seg_size(ud, &tmp1);
 | |
| 	rt_seg_size((SEG *) DatumGetPointer(origentry->key), &tmp2);
 | |
| 	*result = tmp1 - tmp2;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
| 	fprintf(stderr, "penalty\n");
 | |
| 	fprintf(stderr, "\t%g\n", *result);
 | |
| #endif
 | |
| 
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The GiST PickSplit method for segments
 | |
| ** We use Guttman's poly time split algorithm
 | |
| */
 | |
| GIST_SPLITVEC *
 | |
| gseg_picksplit(GistEntryVector *entryvec,
 | |
| 			   GIST_SPLITVEC *v)
 | |
| {
 | |
| 	OffsetNumber i,
 | |
| 				j;
 | |
| 	SEG		   *datum_alpha,
 | |
| 			   *datum_beta;
 | |
| 	SEG		   *datum_l,
 | |
| 			   *datum_r;
 | |
| 	SEG		   *union_d,
 | |
| 			   *union_dl,
 | |
| 			   *union_dr;
 | |
| 	SEG		   *inter_d;
 | |
| 	bool		firsttime;
 | |
| 	float		size_alpha,
 | |
| 				size_beta,
 | |
| 				size_union,
 | |
| 				size_inter;
 | |
| 	float		size_waste,
 | |
| 				waste;
 | |
| 	float		size_l,
 | |
| 				size_r;
 | |
| 	int			nbytes;
 | |
| 	OffsetNumber seed_1 = 0,
 | |
| 				seed_2 = 0;
 | |
| 	OffsetNumber *left,
 | |
| 			   *right;
 | |
| 	OffsetNumber maxoff;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
| 	fprintf(stderr, "picksplit\n");
 | |
| #endif
 | |
| 
 | |
| 	maxoff = entryvec->n - 2;
 | |
| 	nbytes = (maxoff + 2) * sizeof(OffsetNumber);
 | |
| 	v->spl_left = (OffsetNumber *) palloc(nbytes);
 | |
| 	v->spl_right = (OffsetNumber *) palloc(nbytes);
 | |
| 
 | |
| 	firsttime = true;
 | |
| 	waste = 0.0;
 | |
| 
 | |
| 	for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
 | |
| 	{
 | |
| 		datum_alpha = (SEG *) DatumGetPointer(entryvec->vector[i].key);
 | |
| 		for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
 | |
| 		{
 | |
| 			datum_beta = (SEG *) DatumGetPointer(entryvec->vector[j].key);
 | |
| 
 | |
| 			/* compute the wasted space by unioning these guys */
 | |
| 			/* size_waste = size_union - size_inter; */
 | |
| 			union_d = seg_union(datum_alpha, datum_beta);
 | |
| 			rt_seg_size(union_d, &size_union);
 | |
| 			inter_d = seg_inter(datum_alpha, datum_beta);
 | |
| 			rt_seg_size(inter_d, &size_inter);
 | |
| 			size_waste = size_union - size_inter;
 | |
| 
 | |
| 			/*
 | |
| 			 * are these a more promising split that what we've already
 | |
| 			 * seen?
 | |
| 			 */
 | |
| 			if (size_waste > waste || firsttime)
 | |
| 			{
 | |
| 				waste = size_waste;
 | |
| 				seed_1 = i;
 | |
| 				seed_2 = j;
 | |
| 				firsttime = false;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	left = v->spl_left;
 | |
| 	v->spl_nleft = 0;
 | |
| 	right = v->spl_right;
 | |
| 	v->spl_nright = 0;
 | |
| 
 | |
| 	datum_alpha = (SEG *) DatumGetPointer(entryvec->vector[seed_1].key);
 | |
| 	datum_l = seg_union(datum_alpha, datum_alpha);
 | |
| 	rt_seg_size(datum_l, &size_l);
 | |
| 	datum_beta = (SEG *) DatumGetPointer(entryvec->vector[seed_2].key);
 | |
| 	datum_r = seg_union(datum_beta, datum_beta);
 | |
| 	rt_seg_size(datum_r, &size_r);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now split up the regions between the two seeds.	An important
 | |
| 	 * property of this split algorithm is that the split vector v has the
 | |
| 	 * indices of items to be split in order in its left and right
 | |
| 	 * vectors.  We exploit this property by doing a merge in the code
 | |
| 	 * that actually splits the page.
 | |
| 	 *
 | |
| 	 * For efficiency, we also place the new index tuple in this loop. This
 | |
| 	 * is handled at the very end, when we have placed all the existing
 | |
| 	 * tuples and i == maxoff + 1.
 | |
| 	 */
 | |
| 
 | |
| 	maxoff = OffsetNumberNext(maxoff);
 | |
| 	for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
 | |
| 	{
 | |
| 		/*
 | |
| 		 * If we've already decided where to place this item, just put it
 | |
| 		 * on the right list.  Otherwise, we need to figure out which page
 | |
| 		 * needs the least enlargement in order to store the item.
 | |
| 		 */
 | |
| 
 | |
| 		if (i == seed_1)
 | |
| 		{
 | |
| 			*left++ = i;
 | |
| 			v->spl_nleft++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		else if (i == seed_2)
 | |
| 		{
 | |
| 			*right++ = i;
 | |
| 			v->spl_nright++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* okay, which page needs least enlargement? */
 | |
| 		datum_alpha = (SEG *) DatumGetPointer(entryvec->vector[i].key);
 | |
| 		union_dl = seg_union(datum_l, datum_alpha);
 | |
| 		union_dr = seg_union(datum_r, datum_alpha);
 | |
| 		rt_seg_size(union_dl, &size_alpha);
 | |
| 		rt_seg_size(union_dr, &size_beta);
 | |
| 
 | |
| 		/* pick which page to add it to */
 | |
| 		if (size_alpha - size_l < size_beta - size_r)
 | |
| 		{
 | |
| 			datum_l = union_dl;
 | |
| 			size_l = size_alpha;
 | |
| 			*left++ = i;
 | |
| 			v->spl_nleft++;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			datum_r = union_dr;
 | |
| 			size_r = size_alpha;
 | |
| 			*right++ = i;
 | |
| 			v->spl_nright++;
 | |
| 		}
 | |
| 	}
 | |
| 	*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
 | |
| 
 | |
| 	v->spl_ldatum = PointerGetDatum(datum_l);
 | |
| 	v->spl_rdatum = PointerGetDatum(datum_r);
 | |
| 
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Equality methods
 | |
| */
 | |
| bool *
 | |
| gseg_same(SEG * b1, SEG * b2, bool *result)
 | |
| {
 | |
| 	if (seg_same(b1, b2))
 | |
| 		*result = TRUE;
 | |
| 	else
 | |
| 		*result = FALSE;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
| 	fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE"));
 | |
| #endif
 | |
| 
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** SUPPORT ROUTINES
 | |
| */
 | |
| bool
 | |
| gseg_leaf_consistent(SEG * key,
 | |
| 					 SEG * query,
 | |
| 					 StrategyNumber strategy)
 | |
| {
 | |
| 	bool		retval;
 | |
| 
 | |
| #ifdef GIST_QUERY_DEBUG
 | |
| 	fprintf(stderr, "leaf_consistent, %d\n", strategy);
 | |
| #endif
 | |
| 
 | |
| 	switch (strategy)
 | |
| 	{
 | |
| 		case RTLeftStrategyNumber:
 | |
| 			retval = (bool) seg_left(key, query);
 | |
| 			break;
 | |
| 		case RTOverLeftStrategyNumber:
 | |
| 			retval = (bool) seg_over_left(key, query);
 | |
| 			break;
 | |
| 		case RTOverlapStrategyNumber:
 | |
| 			retval = (bool) seg_overlap(key, query);
 | |
| 			break;
 | |
| 		case RTOverRightStrategyNumber:
 | |
| 			retval = (bool) seg_over_right(key, query);
 | |
| 			break;
 | |
| 		case RTRightStrategyNumber:
 | |
| 			retval = (bool) seg_right(key, query);
 | |
| 			break;
 | |
| 		case RTSameStrategyNumber:
 | |
| 			retval = (bool) seg_same(key, query);
 | |
| 			break;
 | |
| 		case RTContainsStrategyNumber:
 | |
| 			retval = (bool) seg_contains(key, query);
 | |
| 			break;
 | |
| 		case RTContainedByStrategyNumber:
 | |
| 			retval = (bool) seg_contained(key, query);
 | |
| 			break;
 | |
| 		default:
 | |
| 			retval = FALSE;
 | |
| 	}
 | |
| 	return (retval);
 | |
| }
 | |
| 
 | |
| bool
 | |
| gseg_internal_consistent(SEG * key,
 | |
| 						 SEG * query,
 | |
| 						 StrategyNumber strategy)
 | |
| {
 | |
| 	bool		retval;
 | |
| 
 | |
| #ifdef GIST_QUERY_DEBUG
 | |
| 	fprintf(stderr, "internal_consistent, %d\n", strategy);
 | |
| #endif
 | |
| 
 | |
| 	switch (strategy)
 | |
| 	{
 | |
| 		case RTLeftStrategyNumber:
 | |
| 			retval = (bool) !seg_over_right(key, query);
 | |
| 			break;
 | |
| 		case RTOverLeftStrategyNumber:
 | |
| 			retval = (bool) !seg_right(key, query);
 | |
| 			break;
 | |
| 		case RTOverlapStrategyNumber:
 | |
| 			retval = (bool) seg_overlap(key, query);
 | |
| 			break;
 | |
| 		case RTOverRightStrategyNumber:
 | |
| 			retval = (bool) !seg_left(key, query);
 | |
| 			break;
 | |
| 		case RTRightStrategyNumber:
 | |
| 			retval = (bool) !seg_over_left(key, query);
 | |
| 			break;
 | |
| 		case RTSameStrategyNumber:
 | |
| 		case RTContainsStrategyNumber:
 | |
| 			retval = (bool) seg_contains(key, query);
 | |
| 			break;
 | |
| 		case RTContainedByStrategyNumber:
 | |
| 			retval = (bool) seg_overlap(key, query);
 | |
| 			break;
 | |
| 		default:
 | |
| 			retval = FALSE;
 | |
| 	}
 | |
| 	return (retval);
 | |
| }
 | |
| 
 | |
| SEG *
 | |
| gseg_binary_union(SEG * r1, SEG * r2, int *sizep)
 | |
| {
 | |
| 	SEG		   *retval;
 | |
| 
 | |
| 	retval = seg_union(r1, r2);
 | |
| 	*sizep = sizeof(SEG);
 | |
| 
 | |
| 	return (retval);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool
 | |
| seg_contains(SEG * a, SEG * b)
 | |
| {
 | |
| 	return ((a->lower <= b->lower) && (a->upper >= b->upper));
 | |
| }
 | |
| 
 | |
| bool
 | |
| seg_contained(SEG * a, SEG * b)
 | |
| {
 | |
| 	return (seg_contains(b, a));
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Operator class for R-tree indexing
 | |
|  *****************************************************************************/
 | |
| 
 | |
| bool
 | |
| seg_same(SEG * a, SEG * b)
 | |
| {
 | |
| 	return seg_cmp(a, b) == 0;
 | |
| }
 | |
| 
 | |
| /*	seg_overlap -- does a overlap b?
 | |
|  */
 | |
| bool
 | |
| seg_overlap(SEG * a, SEG * b)
 | |
| {
 | |
| 	return (
 | |
| 			((a->upper >= b->upper) && (a->lower <= b->upper))
 | |
| 			||
 | |
| 			((b->upper >= a->upper) && (b->lower <= a->upper))
 | |
| 		);
 | |
| }
 | |
| 
 | |
| /*	seg_overleft -- is the right edge of (a) located at or left of the right edge of (b)?
 | |
|  */
 | |
| bool
 | |
| seg_over_left(SEG * a, SEG * b)
 | |
| {
 | |
| 	return (a->upper <= b->upper);
 | |
| }
 | |
| 
 | |
| /*	seg_left -- is (a) entirely on the left of (b)?
 | |
|  */
 | |
| bool
 | |
| seg_left(SEG * a, SEG * b)
 | |
| {
 | |
| 	return (a->upper < b->lower);
 | |
| }
 | |
| 
 | |
| /*	seg_right -- is (a) entirely on the right of (b)?
 | |
|  */
 | |
| bool
 | |
| seg_right(SEG * a, SEG * b)
 | |
| {
 | |
| 	return (a->lower > b->upper);
 | |
| }
 | |
| 
 | |
| /*	seg_overright -- is the left edge of (a) located at or right of the left edge of (b)?
 | |
|  */
 | |
| bool
 | |
| seg_over_right(SEG * a, SEG * b)
 | |
| {
 | |
| 	return (a->lower >= b->lower);
 | |
| }
 | |
| 
 | |
| 
 | |
| SEG *
 | |
| seg_union(SEG * a, SEG * b)
 | |
| {
 | |
| 	SEG		   *n;
 | |
| 
 | |
| 	n = (SEG *) palloc(sizeof(*n));
 | |
| 
 | |
| 	/* take max of upper endpoints */
 | |
| 	if (a->upper > b->upper)
 | |
| 	{
 | |
| 		n->upper = a->upper;
 | |
| 		n->u_sigd = a->u_sigd;
 | |
| 		n->u_ext = a->u_ext;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		n->upper = b->upper;
 | |
| 		n->u_sigd = b->u_sigd;
 | |
| 		n->u_ext = b->u_ext;
 | |
| 	}
 | |
| 
 | |
| 	/* take min of lower endpoints */
 | |
| 	if (a->lower < b->lower)
 | |
| 	{
 | |
| 		n->lower = a->lower;
 | |
| 		n->l_sigd = a->l_sigd;
 | |
| 		n->l_ext = a->l_ext;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		n->lower = b->lower;
 | |
| 		n->l_sigd = b->l_sigd;
 | |
| 		n->l_ext = b->l_ext;
 | |
| 	}
 | |
| 
 | |
| 	return (n);
 | |
| }
 | |
| 
 | |
| 
 | |
| SEG *
 | |
| seg_inter(SEG * a, SEG * b)
 | |
| {
 | |
| 	SEG		   *n;
 | |
| 
 | |
| 	n = (SEG *) palloc(sizeof(*n));
 | |
| 
 | |
| 	/* take min of upper endpoints */
 | |
| 	if (a->upper < b->upper)
 | |
| 	{
 | |
| 		n->upper = a->upper;
 | |
| 		n->u_sigd = a->u_sigd;
 | |
| 		n->u_ext = a->u_ext;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		n->upper = b->upper;
 | |
| 		n->u_sigd = b->u_sigd;
 | |
| 		n->u_ext = b->u_ext;
 | |
| 	}
 | |
| 
 | |
| 	/* take max of lower endpoints */
 | |
| 	if (a->lower > b->lower)
 | |
| 	{
 | |
| 		n->lower = a->lower;
 | |
| 		n->l_sigd = a->l_sigd;
 | |
| 		n->l_ext = a->l_ext;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		n->lower = b->lower;
 | |
| 		n->l_sigd = b->l_sigd;
 | |
| 		n->l_ext = b->l_ext;
 | |
| 	}
 | |
| 
 | |
| 	return (n);
 | |
| }
 | |
| 
 | |
| void
 | |
| rt_seg_size(SEG * a, float *size)
 | |
| {
 | |
| 	if (a == (SEG *) NULL || a->upper <= a->lower)
 | |
| 		*size = 0.0;
 | |
| 	else
 | |
| 		*size = (float) Abs(a->upper - a->lower);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| float *
 | |
| seg_size(SEG * a)
 | |
| {
 | |
| 	float	   *result;
 | |
| 
 | |
| 	result = (float *) palloc(sizeof(float));
 | |
| 
 | |
| 	*result = (float) Abs(a->upper - a->lower);
 | |
| 
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *				   Miscellaneous operators
 | |
|  *****************************************************************************/
 | |
| int32
 | |
| seg_cmp(SEG * a, SEG * b)
 | |
| {
 | |
| 	/*
 | |
| 	 * First compare on lower boundary position
 | |
| 	 */
 | |
| 	if (a->lower < b->lower)
 | |
| 		return -1;
 | |
| 	if (a->lower > b->lower)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * a->lower == b->lower, so consider type of boundary.
 | |
| 	 *
 | |
| 	 * A '-' lower bound is < any other kind (this could only be relevant if
 | |
| 	 * -HUGE_VAL is used as a regular data value). A '<' lower bound is <
 | |
| 	 * any other kind except '-'. A '>' lower bound is > any other kind.
 | |
| 	 */
 | |
| 	if (a->l_ext != b->l_ext)
 | |
| 	{
 | |
| 		if (a->l_ext == '-')
 | |
| 			return -1;
 | |
| 		if (b->l_ext == '-')
 | |
| 			return 1;
 | |
| 		if (a->l_ext == '<')
 | |
| 			return -1;
 | |
| 		if (b->l_ext == '<')
 | |
| 			return 1;
 | |
| 		if (a->l_ext == '>')
 | |
| 			return 1;
 | |
| 		if (b->l_ext == '>')
 | |
| 			return -1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For other boundary types, consider # of significant digits first.
 | |
| 	 */
 | |
| 	if (a->l_sigd < b->l_sigd)	/* (a) is blurred and is likely to include
 | |
| 								 * (b) */
 | |
| 		return -1;
 | |
| 	if (a->l_sigd > b->l_sigd)	/* (a) is less blurred and is likely to be
 | |
| 								 * included in (b) */
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * For same # of digits, an approximate boundary is more blurred than
 | |
| 	 * exact.
 | |
| 	 */
 | |
| 	if (a->l_ext != b->l_ext)
 | |
| 	{
 | |
| 		if (a->l_ext == '~')	/* (a) is approximate, while (b) is exact */
 | |
| 			return -1;
 | |
| 		if (b->l_ext == '~')
 | |
| 			return 1;
 | |
| 		/* can't get here unless data is corrupt */
 | |
| 		elog(ERROR, "bogus lower boundary types %d %d",
 | |
| 			 (int) a->l_ext, (int) b->l_ext);
 | |
| 	}
 | |
| 
 | |
| 	/* at this point, the lower boundaries are identical */
 | |
| 
 | |
| 	/*
 | |
| 	 * First compare on upper boundary position
 | |
| 	 */
 | |
| 	if (a->upper < b->upper)
 | |
| 		return -1;
 | |
| 	if (a->upper > b->upper)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * a->upper == b->upper, so consider type of boundary.
 | |
| 	 *
 | |
| 	 * A '-' upper bound is > any other kind (this could only be relevant if
 | |
| 	 * HUGE_VAL is used as a regular data value). A '<' upper bound is <
 | |
| 	 * any other kind. A '>' upper bound is > any other kind except '-'.
 | |
| 	 */
 | |
| 	if (a->u_ext != b->u_ext)
 | |
| 	{
 | |
| 		if (a->u_ext == '-')
 | |
| 			return 1;
 | |
| 		if (b->u_ext == '-')
 | |
| 			return -1;
 | |
| 		if (a->u_ext == '<')
 | |
| 			return -1;
 | |
| 		if (b->u_ext == '<')
 | |
| 			return 1;
 | |
| 		if (a->u_ext == '>')
 | |
| 			return 1;
 | |
| 		if (b->u_ext == '>')
 | |
| 			return -1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For other boundary types, consider # of significant digits first.
 | |
| 	 * Note result here is converse of the lower-boundary case.
 | |
| 	 */
 | |
| 	if (a->u_sigd < b->u_sigd)	/* (a) is blurred and is likely to include
 | |
| 								 * (b) */
 | |
| 		return 1;
 | |
| 	if (a->u_sigd > b->u_sigd)	/* (a) is less blurred and is likely to be
 | |
| 								 * included in (b) */
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * For same # of digits, an approximate boundary is more blurred than
 | |
| 	 * exact.  Again, result is converse of lower-boundary case.
 | |
| 	 */
 | |
| 	if (a->u_ext != b->u_ext)
 | |
| 	{
 | |
| 		if (a->u_ext == '~')	/* (a) is approximate, while (b) is exact */
 | |
| 			return 1;
 | |
| 		if (b->u_ext == '~')
 | |
| 			return -1;
 | |
| 		/* can't get here unless data is corrupt */
 | |
| 		elog(ERROR, "bogus upper boundary types %d %d",
 | |
| 			 (int) a->u_ext, (int) b->u_ext);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| bool
 | |
| seg_lt(SEG * a, SEG * b)
 | |
| {
 | |
| 	return seg_cmp(a, b) < 0;
 | |
| }
 | |
| 
 | |
| bool
 | |
| seg_le(SEG * a, SEG * b)
 | |
| {
 | |
| 	return seg_cmp(a, b) <= 0;
 | |
| }
 | |
| 
 | |
| bool
 | |
| seg_gt(SEG * a, SEG * b)
 | |
| {
 | |
| 	return seg_cmp(a, b) > 0;
 | |
| }
 | |
| 
 | |
| bool
 | |
| seg_ge(SEG * a, SEG * b)
 | |
| {
 | |
| 	return seg_cmp(a, b) >= 0;
 | |
| }
 | |
| 
 | |
| bool
 | |
| seg_different(SEG * a, SEG * b)
 | |
| {
 | |
| 	return seg_cmp(a, b) != 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *				   Auxiliary functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /* The purpose of this routine is to print the floating point
 | |
|  * value with exact number of significant digits. Its behaviour
 | |
|  * is similar to %.ng except it prints 8.00 where %.ng would
 | |
|  * print 8
 | |
|  */
 | |
| static int
 | |
| restore(char *result, float val, int n)
 | |
| {
 | |
| 	static char efmt[8] = {'%', '-', '1', '5', '.', '#', 'e', 0};
 | |
| 	char		buf[25] = {
 | |
| 		'0', '0', '0', '0', '0',
 | |
| 		'0', '0', '0', '0', '0',
 | |
| 		'0', '0', '0', '0', '0',
 | |
| 		'0', '0', '0', '0', '0',
 | |
| 		'0', '0', '0', '0', '\0'
 | |
| 	};
 | |
| 	char	   *p;
 | |
| 	char	   *mant;
 | |
| 	int			exp;
 | |
| 	int			i,
 | |
| 				dp,
 | |
| 				sign;
 | |
| 
 | |
| 	/*
 | |
| 	 * put a cap on the number of siugnificant digits to avoid nonsense in
 | |
| 	 * the output
 | |
| 	 */
 | |
| 	n = Min(n, FLT_DIG);
 | |
| 
 | |
| 	/* remember the sign */
 | |
| 	sign = (val < 0 ? 1 : 0);
 | |
| 
 | |
| 	efmt[5] = '0' + (n - 1) % 10;		/* makes %-15.(n-1)e -- this
 | |
| 										 * format guarantees that the
 | |
| 										 * exponent is always present */
 | |
| 
 | |
| 	sprintf(result, efmt, val);
 | |
| 
 | |
| 	/* trim the spaces left by the %e */
 | |
| 	for (p = result; *p != ' '; p++);
 | |
| 	*p = '\0';
 | |
| 
 | |
| 	/* get the exponent */
 | |
| 	mant = (char *) strtok(strdup(result), "e");
 | |
| 	exp = atoi(strtok(NULL, "e"));
 | |
| 
 | |
| 	if (exp == 0)
 | |
| 	{
 | |
| 		/* use the supplied mantyssa with sign */
 | |
| 		strcpy((char *) strchr(result, 'e'), "");
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (Abs(exp) <= 4)
 | |
| 		{
 | |
| 			/*
 | |
| 			 * remove the decimal point from the mantyssa and write the
 | |
| 			 * digits to the buf array
 | |
| 			 */
 | |
| 			for (p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++)
 | |
| 			{
 | |
| 				buf[i] = *p;
 | |
| 				if (*p == '.')
 | |
| 				{
 | |
| 					dp = i--;	/* skip the decimal point */
 | |
| 				}
 | |
| 			}
 | |
| 			if (dp == 0)
 | |
| 				dp = i--;		/* no decimal point was found in the above
 | |
| 								 * for() loop */
 | |
| 
 | |
| 			if (exp > 0)
 | |
| 			{
 | |
| 				if (dp - 10 + exp >= n)
 | |
| 				{
 | |
| 					/*
 | |
| 					 * the decimal point is behind the last significant
 | |
| 					 * digit; the digits in between must be converted to
 | |
| 					 * the exponent and the decimal point placed after the
 | |
| 					 * first digit
 | |
| 					 */
 | |
| 					exp = dp - 10 + exp - n;
 | |
| 					buf[10 + n] = '\0';
 | |
| 
 | |
| 					/* insert the decimal point */
 | |
| 					if (n > 1)
 | |
| 					{
 | |
| 						dp = 11;
 | |
| 						for (i = 23; i > dp; i--)
 | |
| 							buf[i] = buf[i - 1];
 | |
| 						buf[dp] = '.';
 | |
| 					}
 | |
| 
 | |
| 					/*
 | |
| 					 * adjust the exponent by the number of digits after
 | |
| 					 * the decimal point
 | |
| 					 */
 | |
| 					if (n > 1)
 | |
| 						sprintf(&buf[11 + n], "e%d", exp + n - 1);
 | |
| 					else
 | |
| 						sprintf(&buf[11], "e%d", exp + n - 1);
 | |
| 
 | |
| 					if (sign)
 | |
| 					{
 | |
| 						buf[9] = '-';
 | |
| 						strcpy(result, &buf[9]);
 | |
| 					}
 | |
| 					else
 | |
| 						strcpy(result, &buf[10]);
 | |
| 				}
 | |
| 				else
 | |
| 				{				/* insert the decimal point */
 | |
| 					dp += exp;
 | |
| 					for (i = 23; i > dp; i--)
 | |
| 						buf[i] = buf[i - 1];
 | |
| 					buf[11 + n] = '\0';
 | |
| 					buf[dp] = '.';
 | |
| 					if (sign)
 | |
| 					{
 | |
| 						buf[9] = '-';
 | |
| 						strcpy(result, &buf[9]);
 | |
| 					}
 | |
| 					else
 | |
| 						strcpy(result, &buf[10]);
 | |
| 				}
 | |
| 			}
 | |
| 			else
 | |
| 			{					/* exp <= 0 */
 | |
| 				dp += exp - 1;
 | |
| 				buf[10 + n] = '\0';
 | |
| 				buf[dp] = '.';
 | |
| 				if (sign)
 | |
| 				{
 | |
| 					buf[dp - 2] = '-';
 | |
| 					strcpy(result, &buf[dp - 2]);
 | |
| 				}
 | |
| 				else
 | |
| 					strcpy(result, &buf[dp - 1]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* do nothing for Abs(exp) > 4; %e must be OK */
 | |
| 		/* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */
 | |
| 
 | |
| 		/* ... this is not done yet. */
 | |
| 	}
 | |
| 	return (strlen(result));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Miscellany
 | |
| */
 | |
| 
 | |
| bool
 | |
| seg_contains_int(SEG * a, int *b)
 | |
| {
 | |
| 	return ((a->lower <= *b) && (a->upper >= *b));
 | |
| }
 | |
| 
 | |
| bool
 | |
| seg_contains_float4(SEG * a, float4 *b)
 | |
| {
 | |
| 	return ((a->lower <= *b) && (a->upper >= *b));
 | |
| }
 | |
| 
 | |
| bool
 | |
| seg_contains_float8(SEG * a, float8 *b)
 | |
| {
 | |
| 	return ((a->lower <= *b) && (a->upper >= *b));
 | |
| }
 | |
| 
 | |
| /* find out the number of significant digits in a string representing
 | |
|  * a floating point number
 | |
|  */
 | |
| int
 | |
| significant_digits(char *s)
 | |
| {
 | |
| 	char	   *p = s;
 | |
| 	int			n,
 | |
| 				c,
 | |
| 				zeroes;
 | |
| 
 | |
| 	zeroes = 1;
 | |
| 	/* skip leading zeroes and sign */
 | |
| 	for (c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p));
 | |
| 
 | |
| 	/* skip decimal point and following zeroes */
 | |
| 	for (c = *p; (c == '0' || c == '.') && c != 0; c = *(++p))
 | |
| 	{
 | |
| 		if (c != '.')
 | |
| 			zeroes++;
 | |
| 	}
 | |
| 
 | |
| 	/* count significant digits (n) */
 | |
| 	for (c = *p, n = 0; c != 0; c = *(++p))
 | |
| 	{
 | |
| 		if (!((c >= '0' && c <= '9') || (c == '.')))
 | |
| 			break;
 | |
| 		if (c != '.')
 | |
| 			n++;
 | |
| 	}
 | |
| 
 | |
| 	if (!n)
 | |
| 		return (zeroes);
 | |
| 
 | |
| 	return (n);
 | |
| }
 |