mirror of
https://github.com/postgres/postgres.git
synced 2025-08-31 17:02:12 +03:00
When doing partial aggregation, the args list of the upper (combining) Aggref node is replaced by a Var representing the output of the partial aggregation steps, which has either the aggregate's transition data type or a serialized representation of that. However, nodeAgg.c blindly continued to use the args list as an indication of the user-level argument types. This broke resolution of polymorphic transition datatypes at executor startup (though it accidentally failed to fail for the ANYARRAY case, which is likely the only one anyone had tested). Moreover, the constructed FuncExpr passed to the finalfunc contained completely wrong information, which would have led to bogus answers or crashes for any case where the finalfunc examined that information (which is only likely to be with polymorphic aggregates using a non-polymorphic transition type). As an independent bug, apply_partialaggref_adjustment neglected to resolve a polymorphic transition datatype before assigning it as the output type of the lower-level Aggref node. This again accidentally failed to fail for ANYARRAY but would be unlikely to work in other cases. To fix the first problem, record the user-level argument types in a separate OID-list field of Aggref, and look to that rather than the args list when asking what the argument types were. (It turns out to be convenient to include any "direct" arguments in this list too, although those are not currently subject to being overwritten.) Rather than adding yet another resolve_aggregate_transtype() call to fix the second problem, add an aggtranstype field to Aggref, and store the resolved transition type OID there when the planner first computes it. (By doing this in the planner and not the parser, we can allow the aggregate's transition type to change from time to time, although no DDL support yet exists for that.) This saves nothing of consequence for simple non-polymorphic aggregates, but for polymorphic transition types we save a catalog lookup during executor startup as well as several planner lookups that are new in 9.6 due to parallel query planning. In passing, fix an error that was introduced into count_agg_clauses_walker some time ago: it was applying exprTypmod() to something that wasn't an expression node at all, but a TargetEntry. exprTypmod silently returned -1 so that there was not an obvious failure, but this broke the intended sensitivity of aggregate space consumption estimates to the typmod of varchar and similar data types. This part needs to be back-patched. Catversion bump due to change of stored Aggref nodes. Discussion: <8229.1466109074@sss.pgh.pa.us>
src/backend/nodes/README Node Structures =============== Andrew Yu (11/94) Introduction ------------ The current node structures are plain old C structures. "Inheritance" is achieved by convention. No additional functions will be generated. Functions that manipulate node structures reside in this directory. FILES IN THIS DIRECTORY (src/backend/nodes/) General-purpose node manipulation functions: copyfuncs.c - copy a node tree equalfuncs.c - compare two node trees outfuncs.c - convert a node tree to text representation readfuncs.c - convert text representation back to a node tree makefuncs.c - creator functions for some common node types nodeFuncs.c - some other general-purpose manipulation functions Specialized manipulation functions: bitmapset.c - Bitmapset support list.c - generic list support params.c - Param support tidbitmap.c - TIDBitmap support value.c - support for Value nodes FILES IN src/include/nodes/ Node definitions: nodes.h - define node tags (NodeTag) primnodes.h - primitive nodes parsenodes.h - parse tree nodes plannodes.h - plan tree nodes relation.h - planner internal nodes execnodes.h - executor nodes memnodes.h - memory nodes pg_list.h - generic list Steps to Add a Node ------------------- Suppose you want to define a node Foo: 1. Add a tag (T_Foo) to the enum NodeTag in nodes.h. (If you insert the tag in a way that moves the numbers associated with existing tags, you'll need to recompile the whole tree after doing this. It doesn't force initdb though, because the numbers never go to disk.) 2. Add the structure definition to the appropriate include/nodes/???.h file. If you intend to inherit from, say a Plan node, put Plan as the first field of your struct definition. 3. If you intend to use copyObject, equal, nodeToString or stringToNode, add an appropriate function to copyfuncs.c, equalfuncs.c, outfuncs.c and readfuncs.c accordingly. (Except for frequently used nodes, don't bother writing a creator function in makefuncs.c) The header comments in those files give general rules for whether you need to add support. 4. Add cases to the functions in nodeFuncs.c as needed. There are many other places you'll probably also need to teach about your new node type. Best bet is to grep for references to one or two similar existing node types to find all the places to touch. Historical Note --------------- Prior to the current simple C structure definitions, the Node structures used a pseudo-inheritance system which automatically generated creator and accessor functions. Since every node inherited from LispValue, the whole thing was a mess. Here's a little anecdote: LispValue definition -- class used to support lisp structures in C. This is here because we did not want to totally rewrite planner and executor code which depended on lisp structures when we ported postgres V1 from lisp to C. -cim 4/23/90