mirror of
				https://github.com/postgres/postgres.git
				synced 2025-11-03 09:13:20 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			1098 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1098 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * $PostgreSQL: pgsql/contrib/seg/seg.c,v 1.25 2009/06/11 14:48:52 momjian Exp $
 | 
						|
 *
 | 
						|
 ******************************************************************************
 | 
						|
  This file contains routines that can be bound to a Postgres backend and
 | 
						|
  called by the backend in the process of processing queries.  The calling
 | 
						|
  format for these routines is dictated by Postgres architecture.
 | 
						|
******************************************************************************/
 | 
						|
 | 
						|
#include "postgres.h"
 | 
						|
 | 
						|
#include <float.h>
 | 
						|
 | 
						|
#include "access/gist.h"
 | 
						|
#include "access/skey.h"
 | 
						|
#include "utils/builtins.h"
 | 
						|
 | 
						|
#include "segdata.h"
 | 
						|
 | 
						|
/*
 | 
						|
#define GIST_DEBUG
 | 
						|
#define GIST_QUERY_DEBUG
 | 
						|
*/
 | 
						|
 | 
						|
PG_MODULE_MAGIC;
 | 
						|
 | 
						|
extern int	seg_yyparse();
 | 
						|
extern void seg_yyerror(const char *message);
 | 
						|
extern void seg_scanner_init(const char *str);
 | 
						|
extern void seg_scanner_finish(void);
 | 
						|
 | 
						|
/*
 | 
						|
extern int	 seg_yydebug;
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
** Input/Output routines
 | 
						|
*/
 | 
						|
PG_FUNCTION_INFO_V1(seg_in);
 | 
						|
PG_FUNCTION_INFO_V1(seg_out);
 | 
						|
PG_FUNCTION_INFO_V1(seg_size);
 | 
						|
PG_FUNCTION_INFO_V1(seg_lower);
 | 
						|
PG_FUNCTION_INFO_V1(seg_upper);
 | 
						|
PG_FUNCTION_INFO_V1(seg_center);
 | 
						|
 | 
						|
Datum		seg_in(PG_FUNCTION_ARGS);
 | 
						|
Datum		seg_out(PG_FUNCTION_ARGS);
 | 
						|
Datum		seg_size(PG_FUNCTION_ARGS);
 | 
						|
Datum		seg_lower(PG_FUNCTION_ARGS);
 | 
						|
Datum		seg_upper(PG_FUNCTION_ARGS);
 | 
						|
Datum		seg_center(PG_FUNCTION_ARGS);
 | 
						|
 | 
						|
/*
 | 
						|
** GiST support methods
 | 
						|
*/
 | 
						|
bool gseg_consistent(GISTENTRY *entry,
 | 
						|
				SEG *query,
 | 
						|
				StrategyNumber strategy,
 | 
						|
				Oid subtype,
 | 
						|
				bool *recheck);
 | 
						|
GISTENTRY  *gseg_compress(GISTENTRY *entry);
 | 
						|
GISTENTRY  *gseg_decompress(GISTENTRY *entry);
 | 
						|
float	   *gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
 | 
						|
GIST_SPLITVEC *gseg_picksplit(GistEntryVector *entryvec, GIST_SPLITVEC *v);
 | 
						|
bool		gseg_leaf_consistent(SEG *key, SEG *query, StrategyNumber strategy);
 | 
						|
bool		gseg_internal_consistent(SEG *key, SEG *query, StrategyNumber strategy);
 | 
						|
SEG		   *gseg_union(GistEntryVector *entryvec, int *sizep);
 | 
						|
SEG		   *gseg_binary_union(SEG *r1, SEG *r2, int *sizep);
 | 
						|
bool	   *gseg_same(SEG *b1, SEG *b2, bool *result);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** R-tree support functions
 | 
						|
*/
 | 
						|
bool		seg_same(SEG *a, SEG *b);
 | 
						|
bool		seg_contains_int(SEG *a, int *b);
 | 
						|
bool		seg_contains_float4(SEG *a, float4 *b);
 | 
						|
bool		seg_contains_float8(SEG *a, float8 *b);
 | 
						|
bool		seg_contains(SEG *a, SEG *b);
 | 
						|
bool		seg_contained(SEG *a, SEG *b);
 | 
						|
bool		seg_overlap(SEG *a, SEG *b);
 | 
						|
bool		seg_left(SEG *a, SEG *b);
 | 
						|
bool		seg_over_left(SEG *a, SEG *b);
 | 
						|
bool		seg_right(SEG *a, SEG *b);
 | 
						|
bool		seg_over_right(SEG *a, SEG *b);
 | 
						|
SEG		   *seg_union(SEG *a, SEG *b);
 | 
						|
SEG		   *seg_inter(SEG *a, SEG *b);
 | 
						|
void		rt_seg_size(SEG *a, float *sz);
 | 
						|
 | 
						|
/*
 | 
						|
** Various operators
 | 
						|
*/
 | 
						|
int32		seg_cmp(SEG *a, SEG *b);
 | 
						|
bool		seg_lt(SEG *a, SEG *b);
 | 
						|
bool		seg_le(SEG *a, SEG *b);
 | 
						|
bool		seg_gt(SEG *a, SEG *b);
 | 
						|
bool		seg_ge(SEG *a, SEG *b);
 | 
						|
bool		seg_different(SEG *a, SEG *b);
 | 
						|
 | 
						|
/*
 | 
						|
** Auxiliary funxtions
 | 
						|
*/
 | 
						|
static int	restore(char *s, float val, int n);
 | 
						|
int			significant_digits(char *s);
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 * Input/Output functions
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
Datum
 | 
						|
seg_in(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	char	   *str = PG_GETARG_CSTRING(0);
 | 
						|
	SEG		   *result = palloc(sizeof(SEG));
 | 
						|
 | 
						|
	seg_scanner_init(str);
 | 
						|
 | 
						|
	if (seg_yyparse(result) != 0)
 | 
						|
		seg_yyerror("bogus input");
 | 
						|
 | 
						|
	seg_scanner_finish();
 | 
						|
 | 
						|
	PG_RETURN_POINTER(result);
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
seg_out(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	SEG		   *seg = (SEG *) PG_GETARG_POINTER(0);
 | 
						|
	char	   *result;
 | 
						|
	char	   *p;
 | 
						|
 | 
						|
	p = result = (char *) palloc(40);
 | 
						|
 | 
						|
	if (seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~')
 | 
						|
		p += sprintf(p, "%c", seg->l_ext);
 | 
						|
 | 
						|
	if (seg->lower == seg->upper && seg->l_ext == seg->u_ext)
 | 
						|
	{
 | 
						|
		/*
 | 
						|
		 * indicates that this interval was built by seg_in off a single point
 | 
						|
		 */
 | 
						|
		p += restore(p, seg->lower, seg->l_sigd);
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		if (seg->l_ext != '-')
 | 
						|
		{
 | 
						|
			/* print the lower boundary if exists */
 | 
						|
			p += restore(p, seg->lower, seg->l_sigd);
 | 
						|
			p += sprintf(p, " ");
 | 
						|
		}
 | 
						|
		p += sprintf(p, "..");
 | 
						|
		if (seg->u_ext != '-')
 | 
						|
		{
 | 
						|
			/* print the upper boundary if exists */
 | 
						|
			p += sprintf(p, " ");
 | 
						|
			if (seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~')
 | 
						|
				p += sprintf(p, "%c", seg->u_ext);
 | 
						|
			p += restore(p, seg->upper, seg->u_sigd);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	PG_RETURN_CSTRING(result);
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
seg_center(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	SEG		   *seg = (SEG *) PG_GETARG_POINTER(0);
 | 
						|
 | 
						|
	PG_RETURN_FLOAT4(((float) seg->lower + (float) seg->upper) / 2.0);
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
seg_lower(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	SEG		   *seg = (SEG *) PG_GETARG_POINTER(0);
 | 
						|
 | 
						|
	PG_RETURN_FLOAT4(seg->lower);
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
seg_upper(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	SEG		   *seg = (SEG *) PG_GETARG_POINTER(0);
 | 
						|
 | 
						|
	PG_RETURN_FLOAT4(seg->upper);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 *						   GiST functions
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Consistent method for segments
 | 
						|
** Should return false if for all data items x below entry,
 | 
						|
** the predicate x op query == FALSE, where op is the oper
 | 
						|
** corresponding to strategy in the pg_amop table.
 | 
						|
*/
 | 
						|
bool
 | 
						|
gseg_consistent(GISTENTRY *entry,
 | 
						|
				SEG *query,
 | 
						|
				StrategyNumber strategy,
 | 
						|
				Oid subtype,
 | 
						|
				bool *recheck)
 | 
						|
{
 | 
						|
	/* All cases served by this function are exact */
 | 
						|
	*recheck = false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * if entry is not leaf, use gseg_internal_consistent, else use
 | 
						|
	 * gseg_leaf_consistent
 | 
						|
	 */
 | 
						|
	if (GIST_LEAF(entry))
 | 
						|
		return (gseg_leaf_consistent((SEG *) DatumGetPointer(entry->key), query, strategy));
 | 
						|
	else
 | 
						|
		return (gseg_internal_consistent((SEG *) DatumGetPointer(entry->key), query, strategy));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Union method for segments
 | 
						|
** returns the minimal bounding seg that encloses all the entries in entryvec
 | 
						|
*/
 | 
						|
SEG *
 | 
						|
gseg_union(GistEntryVector *entryvec, int *sizep)
 | 
						|
{
 | 
						|
	int			numranges,
 | 
						|
				i;
 | 
						|
	SEG		   *out = (SEG *) NULL;
 | 
						|
	SEG		   *tmp;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
	fprintf(stderr, "union\n");
 | 
						|
#endif
 | 
						|
 | 
						|
	numranges = entryvec->n;
 | 
						|
	tmp = (SEG *) DatumGetPointer(entryvec->vector[0].key);
 | 
						|
	*sizep = sizeof(SEG);
 | 
						|
 | 
						|
	for (i = 1; i < numranges; i++)
 | 
						|
	{
 | 
						|
		out = gseg_binary_union(tmp, (SEG *)
 | 
						|
								DatumGetPointer(entryvec->vector[i].key),
 | 
						|
								sizep);
 | 
						|
		tmp = out;
 | 
						|
	}
 | 
						|
 | 
						|
	return (out);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** GiST Compress and Decompress methods for segments
 | 
						|
** do not do anything.
 | 
						|
*/
 | 
						|
GISTENTRY *
 | 
						|
gseg_compress(GISTENTRY *entry)
 | 
						|
{
 | 
						|
	return (entry);
 | 
						|
}
 | 
						|
 | 
						|
GISTENTRY *
 | 
						|
gseg_decompress(GISTENTRY *entry)
 | 
						|
{
 | 
						|
	return (entry);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Penalty method for segments
 | 
						|
** As in the R-tree paper, we use change in area as our penalty metric
 | 
						|
*/
 | 
						|
float *
 | 
						|
gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
 | 
						|
{
 | 
						|
	SEG		   *ud;
 | 
						|
	float		tmp1,
 | 
						|
				tmp2;
 | 
						|
 | 
						|
	ud = seg_union((SEG *) DatumGetPointer(origentry->key),
 | 
						|
				   (SEG *) DatumGetPointer(newentry->key));
 | 
						|
	rt_seg_size(ud, &tmp1);
 | 
						|
	rt_seg_size((SEG *) DatumGetPointer(origentry->key), &tmp2);
 | 
						|
	*result = tmp1 - tmp2;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
	fprintf(stderr, "penalty\n");
 | 
						|
	fprintf(stderr, "\t%g\n", *result);
 | 
						|
#endif
 | 
						|
 | 
						|
	return (result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST PickSplit method for segments
 | 
						|
** We use Guttman's poly time split algorithm
 | 
						|
*/
 | 
						|
GIST_SPLITVEC *
 | 
						|
gseg_picksplit(GistEntryVector *entryvec,
 | 
						|
			   GIST_SPLITVEC *v)
 | 
						|
{
 | 
						|
	OffsetNumber i,
 | 
						|
				j;
 | 
						|
	SEG		   *datum_alpha,
 | 
						|
			   *datum_beta;
 | 
						|
	SEG		   *datum_l,
 | 
						|
			   *datum_r;
 | 
						|
	SEG		   *union_d,
 | 
						|
			   *union_dl,
 | 
						|
			   *union_dr;
 | 
						|
	SEG		   *inter_d;
 | 
						|
	bool		firsttime;
 | 
						|
	float		size_alpha,
 | 
						|
				size_beta,
 | 
						|
				size_union,
 | 
						|
				size_inter;
 | 
						|
	float		size_waste,
 | 
						|
				waste;
 | 
						|
	float		size_l,
 | 
						|
				size_r;
 | 
						|
	int			nbytes;
 | 
						|
	OffsetNumber seed_1 = 1,
 | 
						|
				seed_2 = 2;
 | 
						|
	OffsetNumber *left,
 | 
						|
			   *right;
 | 
						|
	OffsetNumber maxoff;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
	fprintf(stderr, "picksplit\n");
 | 
						|
#endif
 | 
						|
 | 
						|
	maxoff = entryvec->n - 2;
 | 
						|
	nbytes = (maxoff + 2) * sizeof(OffsetNumber);
 | 
						|
	v->spl_left = (OffsetNumber *) palloc(nbytes);
 | 
						|
	v->spl_right = (OffsetNumber *) palloc(nbytes);
 | 
						|
 | 
						|
	firsttime = true;
 | 
						|
	waste = 0.0;
 | 
						|
 | 
						|
	for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
 | 
						|
	{
 | 
						|
		datum_alpha = (SEG *) DatumGetPointer(entryvec->vector[i].key);
 | 
						|
		for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
 | 
						|
		{
 | 
						|
			datum_beta = (SEG *) DatumGetPointer(entryvec->vector[j].key);
 | 
						|
 | 
						|
			/* compute the wasted space by unioning these guys */
 | 
						|
			/* size_waste = size_union - size_inter; */
 | 
						|
			union_d = seg_union(datum_alpha, datum_beta);
 | 
						|
			rt_seg_size(union_d, &size_union);
 | 
						|
			inter_d = seg_inter(datum_alpha, datum_beta);
 | 
						|
			rt_seg_size(inter_d, &size_inter);
 | 
						|
			size_waste = size_union - size_inter;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * are these a more promising split that what we've already seen?
 | 
						|
			 */
 | 
						|
			if (size_waste > waste || firsttime)
 | 
						|
			{
 | 
						|
				waste = size_waste;
 | 
						|
				seed_1 = i;
 | 
						|
				seed_2 = j;
 | 
						|
				firsttime = false;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	left = v->spl_left;
 | 
						|
	v->spl_nleft = 0;
 | 
						|
	right = v->spl_right;
 | 
						|
	v->spl_nright = 0;
 | 
						|
 | 
						|
	datum_alpha = (SEG *) DatumGetPointer(entryvec->vector[seed_1].key);
 | 
						|
	datum_l = seg_union(datum_alpha, datum_alpha);
 | 
						|
	rt_seg_size(datum_l, &size_l);
 | 
						|
	datum_beta = (SEG *) DatumGetPointer(entryvec->vector[seed_2].key);
 | 
						|
	datum_r = seg_union(datum_beta, datum_beta);
 | 
						|
	rt_seg_size(datum_r, &size_r);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now split up the regions between the two seeds.	An important property
 | 
						|
	 * of this split algorithm is that the split vector v has the indices of
 | 
						|
	 * items to be split in order in its left and right vectors.  We exploit
 | 
						|
	 * this property by doing a merge in the code that actually splits the
 | 
						|
	 * page.
 | 
						|
	 *
 | 
						|
	 * For efficiency, we also place the new index tuple in this loop. This is
 | 
						|
	 * handled at the very end, when we have placed all the existing tuples
 | 
						|
	 * and i == maxoff + 1.
 | 
						|
	 */
 | 
						|
 | 
						|
	maxoff = OffsetNumberNext(maxoff);
 | 
						|
	for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
 | 
						|
	{
 | 
						|
		/*
 | 
						|
		 * If we've already decided where to place this item, just put it on
 | 
						|
		 * the right list.	Otherwise, we need to figure out which page needs
 | 
						|
		 * the least enlargement in order to store the item.
 | 
						|
		 */
 | 
						|
 | 
						|
		if (i == seed_1)
 | 
						|
		{
 | 
						|
			*left++ = i;
 | 
						|
			v->spl_nleft++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		else if (i == seed_2)
 | 
						|
		{
 | 
						|
			*right++ = i;
 | 
						|
			v->spl_nright++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* okay, which page needs least enlargement? */
 | 
						|
		datum_alpha = (SEG *) DatumGetPointer(entryvec->vector[i].key);
 | 
						|
		union_dl = seg_union(datum_l, datum_alpha);
 | 
						|
		union_dr = seg_union(datum_r, datum_alpha);
 | 
						|
		rt_seg_size(union_dl, &size_alpha);
 | 
						|
		rt_seg_size(union_dr, &size_beta);
 | 
						|
 | 
						|
		/* pick which page to add it to */
 | 
						|
		if (size_alpha - size_l < size_beta - size_r)
 | 
						|
		{
 | 
						|
			datum_l = union_dl;
 | 
						|
			size_l = size_alpha;
 | 
						|
			*left++ = i;
 | 
						|
			v->spl_nleft++;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			datum_r = union_dr;
 | 
						|
			size_r = size_alpha;
 | 
						|
			*right++ = i;
 | 
						|
			v->spl_nright++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
 | 
						|
 | 
						|
	v->spl_ldatum = PointerGetDatum(datum_l);
 | 
						|
	v->spl_rdatum = PointerGetDatum(datum_r);
 | 
						|
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Equality methods
 | 
						|
*/
 | 
						|
bool *
 | 
						|
gseg_same(SEG *b1, SEG *b2, bool *result)
 | 
						|
{
 | 
						|
	if (seg_same(b1, b2))
 | 
						|
		*result = TRUE;
 | 
						|
	else
 | 
						|
		*result = FALSE;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
	fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE"));
 | 
						|
#endif
 | 
						|
 | 
						|
	return (result);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** SUPPORT ROUTINES
 | 
						|
*/
 | 
						|
bool
 | 
						|
gseg_leaf_consistent(SEG *key,
 | 
						|
					 SEG *query,
 | 
						|
					 StrategyNumber strategy)
 | 
						|
{
 | 
						|
	bool		retval;
 | 
						|
 | 
						|
#ifdef GIST_QUERY_DEBUG
 | 
						|
	fprintf(stderr, "leaf_consistent, %d\n", strategy);
 | 
						|
#endif
 | 
						|
 | 
						|
	switch (strategy)
 | 
						|
	{
 | 
						|
		case RTLeftStrategyNumber:
 | 
						|
			retval = (bool) seg_left(key, query);
 | 
						|
			break;
 | 
						|
		case RTOverLeftStrategyNumber:
 | 
						|
			retval = (bool) seg_over_left(key, query);
 | 
						|
			break;
 | 
						|
		case RTOverlapStrategyNumber:
 | 
						|
			retval = (bool) seg_overlap(key, query);
 | 
						|
			break;
 | 
						|
		case RTOverRightStrategyNumber:
 | 
						|
			retval = (bool) seg_over_right(key, query);
 | 
						|
			break;
 | 
						|
		case RTRightStrategyNumber:
 | 
						|
			retval = (bool) seg_right(key, query);
 | 
						|
			break;
 | 
						|
		case RTSameStrategyNumber:
 | 
						|
			retval = (bool) seg_same(key, query);
 | 
						|
			break;
 | 
						|
		case RTContainsStrategyNumber:
 | 
						|
		case RTOldContainsStrategyNumber:
 | 
						|
			retval = (bool) seg_contains(key, query);
 | 
						|
			break;
 | 
						|
		case RTContainedByStrategyNumber:
 | 
						|
		case RTOldContainedByStrategyNumber:
 | 
						|
			retval = (bool) seg_contained(key, query);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			retval = FALSE;
 | 
						|
	}
 | 
						|
	return (retval);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
gseg_internal_consistent(SEG *key,
 | 
						|
						 SEG *query,
 | 
						|
						 StrategyNumber strategy)
 | 
						|
{
 | 
						|
	bool		retval;
 | 
						|
 | 
						|
#ifdef GIST_QUERY_DEBUG
 | 
						|
	fprintf(stderr, "internal_consistent, %d\n", strategy);
 | 
						|
#endif
 | 
						|
 | 
						|
	switch (strategy)
 | 
						|
	{
 | 
						|
		case RTLeftStrategyNumber:
 | 
						|
			retval = (bool) !seg_over_right(key, query);
 | 
						|
			break;
 | 
						|
		case RTOverLeftStrategyNumber:
 | 
						|
			retval = (bool) !seg_right(key, query);
 | 
						|
			break;
 | 
						|
		case RTOverlapStrategyNumber:
 | 
						|
			retval = (bool) seg_overlap(key, query);
 | 
						|
			break;
 | 
						|
		case RTOverRightStrategyNumber:
 | 
						|
			retval = (bool) !seg_left(key, query);
 | 
						|
			break;
 | 
						|
		case RTRightStrategyNumber:
 | 
						|
			retval = (bool) !seg_over_left(key, query);
 | 
						|
			break;
 | 
						|
		case RTSameStrategyNumber:
 | 
						|
		case RTContainsStrategyNumber:
 | 
						|
		case RTOldContainsStrategyNumber:
 | 
						|
			retval = (bool) seg_contains(key, query);
 | 
						|
			break;
 | 
						|
		case RTContainedByStrategyNumber:
 | 
						|
		case RTOldContainedByStrategyNumber:
 | 
						|
			retval = (bool) seg_overlap(key, query);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			retval = FALSE;
 | 
						|
	}
 | 
						|
	return (retval);
 | 
						|
}
 | 
						|
 | 
						|
SEG *
 | 
						|
gseg_binary_union(SEG *r1, SEG *r2, int *sizep)
 | 
						|
{
 | 
						|
	SEG		   *retval;
 | 
						|
 | 
						|
	retval = seg_union(r1, r2);
 | 
						|
	*sizep = sizeof(SEG);
 | 
						|
 | 
						|
	return (retval);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool
 | 
						|
seg_contains(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return ((a->lower <= b->lower) && (a->upper >= b->upper));
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_contained(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return (seg_contains(b, a));
 | 
						|
}
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 * Operator class for R-tree indexing
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
bool
 | 
						|
seg_same(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return seg_cmp(a, b) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/*	seg_overlap -- does a overlap b?
 | 
						|
 */
 | 
						|
bool
 | 
						|
seg_overlap(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return (
 | 
						|
			((a->upper >= b->upper) && (a->lower <= b->upper))
 | 
						|
			||
 | 
						|
			((b->upper >= a->upper) && (b->lower <= a->upper))
 | 
						|
		);
 | 
						|
}
 | 
						|
 | 
						|
/*	seg_overleft -- is the right edge of (a) located at or left of the right edge of (b)?
 | 
						|
 */
 | 
						|
bool
 | 
						|
seg_over_left(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return (a->upper <= b->upper);
 | 
						|
}
 | 
						|
 | 
						|
/*	seg_left -- is (a) entirely on the left of (b)?
 | 
						|
 */
 | 
						|
bool
 | 
						|
seg_left(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return (a->upper < b->lower);
 | 
						|
}
 | 
						|
 | 
						|
/*	seg_right -- is (a) entirely on the right of (b)?
 | 
						|
 */
 | 
						|
bool
 | 
						|
seg_right(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return (a->lower > b->upper);
 | 
						|
}
 | 
						|
 | 
						|
/*	seg_overright -- is the left edge of (a) located at or right of the left edge of (b)?
 | 
						|
 */
 | 
						|
bool
 | 
						|
seg_over_right(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return (a->lower >= b->lower);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SEG *
 | 
						|
seg_union(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	SEG		   *n;
 | 
						|
 | 
						|
	n = (SEG *) palloc(sizeof(*n));
 | 
						|
 | 
						|
	/* take max of upper endpoints */
 | 
						|
	if (a->upper > b->upper)
 | 
						|
	{
 | 
						|
		n->upper = a->upper;
 | 
						|
		n->u_sigd = a->u_sigd;
 | 
						|
		n->u_ext = a->u_ext;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		n->upper = b->upper;
 | 
						|
		n->u_sigd = b->u_sigd;
 | 
						|
		n->u_ext = b->u_ext;
 | 
						|
	}
 | 
						|
 | 
						|
	/* take min of lower endpoints */
 | 
						|
	if (a->lower < b->lower)
 | 
						|
	{
 | 
						|
		n->lower = a->lower;
 | 
						|
		n->l_sigd = a->l_sigd;
 | 
						|
		n->l_ext = a->l_ext;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		n->lower = b->lower;
 | 
						|
		n->l_sigd = b->l_sigd;
 | 
						|
		n->l_ext = b->l_ext;
 | 
						|
	}
 | 
						|
 | 
						|
	return (n);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SEG *
 | 
						|
seg_inter(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	SEG		   *n;
 | 
						|
 | 
						|
	n = (SEG *) palloc(sizeof(*n));
 | 
						|
 | 
						|
	/* take min of upper endpoints */
 | 
						|
	if (a->upper < b->upper)
 | 
						|
	{
 | 
						|
		n->upper = a->upper;
 | 
						|
		n->u_sigd = a->u_sigd;
 | 
						|
		n->u_ext = a->u_ext;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		n->upper = b->upper;
 | 
						|
		n->u_sigd = b->u_sigd;
 | 
						|
		n->u_ext = b->u_ext;
 | 
						|
	}
 | 
						|
 | 
						|
	/* take max of lower endpoints */
 | 
						|
	if (a->lower > b->lower)
 | 
						|
	{
 | 
						|
		n->lower = a->lower;
 | 
						|
		n->l_sigd = a->l_sigd;
 | 
						|
		n->l_ext = a->l_ext;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		n->lower = b->lower;
 | 
						|
		n->l_sigd = b->l_sigd;
 | 
						|
		n->l_ext = b->l_ext;
 | 
						|
	}
 | 
						|
 | 
						|
	return (n);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rt_seg_size(SEG *a, float *size)
 | 
						|
{
 | 
						|
	if (a == (SEG *) NULL || a->upper <= a->lower)
 | 
						|
		*size = 0.0;
 | 
						|
	else
 | 
						|
		*size = (float) Abs(a->upper - a->lower);
 | 
						|
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
seg_size(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	SEG		   *seg = (SEG *) PG_GETARG_POINTER(0);
 | 
						|
 | 
						|
	PG_RETURN_FLOAT4((float) Abs(seg->upper - seg->lower));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 *				   Miscellaneous operators
 | 
						|
 *****************************************************************************/
 | 
						|
int32
 | 
						|
seg_cmp(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * First compare on lower boundary position
 | 
						|
	 */
 | 
						|
	if (a->lower < b->lower)
 | 
						|
		return -1;
 | 
						|
	if (a->lower > b->lower)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * a->lower == b->lower, so consider type of boundary.
 | 
						|
	 *
 | 
						|
	 * A '-' lower bound is < any other kind (this could only be relevant if
 | 
						|
	 * -HUGE_VAL is used as a regular data value). A '<' lower bound is < any
 | 
						|
	 * other kind except '-'. A '>' lower bound is > any other kind.
 | 
						|
	 */
 | 
						|
	if (a->l_ext != b->l_ext)
 | 
						|
	{
 | 
						|
		if (a->l_ext == '-')
 | 
						|
			return -1;
 | 
						|
		if (b->l_ext == '-')
 | 
						|
			return 1;
 | 
						|
		if (a->l_ext == '<')
 | 
						|
			return -1;
 | 
						|
		if (b->l_ext == '<')
 | 
						|
			return 1;
 | 
						|
		if (a->l_ext == '>')
 | 
						|
			return 1;
 | 
						|
		if (b->l_ext == '>')
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For other boundary types, consider # of significant digits first.
 | 
						|
	 */
 | 
						|
	if (a->l_sigd < b->l_sigd)	/* (a) is blurred and is likely to include (b) */
 | 
						|
		return -1;
 | 
						|
	if (a->l_sigd > b->l_sigd)	/* (a) is less blurred and is likely to be
 | 
						|
								 * included in (b) */
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For same # of digits, an approximate boundary is more blurred than
 | 
						|
	 * exact.
 | 
						|
	 */
 | 
						|
	if (a->l_ext != b->l_ext)
 | 
						|
	{
 | 
						|
		if (a->l_ext == '~')	/* (a) is approximate, while (b) is exact */
 | 
						|
			return -1;
 | 
						|
		if (b->l_ext == '~')
 | 
						|
			return 1;
 | 
						|
		/* can't get here unless data is corrupt */
 | 
						|
		elog(ERROR, "bogus lower boundary types %d %d",
 | 
						|
			 (int) a->l_ext, (int) b->l_ext);
 | 
						|
	}
 | 
						|
 | 
						|
	/* at this point, the lower boundaries are identical */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First compare on upper boundary position
 | 
						|
	 */
 | 
						|
	if (a->upper < b->upper)
 | 
						|
		return -1;
 | 
						|
	if (a->upper > b->upper)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * a->upper == b->upper, so consider type of boundary.
 | 
						|
	 *
 | 
						|
	 * A '-' upper bound is > any other kind (this could only be relevant if
 | 
						|
	 * HUGE_VAL is used as a regular data value). A '<' upper bound is < any
 | 
						|
	 * other kind. A '>' upper bound is > any other kind except '-'.
 | 
						|
	 */
 | 
						|
	if (a->u_ext != b->u_ext)
 | 
						|
	{
 | 
						|
		if (a->u_ext == '-')
 | 
						|
			return 1;
 | 
						|
		if (b->u_ext == '-')
 | 
						|
			return -1;
 | 
						|
		if (a->u_ext == '<')
 | 
						|
			return -1;
 | 
						|
		if (b->u_ext == '<')
 | 
						|
			return 1;
 | 
						|
		if (a->u_ext == '>')
 | 
						|
			return 1;
 | 
						|
		if (b->u_ext == '>')
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For other boundary types, consider # of significant digits first. Note
 | 
						|
	 * result here is converse of the lower-boundary case.
 | 
						|
	 */
 | 
						|
	if (a->u_sigd < b->u_sigd)	/* (a) is blurred and is likely to include (b) */
 | 
						|
		return 1;
 | 
						|
	if (a->u_sigd > b->u_sigd)	/* (a) is less blurred and is likely to be
 | 
						|
								 * included in (b) */
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For same # of digits, an approximate boundary is more blurred than
 | 
						|
	 * exact.  Again, result is converse of lower-boundary case.
 | 
						|
	 */
 | 
						|
	if (a->u_ext != b->u_ext)
 | 
						|
	{
 | 
						|
		if (a->u_ext == '~')	/* (a) is approximate, while (b) is exact */
 | 
						|
			return 1;
 | 
						|
		if (b->u_ext == '~')
 | 
						|
			return -1;
 | 
						|
		/* can't get here unless data is corrupt */
 | 
						|
		elog(ERROR, "bogus upper boundary types %d %d",
 | 
						|
			 (int) a->u_ext, (int) b->u_ext);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_lt(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return seg_cmp(a, b) < 0;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_le(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return seg_cmp(a, b) <= 0;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_gt(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return seg_cmp(a, b) > 0;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_ge(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return seg_cmp(a, b) >= 0;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_different(SEG *a, SEG *b)
 | 
						|
{
 | 
						|
	return seg_cmp(a, b) != 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 *				   Auxiliary functions
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
/* The purpose of this routine is to print the floating point
 | 
						|
 * value with exact number of significant digits. Its behaviour
 | 
						|
 * is similar to %.ng except it prints 8.00 where %.ng would
 | 
						|
 * print 8
 | 
						|
 */
 | 
						|
static int
 | 
						|
restore(char *result, float val, int n)
 | 
						|
{
 | 
						|
	static char efmt[8] = {'%', '-', '1', '5', '.', '#', 'e', 0};
 | 
						|
	char		buf[25] = {
 | 
						|
		'0', '0', '0', '0', '0',
 | 
						|
		'0', '0', '0', '0', '0',
 | 
						|
		'0', '0', '0', '0', '0',
 | 
						|
		'0', '0', '0', '0', '0',
 | 
						|
		'0', '0', '0', '0', '\0'
 | 
						|
	};
 | 
						|
	char	   *p;
 | 
						|
	char	   *mant;
 | 
						|
	int			exp;
 | 
						|
	int			i,
 | 
						|
				dp,
 | 
						|
				sign;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * put a cap on the number of siugnificant digits to avoid nonsense in the
 | 
						|
	 * output
 | 
						|
	 */
 | 
						|
	n = Min(n, FLT_DIG);
 | 
						|
 | 
						|
	/* remember the sign */
 | 
						|
	sign = (val < 0 ? 1 : 0);
 | 
						|
 | 
						|
	efmt[5] = '0' + (n - 1) % 10;		/* makes %-15.(n-1)e -- this format
 | 
						|
										 * guarantees that the exponent is
 | 
						|
										 * always present */
 | 
						|
 | 
						|
	sprintf(result, efmt, val);
 | 
						|
 | 
						|
	/* trim the spaces left by the %e */
 | 
						|
	for (p = result; *p != ' '; p++);
 | 
						|
	*p = '\0';
 | 
						|
 | 
						|
	/* get the exponent */
 | 
						|
	mant = (char *) strtok(strdup(result), "e");
 | 
						|
	exp = atoi(strtok(NULL, "e"));
 | 
						|
 | 
						|
	if (exp == 0)
 | 
						|
	{
 | 
						|
		/* use the supplied mantyssa with sign */
 | 
						|
		strcpy((char *) strchr(result, 'e'), "");
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		if (Abs(exp) <= 4)
 | 
						|
		{
 | 
						|
			/*
 | 
						|
			 * remove the decimal point from the mantyssa and write the digits
 | 
						|
			 * to the buf array
 | 
						|
			 */
 | 
						|
			for (p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++)
 | 
						|
			{
 | 
						|
				buf[i] = *p;
 | 
						|
				if (*p == '.')
 | 
						|
				{
 | 
						|
					dp = i--;	/* skip the decimal point */
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if (dp == 0)
 | 
						|
				dp = i--;		/* no decimal point was found in the above
 | 
						|
								 * for() loop */
 | 
						|
 | 
						|
			if (exp > 0)
 | 
						|
			{
 | 
						|
				if (dp - 10 + exp >= n)
 | 
						|
				{
 | 
						|
					/*
 | 
						|
					 * the decimal point is behind the last significant digit;
 | 
						|
					 * the digits in between must be converted to the exponent
 | 
						|
					 * and the decimal point placed after the first digit
 | 
						|
					 */
 | 
						|
					exp = dp - 10 + exp - n;
 | 
						|
					buf[10 + n] = '\0';
 | 
						|
 | 
						|
					/* insert the decimal point */
 | 
						|
					if (n > 1)
 | 
						|
					{
 | 
						|
						dp = 11;
 | 
						|
						for (i = 23; i > dp; i--)
 | 
						|
							buf[i] = buf[i - 1];
 | 
						|
						buf[dp] = '.';
 | 
						|
					}
 | 
						|
 | 
						|
					/*
 | 
						|
					 * adjust the exponent by the number of digits after the
 | 
						|
					 * decimal point
 | 
						|
					 */
 | 
						|
					if (n > 1)
 | 
						|
						sprintf(&buf[11 + n], "e%d", exp + n - 1);
 | 
						|
					else
 | 
						|
						sprintf(&buf[11], "e%d", exp + n - 1);
 | 
						|
 | 
						|
					if (sign)
 | 
						|
					{
 | 
						|
						buf[9] = '-';
 | 
						|
						strcpy(result, &buf[9]);
 | 
						|
					}
 | 
						|
					else
 | 
						|
						strcpy(result, &buf[10]);
 | 
						|
				}
 | 
						|
				else
 | 
						|
				{				/* insert the decimal point */
 | 
						|
					dp += exp;
 | 
						|
					for (i = 23; i > dp; i--)
 | 
						|
						buf[i] = buf[i - 1];
 | 
						|
					buf[11 + n] = '\0';
 | 
						|
					buf[dp] = '.';
 | 
						|
					if (sign)
 | 
						|
					{
 | 
						|
						buf[9] = '-';
 | 
						|
						strcpy(result, &buf[9]);
 | 
						|
					}
 | 
						|
					else
 | 
						|
						strcpy(result, &buf[10]);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{					/* exp <= 0 */
 | 
						|
				dp += exp - 1;
 | 
						|
				buf[10 + n] = '\0';
 | 
						|
				buf[dp] = '.';
 | 
						|
				if (sign)
 | 
						|
				{
 | 
						|
					buf[dp - 2] = '-';
 | 
						|
					strcpy(result, &buf[dp - 2]);
 | 
						|
				}
 | 
						|
				else
 | 
						|
					strcpy(result, &buf[dp - 1]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* do nothing for Abs(exp) > 4; %e must be OK */
 | 
						|
		/* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */
 | 
						|
 | 
						|
		/* ... this is not done yet. */
 | 
						|
	}
 | 
						|
	return (strlen(result));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Miscellany
 | 
						|
*/
 | 
						|
 | 
						|
bool
 | 
						|
seg_contains_int(SEG *a, int *b)
 | 
						|
{
 | 
						|
	return ((a->lower <= *b) && (a->upper >= *b));
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_contains_float4(SEG *a, float4 *b)
 | 
						|
{
 | 
						|
	return ((a->lower <= *b) && (a->upper >= *b));
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
seg_contains_float8(SEG *a, float8 *b)
 | 
						|
{
 | 
						|
	return ((a->lower <= *b) && (a->upper >= *b));
 | 
						|
}
 | 
						|
 | 
						|
/* find out the number of significant digits in a string representing
 | 
						|
 * a floating point number
 | 
						|
 */
 | 
						|
int
 | 
						|
significant_digits(char *s)
 | 
						|
{
 | 
						|
	char	   *p = s;
 | 
						|
	int			n,
 | 
						|
				c,
 | 
						|
				zeroes;
 | 
						|
 | 
						|
	zeroes = 1;
 | 
						|
	/* skip leading zeroes and sign */
 | 
						|
	for (c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p));
 | 
						|
 | 
						|
	/* skip decimal point and following zeroes */
 | 
						|
	for (c = *p; (c == '0' || c == '.') && c != 0; c = *(++p))
 | 
						|
	{
 | 
						|
		if (c != '.')
 | 
						|
			zeroes++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* count significant digits (n) */
 | 
						|
	for (c = *p, n = 0; c != 0; c = *(++p))
 | 
						|
	{
 | 
						|
		if (!((c >= '0' && c <= '9') || (c == '.')))
 | 
						|
			break;
 | 
						|
		if (c != '.')
 | 
						|
			n++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!n)
 | 
						|
		return (zeroes);
 | 
						|
 | 
						|
	return (n);
 | 
						|
}
 |