1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-02 11:44:50 +03:00
Heikki Linnakangas 98edd617f3 Fix datatype confusion with the new lossy GiST distance functions.
We can only support a lossy distance function when the distance function's
datatype is comparable with the original ordering operator's datatype.
The distance function always returns a float8, so we are limited to float8,
and float4 (by a hard-coded cast of the float8 to float4).

In light of this limitation, it seems like a good idea to have a separate
'recheck' flag for the ORDER BY expressions, so that if you have a non-lossy
distance function, it still works with lossy quals. There are cases like
that with the build-in or contrib opclasses, but it's plausible.

There was a hidden assumption that the ORDER BY values returned by GiST
match the original ordering operator's return type, but there are plenty
of examples where that's not true, e.g. in btree_gist and pg_trgm. As long
as the distance function is not lossy, we can tolerate that and just not
return the distance to the executor (or rather, always return NULL). The
executor doesn't need the distances if there are no lossy results.

There was another little bug: the recheck variable was not initialized
before calling the distance function. That revealed the bigger issue,
as the executor tried to reorder tuples that didn't need reordering, and
that failed because of the datatype mismatch.
2015-05-15 18:09:31 +03:00

1559 lines
45 KiB
C

/*-------------------------------------------------------------------------
*
* nodeIndexscan.c
* Routines to support indexed scans of relations
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeIndexscan.c
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
* ExecIndexScan scans a relation using an index
* IndexNext retrieve next tuple using index
* IndexNextWithReorder same, but recheck ORDER BY expressions
* ExecInitIndexScan creates and initializes state info.
* ExecReScanIndexScan rescans the indexed relation.
* ExecEndIndexScan releases all storage.
* ExecIndexMarkPos marks scan position.
* ExecIndexRestrPos restores scan position.
*/
#include "postgres.h"
#include "access/nbtree.h"
#include "access/relscan.h"
#include "executor/execdebug.h"
#include "executor/nodeIndexscan.h"
#include "lib/pairingheap.h"
#include "optimizer/clauses.h"
#include "utils/array.h"
#include "utils/datum.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/rel.h"
/*
* When an ordering operator is used, tuples fetched from the index that
* need to be reordered are queued in a pairing heap, as ReorderTuples.
*/
typedef struct
{
pairingheap_node ph_node;
HeapTuple htup;
Datum *orderbyvals;
bool *orderbynulls;
} ReorderTuple;
static TupleTableSlot *IndexNext(IndexScanState *node);
static TupleTableSlot *IndexNextWithReorder(IndexScanState *node);
static void EvalOrderByExpressions(IndexScanState *node, ExprContext *econtext);
static bool IndexRecheck(IndexScanState *node, TupleTableSlot *slot);
static int cmp_orderbyvals(const Datum *adist, const bool *anulls,
const Datum *bdist, const bool *bnulls,
IndexScanState *node);
static int reorderqueue_cmp(const pairingheap_node *a,
const pairingheap_node *b, void *arg);
static void reorderqueue_push(IndexScanState *node, HeapTuple tuple,
Datum *orderbyvals, bool *orderbynulls);
static HeapTuple reorderqueue_pop(IndexScanState *node);
/* ----------------------------------------------------------------
* IndexNext
*
* Retrieve a tuple from the IndexScan node's currentRelation
* using the index specified in the IndexScanState information.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
IndexNext(IndexScanState *node)
{
EState *estate;
ExprContext *econtext;
ScanDirection direction;
IndexScanDesc scandesc;
HeapTuple tuple;
TupleTableSlot *slot;
/*
* extract necessary information from index scan node
*/
estate = node->ss.ps.state;
direction = estate->es_direction;
/* flip direction if this is an overall backward scan */
if (ScanDirectionIsBackward(((IndexScan *) node->ss.ps.plan)->indexorderdir))
{
if (ScanDirectionIsForward(direction))
direction = BackwardScanDirection;
else if (ScanDirectionIsBackward(direction))
direction = ForwardScanDirection;
}
scandesc = node->iss_ScanDesc;
econtext = node->ss.ps.ps_ExprContext;
slot = node->ss.ss_ScanTupleSlot;
/*
* ok, now that we have what we need, fetch the next tuple.
*/
while ((tuple = index_getnext(scandesc, direction)) != NULL)
{
/*
* Store the scanned tuple in the scan tuple slot of the scan state.
* Note: we pass 'false' because tuples returned by amgetnext are
* pointers onto disk pages and must not be pfree()'d.
*/
ExecStoreTuple(tuple, /* tuple to store */
slot, /* slot to store in */
scandesc->xs_cbuf, /* buffer containing tuple */
false); /* don't pfree */
/*
* If the index was lossy, we have to recheck the index quals using
* the fetched tuple.
*/
if (scandesc->xs_recheck)
{
econtext->ecxt_scantuple = slot;
ResetExprContext(econtext);
if (!ExecQual(node->indexqualorig, econtext, false))
{
/* Fails recheck, so drop it and loop back for another */
InstrCountFiltered2(node, 1);
continue;
}
}
return slot;
}
/*
* if we get here it means the index scan failed so we are at the end of
* the scan..
*/
node->iss_ReachedEnd = true;
return ExecClearTuple(slot);
}
/* ----------------------------------------------------------------
* IndexNextWithReorder
*
* Like IndexNext, but his version can also re-check any
* ORDER BY expressions, and reorder the tuples as necessary.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
IndexNextWithReorder(IndexScanState *node)
{
ExprContext *econtext;
IndexScanDesc scandesc;
HeapTuple tuple;
TupleTableSlot *slot;
ReorderTuple *topmost = NULL;
bool was_exact;
Datum *lastfetched_vals;
bool *lastfetched_nulls;
int cmp;
/* only forward scan is supported with reordering. */
Assert(!ScanDirectionIsBackward(((IndexScan *) node->ss.ps.plan)->indexorderdir));
Assert(ScanDirectionIsForward(node->ss.ps.state->es_direction));
scandesc = node->iss_ScanDesc;
econtext = node->ss.ps.ps_ExprContext;
slot = node->ss.ss_ScanTupleSlot;
for (;;)
{
/*
* Check the reorder queue first. If the topmost tuple in the queue
* has an ORDER BY value smaller than (or equal to) the value last
* returned by the index, we can return it now.
*/
if (!pairingheap_is_empty(node->iss_ReorderQueue))
{
topmost = (ReorderTuple *) pairingheap_first(node->iss_ReorderQueue);
if (node->iss_ReachedEnd ||
cmp_orderbyvals(topmost->orderbyvals,
topmost->orderbynulls,
scandesc->xs_orderbyvals,
scandesc->xs_orderbynulls,
node) <= 0)
{
tuple = reorderqueue_pop(node);
/* Pass 'true', as the tuple in the queue is a palloc'd copy */
ExecStoreTuple(tuple, slot, InvalidBuffer, true);
return slot;
}
}
else if (node->iss_ReachedEnd)
{
/* Queue is empty, and no more tuples from index. We're done. */
return ExecClearTuple(slot);
}
/*
* Fetch next tuple from the index.
*/
next_indextuple:
tuple = index_getnext(scandesc, ForwardScanDirection);
if (!tuple)
{
/*
* No more tuples from the index. But we still need to drain any
* remaining tuples from the queue before we're done.
*/
node->iss_ReachedEnd = true;
continue;
}
/*
* Store the scanned tuple in the scan tuple slot of the scan state.
* Note: we pass 'false' because tuples returned by amgetnext are
* pointers onto disk pages and must not be pfree()'d.
*/
ExecStoreTuple(tuple, /* tuple to store */
slot, /* slot to store in */
scandesc->xs_cbuf, /* buffer containing tuple */
false); /* don't pfree */
/*
* If the index was lossy, we have to recheck the index quals and
* ORDER BY expressions using the fetched tuple.
*/
if (scandesc->xs_recheck)
{
econtext->ecxt_scantuple = slot;
ResetExprContext(econtext);
if (!ExecQual(node->indexqualorig, econtext, false))
{
/* Fails recheck, so drop it and loop back for another */
InstrCountFiltered2(node, 1);
goto next_indextuple;
}
}
if (scandesc->xs_recheckorderby)
{
econtext->ecxt_scantuple = slot;
ResetExprContext(econtext);
EvalOrderByExpressions(node, econtext);
/*
* Was the ORDER BY value returned by the index accurate? The
* recheck flag means that the index can return inaccurate values,
* but then again, the value returned for any particular tuple
* could also be exactly correct. Compare the value returned by
* the index with the recalculated value. (If the value returned
* by the index happened to be exact right, we can often avoid
* pushing the tuple to the queue, just to pop it back out again.)
*/
cmp = cmp_orderbyvals(node->iss_OrderByValues,
node->iss_OrderByNulls,
scandesc->xs_orderbyvals,
scandesc->xs_orderbynulls,
node);
if (cmp < 0)
elog(ERROR, "index returned tuples in wrong order");
else if (cmp == 0)
was_exact = true;
else
was_exact = false;
lastfetched_vals = node->iss_OrderByValues;
lastfetched_nulls = node->iss_OrderByNulls;
}
else
{
was_exact = true;
lastfetched_vals = scandesc->xs_orderbyvals;
lastfetched_nulls = scandesc->xs_orderbynulls;
}
/*
* Can we return this tuple immediately, or does it need to be pushed
* to the reorder queue? If the ORDER BY expression values returned
* by the index were inaccurate, we can't return it yet, because the
* next tuple from the index might need to come before this one.
* Also, we can't return it yet if there are any smaller tuples in the
* queue already.
*/
if (!was_exact || (topmost && cmp_orderbyvals(lastfetched_vals,
lastfetched_nulls,
topmost->orderbyvals,
topmost->orderbynulls,
node) > 0))
{
/* Put this tuple to the queue */
reorderqueue_push(node, tuple, lastfetched_vals, lastfetched_nulls);
continue;
}
else
{
/* Can return this tuple immediately. */
return slot;
}
}
/*
* if we get here it means the index scan failed so we are at the end of
* the scan..
*/
return ExecClearTuple(slot);
}
/*
* Calculate the expressions in the ORDER BY clause, based on the heap tuple.
*/
static void
EvalOrderByExpressions(IndexScanState *node, ExprContext *econtext)
{
int i;
ListCell *l;
MemoryContext oldContext;
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
i = 0;
foreach(l, node->indexorderbyorig)
{
ExprState *orderby = (ExprState *) lfirst(l);
node->iss_OrderByValues[i] = ExecEvalExpr(orderby,
econtext,
&node->iss_OrderByNulls[i],
NULL);
i++;
}
MemoryContextSwitchTo(oldContext);
}
/*
* IndexRecheck -- access method routine to recheck a tuple in EvalPlanQual
*/
static bool
IndexRecheck(IndexScanState *node, TupleTableSlot *slot)
{
ExprContext *econtext;
/*
* extract necessary information from index scan node
*/
econtext = node->ss.ps.ps_ExprContext;
/* Does the tuple meet the indexqual condition? */
econtext->ecxt_scantuple = slot;
ResetExprContext(econtext);
return ExecQual(node->indexqualorig, econtext, false);
}
/*
* Compare ORDER BY expression values.
*/
static int
cmp_orderbyvals(const Datum *adist, const bool *anulls,
const Datum *bdist, const bool *bnulls,
IndexScanState *node)
{
int i;
int result;
for (i = 0; i < node->iss_NumOrderByKeys; i++)
{
SortSupport ssup = &node->iss_SortSupport[i];
/* Handle nulls. We only support NULLS LAST. */
if (anulls[i] && !bnulls[i])
return 1;
else if (!anulls[i] && bnulls[i])
return -1;
else if (anulls[i] && bnulls[i])
return 0;
result = ssup->comparator(adist[i], bdist[i], ssup);
if (result != 0)
return result;
}
return 0;
}
/*
* Pairing heap provides getting topmost (greatest) element while KNN provides
* ascending sort. That's why we inverse the sort order.
*/
static int
reorderqueue_cmp(const pairingheap_node *a, const pairingheap_node *b,
void *arg)
{
ReorderTuple *rta = (ReorderTuple *) a;
ReorderTuple *rtb = (ReorderTuple *) b;
IndexScanState *node = (IndexScanState *) arg;
return -cmp_orderbyvals(rta->orderbyvals, rta->orderbynulls,
rtb->orderbyvals, rtb->orderbynulls,
node);
}
/*
* Helper function to push a tuple to the reorder queue.
*/
static void
reorderqueue_push(IndexScanState *node, HeapTuple tuple,
Datum *orderbyvals, bool *orderbynulls)
{
IndexScanDesc scandesc = node->iss_ScanDesc;
EState *estate = node->ss.ps.state;
MemoryContext oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
ReorderTuple *rt;
int i;
rt = (ReorderTuple *) palloc(sizeof(ReorderTuple));
rt->htup = heap_copytuple(tuple);
rt->orderbyvals =
(Datum *) palloc(sizeof(Datum) * scandesc->numberOfOrderBys);
rt->orderbynulls =
(bool *) palloc(sizeof(bool) * scandesc->numberOfOrderBys);
for (i = 0; i < node->iss_NumOrderByKeys; i++)
{
if (!orderbynulls[i])
rt->orderbyvals[i] = datumCopy(orderbyvals[i],
node->iss_OrderByTypByVals[i],
node->iss_OrderByTypLens[i]);
else
rt->orderbyvals[i] = (Datum) 0;
rt->orderbynulls[i] = orderbynulls[i];
}
pairingheap_add(node->iss_ReorderQueue, &rt->ph_node);
MemoryContextSwitchTo(oldContext);
}
/*
* Helper function to pop the next tuple from the reorder queue.
*/
static HeapTuple
reorderqueue_pop(IndexScanState *node)
{
HeapTuple result;
ReorderTuple *topmost;
topmost = (ReorderTuple *) pairingheap_remove_first(node->iss_ReorderQueue);
result = topmost->htup;
pfree(topmost->orderbyvals);
pfree(topmost->orderbynulls);
pfree(topmost);
return result;
}
/* ----------------------------------------------------------------
* ExecIndexScan(node)
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecIndexScan(IndexScanState *node)
{
/*
* If we have runtime keys and they've not already been set up, do it now.
*/
if (node->iss_NumRuntimeKeys != 0 && !node->iss_RuntimeKeysReady)
ExecReScan((PlanState *) node);
if (node->iss_NumOrderByKeys > 0)
return ExecScan(&node->ss,
(ExecScanAccessMtd) IndexNextWithReorder,
(ExecScanRecheckMtd) IndexRecheck);
else
return ExecScan(&node->ss,
(ExecScanAccessMtd) IndexNext,
(ExecScanRecheckMtd) IndexRecheck);
}
/* ----------------------------------------------------------------
* ExecReScanIndexScan(node)
*
* Recalculates the values of any scan keys whose value depends on
* information known at runtime, then rescans the indexed relation.
*
* Updating the scan key was formerly done separately in
* ExecUpdateIndexScanKeys. Integrating it into ReScan makes
* rescans of indices and relations/general streams more uniform.
* ----------------------------------------------------------------
*/
void
ExecReScanIndexScan(IndexScanState *node)
{
/*
* If we are doing runtime key calculations (ie, any of the index key
* values weren't simple Consts), compute the new key values. But first,
* reset the context so we don't leak memory as each outer tuple is
* scanned. Note this assumes that we will recalculate *all* runtime keys
* on each call.
*/
if (node->iss_NumRuntimeKeys != 0)
{
ExprContext *econtext = node->iss_RuntimeContext;
ResetExprContext(econtext);
ExecIndexEvalRuntimeKeys(econtext,
node->iss_RuntimeKeys,
node->iss_NumRuntimeKeys);
}
node->iss_RuntimeKeysReady = true;
/* reset index scan */
index_rescan(node->iss_ScanDesc,
node->iss_ScanKeys, node->iss_NumScanKeys,
node->iss_OrderByKeys, node->iss_NumOrderByKeys);
ExecScanReScan(&node->ss);
}
/*
* ExecIndexEvalRuntimeKeys
* Evaluate any runtime key values, and update the scankeys.
*/
void
ExecIndexEvalRuntimeKeys(ExprContext *econtext,
IndexRuntimeKeyInfo *runtimeKeys, int numRuntimeKeys)
{
int j;
MemoryContext oldContext;
/* We want to keep the key values in per-tuple memory */
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
for (j = 0; j < numRuntimeKeys; j++)
{
ScanKey scan_key = runtimeKeys[j].scan_key;
ExprState *key_expr = runtimeKeys[j].key_expr;
Datum scanvalue;
bool isNull;
/*
* For each run-time key, extract the run-time expression and evaluate
* it with respect to the current context. We then stick the result
* into the proper scan key.
*
* Note: the result of the eval could be a pass-by-ref value that's
* stored in some outer scan's tuple, not in
* econtext->ecxt_per_tuple_memory. We assume that the outer tuple
* will stay put throughout our scan. If this is wrong, we could copy
* the result into our context explicitly, but I think that's not
* necessary.
*
* It's also entirely possible that the result of the eval is a
* toasted value. In this case we should forcibly detoast it, to
* avoid repeat detoastings each time the value is examined by an
* index support function.
*/
scanvalue = ExecEvalExpr(key_expr,
econtext,
&isNull,
NULL);
if (isNull)
{
scan_key->sk_argument = scanvalue;
scan_key->sk_flags |= SK_ISNULL;
}
else
{
if (runtimeKeys[j].key_toastable)
scanvalue = PointerGetDatum(PG_DETOAST_DATUM(scanvalue));
scan_key->sk_argument = scanvalue;
scan_key->sk_flags &= ~SK_ISNULL;
}
}
MemoryContextSwitchTo(oldContext);
}
/*
* ExecIndexEvalArrayKeys
* Evaluate any array key values, and set up to iterate through arrays.
*
* Returns TRUE if there are array elements to consider; FALSE means there
* is at least one null or empty array, so no match is possible. On TRUE
* result, the scankeys are initialized with the first elements of the arrays.
*/
bool
ExecIndexEvalArrayKeys(ExprContext *econtext,
IndexArrayKeyInfo *arrayKeys, int numArrayKeys)
{
bool result = true;
int j;
MemoryContext oldContext;
/* We want to keep the arrays in per-tuple memory */
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
for (j = 0; j < numArrayKeys; j++)
{
ScanKey scan_key = arrayKeys[j].scan_key;
ExprState *array_expr = arrayKeys[j].array_expr;
Datum arraydatum;
bool isNull;
ArrayType *arrayval;
int16 elmlen;
bool elmbyval;
char elmalign;
int num_elems;
Datum *elem_values;
bool *elem_nulls;
/*
* Compute and deconstruct the array expression. (Notes in
* ExecIndexEvalRuntimeKeys() apply here too.)
*/
arraydatum = ExecEvalExpr(array_expr,
econtext,
&isNull,
NULL);
if (isNull)
{
result = false;
break; /* no point in evaluating more */
}
arrayval = DatumGetArrayTypeP(arraydatum);
/* We could cache this data, but not clear it's worth it */
get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
&elmlen, &elmbyval, &elmalign);
deconstruct_array(arrayval,
ARR_ELEMTYPE(arrayval),
elmlen, elmbyval, elmalign,
&elem_values, &elem_nulls, &num_elems);
if (num_elems <= 0)
{
result = false;
break; /* no point in evaluating more */
}
/*
* Note: we expect the previous array data, if any, to be
* automatically freed by resetting the per-tuple context; hence no
* pfree's here.
*/
arrayKeys[j].elem_values = elem_values;
arrayKeys[j].elem_nulls = elem_nulls;
arrayKeys[j].num_elems = num_elems;
scan_key->sk_argument = elem_values[0];
if (elem_nulls[0])
scan_key->sk_flags |= SK_ISNULL;
else
scan_key->sk_flags &= ~SK_ISNULL;
arrayKeys[j].next_elem = 1;
}
MemoryContextSwitchTo(oldContext);
return result;
}
/*
* ExecIndexAdvanceArrayKeys
* Advance to the next set of array key values, if any.
*
* Returns TRUE if there is another set of values to consider, FALSE if not.
* On TRUE result, the scankeys are initialized with the next set of values.
*/
bool
ExecIndexAdvanceArrayKeys(IndexArrayKeyInfo *arrayKeys, int numArrayKeys)
{
bool found = false;
int j;
/*
* Note we advance the rightmost array key most quickly, since it will
* correspond to the lowest-order index column among the available
* qualifications. This is hypothesized to result in better locality of
* access in the index.
*/
for (j = numArrayKeys - 1; j >= 0; j--)
{
ScanKey scan_key = arrayKeys[j].scan_key;
int next_elem = arrayKeys[j].next_elem;
int num_elems = arrayKeys[j].num_elems;
Datum *elem_values = arrayKeys[j].elem_values;
bool *elem_nulls = arrayKeys[j].elem_nulls;
if (next_elem >= num_elems)
{
next_elem = 0;
found = false; /* need to advance next array key */
}
else
found = true;
scan_key->sk_argument = elem_values[next_elem];
if (elem_nulls[next_elem])
scan_key->sk_flags |= SK_ISNULL;
else
scan_key->sk_flags &= ~SK_ISNULL;
arrayKeys[j].next_elem = next_elem + 1;
if (found)
break;
}
return found;
}
/* ----------------------------------------------------------------
* ExecEndIndexScan
* ----------------------------------------------------------------
*/
void
ExecEndIndexScan(IndexScanState *node)
{
Relation indexRelationDesc;
IndexScanDesc indexScanDesc;
Relation relation;
/*
* extract information from the node
*/
indexRelationDesc = node->iss_RelationDesc;
indexScanDesc = node->iss_ScanDesc;
relation = node->ss.ss_currentRelation;
/*
* Free the exprcontext(s) ... now dead code, see ExecFreeExprContext
*/
#ifdef NOT_USED
ExecFreeExprContext(&node->ss.ps);
if (node->iss_RuntimeContext)
FreeExprContext(node->iss_RuntimeContext, true);
#endif
/*
* clear out tuple table slots
*/
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
ExecClearTuple(node->ss.ss_ScanTupleSlot);
/*
* close the index relation (no-op if we didn't open it)
*/
if (indexScanDesc)
index_endscan(indexScanDesc);
if (indexRelationDesc)
index_close(indexRelationDesc, NoLock);
/*
* close the heap relation.
*/
ExecCloseScanRelation(relation);
}
/* ----------------------------------------------------------------
* ExecIndexMarkPos
* ----------------------------------------------------------------
*/
void
ExecIndexMarkPos(IndexScanState *node)
{
index_markpos(node->iss_ScanDesc);
}
/* ----------------------------------------------------------------
* ExecIndexRestrPos
* ----------------------------------------------------------------
*/
void
ExecIndexRestrPos(IndexScanState *node)
{
index_restrpos(node->iss_ScanDesc);
}
/* ----------------------------------------------------------------
* ExecInitIndexScan
*
* Initializes the index scan's state information, creates
* scan keys, and opens the base and index relations.
*
* Note: index scans have 2 sets of state information because
* we have to keep track of the base relation and the
* index relation.
* ----------------------------------------------------------------
*/
IndexScanState *
ExecInitIndexScan(IndexScan *node, EState *estate, int eflags)
{
IndexScanState *indexstate;
Relation currentRelation;
bool relistarget;
int i;
/*
* create state structure
*/
indexstate = makeNode(IndexScanState);
indexstate->ss.ps.plan = (Plan *) node;
indexstate->ss.ps.state = estate;
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &indexstate->ss.ps);
indexstate->ss.ps.ps_TupFromTlist = false;
/*
* initialize child expressions
*
* Note: we don't initialize all of the indexqual expression, only the
* sub-parts corresponding to runtime keys (see below). Likewise for
* indexorderby, if any. But the indexqualorig expression is always
* initialized even though it will only be used in some uncommon cases ---
* would be nice to improve that. (Problem is that any SubPlans present
* in the expression must be found now...)
*/
indexstate->ss.ps.targetlist = (List *)
ExecInitExpr((Expr *) node->scan.plan.targetlist,
(PlanState *) indexstate);
indexstate->ss.ps.qual = (List *)
ExecInitExpr((Expr *) node->scan.plan.qual,
(PlanState *) indexstate);
indexstate->indexqualorig = (List *)
ExecInitExpr((Expr *) node->indexqualorig,
(PlanState *) indexstate);
indexstate->indexorderbyorig = (List *)
ExecInitExpr((Expr *) node->indexorderbyorig,
(PlanState *) indexstate);
/*
* tuple table initialization
*/
ExecInitResultTupleSlot(estate, &indexstate->ss.ps);
ExecInitScanTupleSlot(estate, &indexstate->ss);
/*
* open the base relation and acquire appropriate lock on it.
*/
currentRelation = ExecOpenScanRelation(estate, node->scan.scanrelid, eflags);
indexstate->ss.ss_currentRelation = currentRelation;
indexstate->ss.ss_currentScanDesc = NULL; /* no heap scan here */
/*
* get the scan type from the relation descriptor.
*/
ExecAssignScanType(&indexstate->ss, RelationGetDescr(currentRelation));
/*
* Initialize result tuple type and projection info.
*/
ExecAssignResultTypeFromTL(&indexstate->ss.ps);
ExecAssignScanProjectionInfo(&indexstate->ss);
/*
* If we are just doing EXPLAIN (ie, aren't going to run the plan), stop
* here. This allows an index-advisor plugin to EXPLAIN a plan containing
* references to nonexistent indexes.
*/
if (eflags & EXEC_FLAG_EXPLAIN_ONLY)
return indexstate;
/*
* Open the index relation.
*
* If the parent table is one of the target relations of the query, then
* InitPlan already opened and write-locked the index, so we can avoid
* taking another lock here. Otherwise we need a normal reader's lock.
*/
relistarget = ExecRelationIsTargetRelation(estate, node->scan.scanrelid);
indexstate->iss_RelationDesc = index_open(node->indexid,
relistarget ? NoLock : AccessShareLock);
/*
* Initialize index-specific scan state
*/
indexstate->iss_RuntimeKeysReady = false;
indexstate->iss_RuntimeKeys = NULL;
indexstate->iss_NumRuntimeKeys = 0;
/*
* build the index scan keys from the index qualification
*/
ExecIndexBuildScanKeys((PlanState *) indexstate,
indexstate->iss_RelationDesc,
node->indexqual,
false,
&indexstate->iss_ScanKeys,
&indexstate->iss_NumScanKeys,
&indexstate->iss_RuntimeKeys,
&indexstate->iss_NumRuntimeKeys,
NULL, /* no ArrayKeys */
NULL);
/*
* any ORDER BY exprs have to be turned into scankeys in the same way
*/
ExecIndexBuildScanKeys((PlanState *) indexstate,
indexstate->iss_RelationDesc,
node->indexorderby,
true,
&indexstate->iss_OrderByKeys,
&indexstate->iss_NumOrderByKeys,
&indexstate->iss_RuntimeKeys,
&indexstate->iss_NumRuntimeKeys,
NULL, /* no ArrayKeys */
NULL);
/* Initialize sort support, if we need to re-check ORDER BY exprs */
if (indexstate->iss_NumOrderByKeys > 0)
{
int numOrderByKeys = indexstate->iss_NumOrderByKeys;
/*
* Prepare sort support, and look up the distance type for each ORDER
* BY expression.
*/
indexstate->iss_SortSupport =
palloc0(numOrderByKeys * sizeof(SortSupportData));
indexstate->iss_OrderByTypByVals =
palloc(numOrderByKeys * sizeof(bool));
indexstate->iss_OrderByTypLens =
palloc(numOrderByKeys * sizeof(int16));
for (i = 0; i < indexstate->iss_NumOrderByKeys; i++)
{
Oid orderbyType;
Oid opfamily;
int16 strategy;
PrepareSortSupportFromOrderingOp(node->indexorderbyops[i],
&indexstate->iss_SortSupport[i]);
if (!get_ordering_op_properties(node->indexorderbyops[i],
&opfamily, &orderbyType, &strategy))
{
elog(LOG, "operator %u is not a valid ordering operator",
node->indexorderbyops[i]);
}
get_typlenbyval(orderbyType,
&indexstate->iss_OrderByTypLens[i],
&indexstate->iss_OrderByTypByVals[i]);
}
/* allocate arrays to hold the re-calculated distances */
indexstate->iss_OrderByValues =
palloc(indexstate->iss_NumOrderByKeys * sizeof(Datum));
indexstate->iss_OrderByNulls =
palloc(indexstate->iss_NumOrderByKeys * sizeof(bool));
/* and initialize the reorder queue */
indexstate->iss_ReorderQueue = pairingheap_allocate(reorderqueue_cmp,
indexstate);
}
/*
* If we have runtime keys, we need an ExprContext to evaluate them. The
* node's standard context won't do because we want to reset that context
* for every tuple. So, build another context just like the other one...
* -tgl 7/11/00
*/
if (indexstate->iss_NumRuntimeKeys != 0)
{
ExprContext *stdecontext = indexstate->ss.ps.ps_ExprContext;
ExecAssignExprContext(estate, &indexstate->ss.ps);
indexstate->iss_RuntimeContext = indexstate->ss.ps.ps_ExprContext;
indexstate->ss.ps.ps_ExprContext = stdecontext;
}
else
{
indexstate->iss_RuntimeContext = NULL;
}
/*
* Initialize scan descriptor.
*/
indexstate->iss_ScanDesc = index_beginscan(currentRelation,
indexstate->iss_RelationDesc,
estate->es_snapshot,
indexstate->iss_NumScanKeys,
indexstate->iss_NumOrderByKeys);
/*
* If no run-time keys to calculate, go ahead and pass the scankeys to the
* index AM.
*/
if (indexstate->iss_NumRuntimeKeys == 0)
index_rescan(indexstate->iss_ScanDesc,
indexstate->iss_ScanKeys, indexstate->iss_NumScanKeys,
indexstate->iss_OrderByKeys, indexstate->iss_NumOrderByKeys);
/*
* all done.
*/
return indexstate;
}
/*
* ExecIndexBuildScanKeys
* Build the index scan keys from the index qualification expressions
*
* The index quals are passed to the index AM in the form of a ScanKey array.
* This routine sets up the ScanKeys, fills in all constant fields of the
* ScanKeys, and prepares information about the keys that have non-constant
* comparison values. We divide index qual expressions into five types:
*
* 1. Simple operator with constant comparison value ("indexkey op constant").
* For these, we just fill in a ScanKey containing the constant value.
*
* 2. Simple operator with non-constant value ("indexkey op expression").
* For these, we create a ScanKey with everything filled in except the
* expression value, and set up an IndexRuntimeKeyInfo struct to drive
* evaluation of the expression at the right times.
*
* 3. RowCompareExpr ("(indexkey, indexkey, ...) op (expr, expr, ...)").
* For these, we create a header ScanKey plus a subsidiary ScanKey array,
* as specified in access/skey.h. The elements of the row comparison
* can have either constant or non-constant comparison values.
*
* 4. ScalarArrayOpExpr ("indexkey op ANY (array-expression)"). If the index
* has rd_am->amsearcharray, we handle these the same as simple operators,
* setting the SK_SEARCHARRAY flag to tell the AM to handle them. Otherwise,
* we create a ScanKey with everything filled in except the comparison value,
* and set up an IndexArrayKeyInfo struct to drive processing of the qual.
* (Note that if we use an IndexArrayKeyInfo struct, the array expression is
* always treated as requiring runtime evaluation, even if it's a constant.)
*
* 5. NullTest ("indexkey IS NULL/IS NOT NULL"). We just fill in the
* ScanKey properly.
*
* This code is also used to prepare ORDER BY expressions for amcanorderbyop
* indexes. The behavior is exactly the same, except that we have to look up
* the operator differently. Note that only cases 1 and 2 are currently
* possible for ORDER BY.
*
* Input params are:
*
* planstate: executor state node we are working for
* index: the index we are building scan keys for
* quals: indexquals (or indexorderbys) expressions
* isorderby: true if processing ORDER BY exprs, false if processing quals
* *runtimeKeys: ptr to pre-existing IndexRuntimeKeyInfos, or NULL if none
* *numRuntimeKeys: number of pre-existing runtime keys
*
* Output params are:
*
* *scanKeys: receives ptr to array of ScanKeys
* *numScanKeys: receives number of scankeys
* *runtimeKeys: receives ptr to array of IndexRuntimeKeyInfos, or NULL if none
* *numRuntimeKeys: receives number of runtime keys
* *arrayKeys: receives ptr to array of IndexArrayKeyInfos, or NULL if none
* *numArrayKeys: receives number of array keys
*
* Caller may pass NULL for arrayKeys and numArrayKeys to indicate that
* IndexArrayKeyInfos are not supported.
*/
void
ExecIndexBuildScanKeys(PlanState *planstate, Relation index,
List *quals, bool isorderby,
ScanKey *scanKeys, int *numScanKeys,
IndexRuntimeKeyInfo **runtimeKeys, int *numRuntimeKeys,
IndexArrayKeyInfo **arrayKeys, int *numArrayKeys)
{
ListCell *qual_cell;
ScanKey scan_keys;
IndexRuntimeKeyInfo *runtime_keys;
IndexArrayKeyInfo *array_keys;
int n_scan_keys;
int n_runtime_keys;
int max_runtime_keys;
int n_array_keys;
int j;
/* Allocate array for ScanKey structs: one per qual */
n_scan_keys = list_length(quals);
scan_keys = (ScanKey) palloc(n_scan_keys * sizeof(ScanKeyData));
/*
* runtime_keys array is dynamically resized as needed. We handle it this
* way so that the same runtime keys array can be shared between
* indexquals and indexorderbys, which will be processed in separate calls
* of this function. Caller must be sure to pass in NULL/0 for first
* call.
*/
runtime_keys = *runtimeKeys;
n_runtime_keys = max_runtime_keys = *numRuntimeKeys;
/* Allocate array_keys as large as it could possibly need to be */
array_keys = (IndexArrayKeyInfo *)
palloc0(n_scan_keys * sizeof(IndexArrayKeyInfo));
n_array_keys = 0;
/*
* for each opclause in the given qual, convert the opclause into a single
* scan key
*/
j = 0;
foreach(qual_cell, quals)
{
Expr *clause = (Expr *) lfirst(qual_cell);
ScanKey this_scan_key = &scan_keys[j++];
Oid opno; /* operator's OID */
RegProcedure opfuncid; /* operator proc id used in scan */
Oid opfamily; /* opfamily of index column */
int op_strategy; /* operator's strategy number */
Oid op_lefttype; /* operator's declared input types */
Oid op_righttype;
Expr *leftop; /* expr on lhs of operator */
Expr *rightop; /* expr on rhs ... */
AttrNumber varattno; /* att number used in scan */
if (IsA(clause, OpExpr))
{
/* indexkey op const or indexkey op expression */
int flags = 0;
Datum scanvalue;
opno = ((OpExpr *) clause)->opno;
opfuncid = ((OpExpr *) clause)->opfuncid;
/*
* leftop should be the index key Var, possibly relabeled
*/
leftop = (Expr *) get_leftop(clause);
if (leftop && IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
Assert(leftop != NULL);
if (!(IsA(leftop, Var) &&
((Var *) leftop)->varno == INDEX_VAR))
elog(ERROR, "indexqual doesn't have key on left side");
varattno = ((Var *) leftop)->varattno;
if (varattno < 1 || varattno > index->rd_index->indnatts)
elog(ERROR, "bogus index qualification");
/*
* We have to look up the operator's strategy number. This
* provides a cross-check that the operator does match the index.
*/
opfamily = index->rd_opfamily[varattno - 1];
get_op_opfamily_properties(opno, opfamily, isorderby,
&op_strategy,
&op_lefttype,
&op_righttype);
if (isorderby)
flags |= SK_ORDER_BY;
/*
* rightop is the constant or variable comparison value
*/
rightop = (Expr *) get_rightop(clause);
if (rightop && IsA(rightop, RelabelType))
rightop = ((RelabelType *) rightop)->arg;
Assert(rightop != NULL);
if (IsA(rightop, Const))
{
/* OK, simple constant comparison value */
scanvalue = ((Const *) rightop)->constvalue;
if (((Const *) rightop)->constisnull)
flags |= SK_ISNULL;
}
else
{
/* Need to treat this one as a runtime key */
if (n_runtime_keys >= max_runtime_keys)
{
if (max_runtime_keys == 0)
{
max_runtime_keys = 8;
runtime_keys = (IndexRuntimeKeyInfo *)
palloc(max_runtime_keys * sizeof(IndexRuntimeKeyInfo));
}
else
{
max_runtime_keys *= 2;
runtime_keys = (IndexRuntimeKeyInfo *)
repalloc(runtime_keys, max_runtime_keys * sizeof(IndexRuntimeKeyInfo));
}
}
runtime_keys[n_runtime_keys].scan_key = this_scan_key;
runtime_keys[n_runtime_keys].key_expr =
ExecInitExpr(rightop, planstate);
runtime_keys[n_runtime_keys].key_toastable =
TypeIsToastable(op_righttype);
n_runtime_keys++;
scanvalue = (Datum) 0;
}
/*
* initialize the scan key's fields appropriately
*/
ScanKeyEntryInitialize(this_scan_key,
flags,
varattno, /* attribute number to scan */
op_strategy, /* op's strategy */
op_righttype, /* strategy subtype */
((OpExpr *) clause)->inputcollid, /* collation */
opfuncid, /* reg proc to use */
scanvalue); /* constant */
}
else if (IsA(clause, RowCompareExpr))
{
/* (indexkey, indexkey, ...) op (expression, expression, ...) */
RowCompareExpr *rc = (RowCompareExpr *) clause;
ListCell *largs_cell = list_head(rc->largs);
ListCell *rargs_cell = list_head(rc->rargs);
ListCell *opnos_cell = list_head(rc->opnos);
ListCell *collids_cell = list_head(rc->inputcollids);
ScanKey first_sub_key;
int n_sub_key;
Assert(!isorderby);
first_sub_key = (ScanKey)
palloc(list_length(rc->opnos) * sizeof(ScanKeyData));
n_sub_key = 0;
/* Scan RowCompare columns and generate subsidiary ScanKey items */
while (opnos_cell != NULL)
{
ScanKey this_sub_key = &first_sub_key[n_sub_key];
int flags = SK_ROW_MEMBER;
Datum scanvalue;
Oid inputcollation;
/*
* leftop should be the index key Var, possibly relabeled
*/
leftop = (Expr *) lfirst(largs_cell);
largs_cell = lnext(largs_cell);
if (leftop && IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
Assert(leftop != NULL);
if (!(IsA(leftop, Var) &&
((Var *) leftop)->varno == INDEX_VAR))
elog(ERROR, "indexqual doesn't have key on left side");
varattno = ((Var *) leftop)->varattno;
/*
* We have to look up the operator's associated btree support
* function
*/
opno = lfirst_oid(opnos_cell);
opnos_cell = lnext(opnos_cell);
if (index->rd_rel->relam != BTREE_AM_OID ||
varattno < 1 || varattno > index->rd_index->indnatts)
elog(ERROR, "bogus RowCompare index qualification");
opfamily = index->rd_opfamily[varattno - 1];
get_op_opfamily_properties(opno, opfamily, isorderby,
&op_strategy,
&op_lefttype,
&op_righttype);
if (op_strategy != rc->rctype)
elog(ERROR, "RowCompare index qualification contains wrong operator");
opfuncid = get_opfamily_proc(opfamily,
op_lefttype,
op_righttype,
BTORDER_PROC);
inputcollation = lfirst_oid(collids_cell);
collids_cell = lnext(collids_cell);
/*
* rightop is the constant or variable comparison value
*/
rightop = (Expr *) lfirst(rargs_cell);
rargs_cell = lnext(rargs_cell);
if (rightop && IsA(rightop, RelabelType))
rightop = ((RelabelType *) rightop)->arg;
Assert(rightop != NULL);
if (IsA(rightop, Const))
{
/* OK, simple constant comparison value */
scanvalue = ((Const *) rightop)->constvalue;
if (((Const *) rightop)->constisnull)
flags |= SK_ISNULL;
}
else
{
/* Need to treat this one as a runtime key */
if (n_runtime_keys >= max_runtime_keys)
{
if (max_runtime_keys == 0)
{
max_runtime_keys = 8;
runtime_keys = (IndexRuntimeKeyInfo *)
palloc(max_runtime_keys * sizeof(IndexRuntimeKeyInfo));
}
else
{
max_runtime_keys *= 2;
runtime_keys = (IndexRuntimeKeyInfo *)
repalloc(runtime_keys, max_runtime_keys * sizeof(IndexRuntimeKeyInfo));
}
}
runtime_keys[n_runtime_keys].scan_key = this_sub_key;
runtime_keys[n_runtime_keys].key_expr =
ExecInitExpr(rightop, planstate);
runtime_keys[n_runtime_keys].key_toastable =
TypeIsToastable(op_righttype);
n_runtime_keys++;
scanvalue = (Datum) 0;
}
/*
* initialize the subsidiary scan key's fields appropriately
*/
ScanKeyEntryInitialize(this_sub_key,
flags,
varattno, /* attribute number */
op_strategy, /* op's strategy */
op_righttype, /* strategy subtype */
inputcollation, /* collation */
opfuncid, /* reg proc to use */
scanvalue); /* constant */
n_sub_key++;
}
/* Mark the last subsidiary scankey correctly */
first_sub_key[n_sub_key - 1].sk_flags |= SK_ROW_END;
/*
* We don't use ScanKeyEntryInitialize for the header because it
* isn't going to contain a valid sk_func pointer.
*/
MemSet(this_scan_key, 0, sizeof(ScanKeyData));
this_scan_key->sk_flags = SK_ROW_HEADER;
this_scan_key->sk_attno = first_sub_key->sk_attno;
this_scan_key->sk_strategy = rc->rctype;
/* sk_subtype, sk_collation, sk_func not used in a header */
this_scan_key->sk_argument = PointerGetDatum(first_sub_key);
}
else if (IsA(clause, ScalarArrayOpExpr))
{
/* indexkey op ANY (array-expression) */
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
int flags = 0;
Datum scanvalue;
Assert(!isorderby);
Assert(saop->useOr);
opno = saop->opno;
opfuncid = saop->opfuncid;
/*
* leftop should be the index key Var, possibly relabeled
*/
leftop = (Expr *) linitial(saop->args);
if (leftop && IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
Assert(leftop != NULL);
if (!(IsA(leftop, Var) &&
((Var *) leftop)->varno == INDEX_VAR))
elog(ERROR, "indexqual doesn't have key on left side");
varattno = ((Var *) leftop)->varattno;
if (varattno < 1 || varattno > index->rd_index->indnatts)
elog(ERROR, "bogus index qualification");
/*
* We have to look up the operator's strategy number. This
* provides a cross-check that the operator does match the index.
*/
opfamily = index->rd_opfamily[varattno - 1];
get_op_opfamily_properties(opno, opfamily, isorderby,
&op_strategy,
&op_lefttype,
&op_righttype);
/*
* rightop is the constant or variable array value
*/
rightop = (Expr *) lsecond(saop->args);
if (rightop && IsA(rightop, RelabelType))
rightop = ((RelabelType *) rightop)->arg;
Assert(rightop != NULL);
if (index->rd_am->amsearcharray)
{
/* Index AM will handle this like a simple operator */
flags |= SK_SEARCHARRAY;
if (IsA(rightop, Const))
{
/* OK, simple constant comparison value */
scanvalue = ((Const *) rightop)->constvalue;
if (((Const *) rightop)->constisnull)
flags |= SK_ISNULL;
}
else
{
/* Need to treat this one as a runtime key */
if (n_runtime_keys >= max_runtime_keys)
{
if (max_runtime_keys == 0)
{
max_runtime_keys = 8;
runtime_keys = (IndexRuntimeKeyInfo *)
palloc(max_runtime_keys * sizeof(IndexRuntimeKeyInfo));
}
else
{
max_runtime_keys *= 2;
runtime_keys = (IndexRuntimeKeyInfo *)
repalloc(runtime_keys, max_runtime_keys * sizeof(IndexRuntimeKeyInfo));
}
}
runtime_keys[n_runtime_keys].scan_key = this_scan_key;
runtime_keys[n_runtime_keys].key_expr =
ExecInitExpr(rightop, planstate);
/*
* Careful here: the runtime expression is not of
* op_righttype, but rather is an array of same; so
* TypeIsToastable() isn't helpful. However, we can
* assume that all array types are toastable.
*/
runtime_keys[n_runtime_keys].key_toastable = true;
n_runtime_keys++;
scanvalue = (Datum) 0;
}
}
else
{
/* Executor has to expand the array value */
array_keys[n_array_keys].scan_key = this_scan_key;
array_keys[n_array_keys].array_expr =
ExecInitExpr(rightop, planstate);
/* the remaining fields were zeroed by palloc0 */
n_array_keys++;
scanvalue = (Datum) 0;
}
/*
* initialize the scan key's fields appropriately
*/
ScanKeyEntryInitialize(this_scan_key,
flags,
varattno, /* attribute number to scan */
op_strategy, /* op's strategy */
op_righttype, /* strategy subtype */
saop->inputcollid, /* collation */
opfuncid, /* reg proc to use */
scanvalue); /* constant */
}
else if (IsA(clause, NullTest))
{
/* indexkey IS NULL or indexkey IS NOT NULL */
NullTest *ntest = (NullTest *) clause;
int flags;
Assert(!isorderby);
/*
* argument should be the index key Var, possibly relabeled
*/
leftop = ntest->arg;
if (leftop && IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
Assert(leftop != NULL);
if (!(IsA(leftop, Var) &&
((Var *) leftop)->varno == INDEX_VAR))
elog(ERROR, "NullTest indexqual has wrong key");
varattno = ((Var *) leftop)->varattno;
/*
* initialize the scan key's fields appropriately
*/
switch (ntest->nulltesttype)
{
case IS_NULL:
flags = SK_ISNULL | SK_SEARCHNULL;
break;
case IS_NOT_NULL:
flags = SK_ISNULL | SK_SEARCHNOTNULL;
break;
default:
elog(ERROR, "unrecognized nulltesttype: %d",
(int) ntest->nulltesttype);
flags = 0; /* keep compiler quiet */
break;
}
ScanKeyEntryInitialize(this_scan_key,
flags,
varattno, /* attribute number to scan */
InvalidStrategy, /* no strategy */
InvalidOid, /* no strategy subtype */
InvalidOid, /* no collation */
InvalidOid, /* no reg proc for this */
(Datum) 0); /* constant */
}
else
elog(ERROR, "unsupported indexqual type: %d",
(int) nodeTag(clause));
}
Assert(n_runtime_keys <= max_runtime_keys);
/* Get rid of any unused arrays */
if (n_array_keys == 0)
{
pfree(array_keys);
array_keys = NULL;
}
/*
* Return info to our caller.
*/
*scanKeys = scan_keys;
*numScanKeys = n_scan_keys;
*runtimeKeys = runtime_keys;
*numRuntimeKeys = n_runtime_keys;
if (arrayKeys)
{
*arrayKeys = array_keys;
*numArrayKeys = n_array_keys;
}
else if (n_array_keys != 0)
elog(ERROR, "ScalarArrayOpExpr index qual found where not allowed");
}