mirror of
				https://github.com/postgres/postgres.git
				synced 2025-10-31 10:30:33 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			318 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			318 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*-------------------------------------------------------------------------
 | |
|  *
 | |
|  * tsm_system_time.c
 | |
|  *	  interface routines for system_time tablesample method
 | |
|  *
 | |
|  *
 | |
|  * Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
 | |
|  *
 | |
|  * IDENTIFICATION
 | |
|  *	  contrib/tsm_system_time_rowlimit/tsm_system_time.c
 | |
|  *
 | |
|  *-------------------------------------------------------------------------
 | |
|  */
 | |
| 
 | |
| #include "postgres.h"
 | |
| 
 | |
| #include "fmgr.h"
 | |
| 
 | |
| #include "access/tablesample.h"
 | |
| #include "access/relscan.h"
 | |
| #include "miscadmin.h"
 | |
| #include "nodes/execnodes.h"
 | |
| #include "nodes/relation.h"
 | |
| #include "optimizer/clauses.h"
 | |
| #include "storage/bufmgr.h"
 | |
| #include "utils/sampling.h"
 | |
| #include "utils/spccache.h"
 | |
| #include "utils/timestamp.h"
 | |
| 
 | |
| PG_MODULE_MAGIC;
 | |
| 
 | |
| /*
 | |
|  * State
 | |
|  */
 | |
| typedef struct
 | |
| {
 | |
| 	SamplerRandomState randstate;
 | |
| 	uint32		seed;			/* random seed */
 | |
| 	BlockNumber nblocks;		/* number of block in relation */
 | |
| 	int32		time;			/* time limit for sampling */
 | |
| 	TimestampTz start_time;		/* start time of sampling */
 | |
| 	TimestampTz end_time;		/* end time of sampling */
 | |
| 	OffsetNumber lt;			/* last tuple returned from current block */
 | |
| 	BlockNumber step;			/* step size */
 | |
| 	BlockNumber lb;				/* last block visited */
 | |
| 	BlockNumber estblocks;		/* estimated number of returned blocks
 | |
| 								 * (moving) */
 | |
| 	BlockNumber doneblocks;		/* number of already returned blocks */
 | |
| } SystemSamplerData;
 | |
| 
 | |
| 
 | |
| PG_FUNCTION_INFO_V1(tsm_system_time_init);
 | |
| PG_FUNCTION_INFO_V1(tsm_system_time_nextblock);
 | |
| PG_FUNCTION_INFO_V1(tsm_system_time_nexttuple);
 | |
| PG_FUNCTION_INFO_V1(tsm_system_time_end);
 | |
| PG_FUNCTION_INFO_V1(tsm_system_time_reset);
 | |
| PG_FUNCTION_INFO_V1(tsm_system_time_cost);
 | |
| 
 | |
| static uint32 random_relative_prime(uint32 n, SamplerRandomState randstate);
 | |
| 
 | |
| /*
 | |
|  * Initializes the state.
 | |
|  */
 | |
| Datum
 | |
| tsm_system_time_init(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	TableSampleDesc *tsdesc = (TableSampleDesc *) PG_GETARG_POINTER(0);
 | |
| 	uint32		seed = PG_GETARG_UINT32(1);
 | |
| 	int32		time = PG_ARGISNULL(2) ? -1 : PG_GETARG_INT32(2);
 | |
| 	HeapScanDesc scan = tsdesc->heapScan;
 | |
| 	SystemSamplerData *sampler;
 | |
| 
 | |
| 	if (time < 1)
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
 | |
| 				 errmsg("invalid time limit"),
 | |
| 				 errhint("Time limit must be positive integer value.")));
 | |
| 
 | |
| 	sampler = palloc0(sizeof(SystemSamplerData));
 | |
| 
 | |
| 	/* Remember initial values for reinit */
 | |
| 	sampler->seed = seed;
 | |
| 	sampler->nblocks = scan->rs_nblocks;
 | |
| 	sampler->lt = InvalidOffsetNumber;
 | |
| 	sampler->estblocks = 2;
 | |
| 	sampler->doneblocks = 0;
 | |
| 	sampler->time = time;
 | |
| 	sampler->start_time = GetCurrentTimestamp();
 | |
| 	sampler->end_time = TimestampTzPlusMilliseconds(sampler->start_time,
 | |
| 													sampler->time);
 | |
| 
 | |
| 	sampler_random_init_state(sampler->seed, sampler->randstate);
 | |
| 
 | |
| 	/* Find relative prime as step size for linear probing. */
 | |
| 	sampler->step = random_relative_prime(sampler->nblocks, sampler->randstate);
 | |
| 
 | |
| 	/*
 | |
| 	 * Randomize start position so that blocks close to step size don't have
 | |
| 	 * higher probability of being chosen on very short scan.
 | |
| 	 */
 | |
| 	sampler->lb = sampler_random_fract(sampler->randstate) * (sampler->nblocks / sampler->step);
 | |
| 
 | |
| 	tsdesc->tsmdata = (void *) sampler;
 | |
| 
 | |
| 	PG_RETURN_VOID();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get next block number or InvalidBlockNumber when we're done.
 | |
|  *
 | |
|  * Uses linear probing algorithm for picking next block.
 | |
|  */
 | |
| Datum
 | |
| tsm_system_time_nextblock(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	TableSampleDesc *tsdesc = (TableSampleDesc *) PG_GETARG_POINTER(0);
 | |
| 	SystemSamplerData *sampler = (SystemSamplerData *) tsdesc->tsmdata;
 | |
| 
 | |
| 	sampler->lb = (sampler->lb + sampler->step) % sampler->nblocks;
 | |
| 	sampler->doneblocks++;
 | |
| 
 | |
| 	/* All blocks have been read, we're done */
 | |
| 	if (sampler->doneblocks > sampler->nblocks)
 | |
| 		PG_RETURN_UINT32(InvalidBlockNumber);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the estimations for time limit at least 10 times per estimated
 | |
| 	 * number of returned blocks to handle variations in block read speed.
 | |
| 	 */
 | |
| 	if (sampler->doneblocks % Max(sampler->estblocks / 10, 1) == 0)
 | |
| 	{
 | |
| 		TimestampTz now = GetCurrentTimestamp();
 | |
| 		long		secs;
 | |
| 		int			usecs;
 | |
| 		int			usecs_remaining;
 | |
| 		int			time_per_block;
 | |
| 
 | |
| 		TimestampDifference(sampler->start_time, now, &secs, &usecs);
 | |
| 		usecs += (int) secs *1000000;
 | |
| 
 | |
| 		time_per_block = usecs / sampler->doneblocks;
 | |
| 
 | |
| 		/* No time left, end. */
 | |
| 		TimestampDifference(now, sampler->end_time, &secs, &usecs);
 | |
| 		if (secs <= 0 && usecs <= 0)
 | |
| 			PG_RETURN_UINT32(InvalidBlockNumber);
 | |
| 
 | |
| 		/* Remaining microseconds */
 | |
| 		usecs_remaining = usecs + (int) secs *1000000;
 | |
| 
 | |
| 		/* Recalculate estimated returned number of blocks */
 | |
| 		if (time_per_block < usecs_remaining && time_per_block > 0)
 | |
| 			sampler->estblocks = sampler->time * time_per_block;
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_UINT32(sampler->lb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get next tuple offset in current block or InvalidOffsetNumber if we are done
 | |
|  * with this block.
 | |
|  */
 | |
| Datum
 | |
| tsm_system_time_nexttuple(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	TableSampleDesc *tsdesc = (TableSampleDesc *) PG_GETARG_POINTER(0);
 | |
| 	OffsetNumber maxoffset = PG_GETARG_UINT16(2);
 | |
| 	SystemSamplerData *sampler = (SystemSamplerData *) tsdesc->tsmdata;
 | |
| 	OffsetNumber tupoffset = sampler->lt;
 | |
| 
 | |
| 	if (tupoffset == InvalidOffsetNumber)
 | |
| 		tupoffset = FirstOffsetNumber;
 | |
| 	else
 | |
| 		tupoffset++;
 | |
| 
 | |
| 	if (tupoffset > maxoffset)
 | |
| 		tupoffset = InvalidOffsetNumber;
 | |
| 
 | |
| 	sampler->lt = tupoffset;
 | |
| 
 | |
| 	PG_RETURN_UINT16(tupoffset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cleanup method.
 | |
|  */
 | |
| Datum
 | |
| tsm_system_time_end(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	TableSampleDesc *tsdesc = (TableSampleDesc *) PG_GETARG_POINTER(0);
 | |
| 
 | |
| 	pfree(tsdesc->tsmdata);
 | |
| 
 | |
| 	PG_RETURN_VOID();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reset state (called by ReScan).
 | |
|  */
 | |
| Datum
 | |
| tsm_system_time_reset(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	TableSampleDesc *tsdesc = (TableSampleDesc *) PG_GETARG_POINTER(0);
 | |
| 	SystemSamplerData *sampler = (SystemSamplerData *) tsdesc->tsmdata;
 | |
| 
 | |
| 	sampler->lt = InvalidOffsetNumber;
 | |
| 	sampler->start_time = GetCurrentTimestamp();
 | |
| 	sampler->end_time = TimestampTzPlusMilliseconds(sampler->start_time,
 | |
| 													sampler->time);
 | |
| 	sampler->estblocks = 2;
 | |
| 	sampler->doneblocks = 0;
 | |
| 
 | |
| 	sampler_random_init_state(sampler->seed, sampler->randstate);
 | |
| 	sampler->step = random_relative_prime(sampler->nblocks, sampler->randstate);
 | |
| 	sampler->lb = sampler_random_fract(sampler->randstate) * (sampler->nblocks / sampler->step);
 | |
| 
 | |
| 	PG_RETURN_VOID();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Costing function.
 | |
|  */
 | |
| Datum
 | |
| tsm_system_time_cost(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
 | |
| 	Path	   *path = (Path *) PG_GETARG_POINTER(1);
 | |
| 	RelOptInfo *baserel = (RelOptInfo *) PG_GETARG_POINTER(2);
 | |
| 	List	   *args = (List *) PG_GETARG_POINTER(3);
 | |
| 	BlockNumber *pages = (BlockNumber *) PG_GETARG_POINTER(4);
 | |
| 	double	   *tuples = (double *) PG_GETARG_POINTER(5);
 | |
| 	Node	   *limitnode;
 | |
| 	int32		time;
 | |
| 	BlockNumber relpages;
 | |
| 	double		reltuples;
 | |
| 	double		density;
 | |
| 	double		spc_random_page_cost;
 | |
| 
 | |
| 	limitnode = linitial(args);
 | |
| 	limitnode = estimate_expression_value(root, limitnode);
 | |
| 
 | |
| 	if (IsA(limitnode, RelabelType))
 | |
| 		limitnode = (Node *) ((RelabelType *) limitnode)->arg;
 | |
| 
 | |
| 	if (IsA(limitnode, Const))
 | |
| 		time = DatumGetInt32(((Const *) limitnode)->constvalue);
 | |
| 	else
 | |
| 	{
 | |
| 		/* Default time (1s) if the estimation didn't return Const. */
 | |
| 		time = 1000;
 | |
| 	}
 | |
| 
 | |
| 	relpages = baserel->pages;
 | |
| 	reltuples = baserel->tuples;
 | |
| 
 | |
| 	/* estimate the tuple density */
 | |
| 	if (relpages > 0)
 | |
| 		density = reltuples / (double) relpages;
 | |
| 	else
 | |
| 		density = (BLCKSZ - SizeOfPageHeaderData) / baserel->width;
 | |
| 
 | |
| 	/*
 | |
| 	 * We equal random page cost value to number of ms it takes to read the
 | |
| 	 * random page here which is far from accurate but we don't have anything
 | |
| 	 * better to base our predicted page reads.
 | |
| 	 */
 | |
| 	get_tablespace_page_costs(baserel->reltablespace,
 | |
| 							  &spc_random_page_cost,
 | |
| 							  NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Assumption here is that we'll never read less than 1% of table pages,
 | |
| 	 * this is here mainly because it is much less bad to overestimate than
 | |
| 	 * underestimate and using just spc_random_page_cost will probably lead to
 | |
| 	 * underestimations in general.
 | |
| 	 */
 | |
| 	*pages = Min(baserel->pages, Max(time / spc_random_page_cost, baserel->pages / 100));
 | |
| 	*tuples = rint(density * (double) *pages * path->rows / baserel->tuples);
 | |
| 	path->rows = *tuples;
 | |
| 
 | |
| 	PG_RETURN_VOID();
 | |
| }
 | |
| 
 | |
| static uint32
 | |
| gcd(uint32 a, uint32 b)
 | |
| {
 | |
| 	uint32		c;
 | |
| 
 | |
| 	while (a != 0)
 | |
| 	{
 | |
| 		c = a;
 | |
| 		a = b % a;
 | |
| 		b = c;
 | |
| 	}
 | |
| 
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| static uint32
 | |
| random_relative_prime(uint32 n, SamplerRandomState randstate)
 | |
| {
 | |
| 	/* Pick random starting number, with some limits on what it can be. */
 | |
| 	uint32		r = (uint32) sampler_random_fract(randstate) * n / 2 + n / 4,
 | |
| 				t;
 | |
| 
 | |
| 	/*
 | |
| 	 * This should only take 2 or 3 iterations as the probability of 2 numbers
 | |
| 	 * being relatively prime is ~61%.
 | |
| 	 */
 | |
| 	while ((t = gcd(r, n)) > 1)
 | |
| 	{
 | |
| 		CHECK_FOR_INTERRUPTS();
 | |
| 		r /= t;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 |