mirror of
				https://github.com/postgres/postgres.git
				synced 2025-10-29 22:49:41 +03:00 
			
		
		
		
	This covers alterations to buffer sizing and zeroing made between imath 1.3 and imath 1.20. Valgrind Memcheck identified the buffer overruns and reliance on uninitialized data; their exploit potential is unknown. Builds specifying --with-openssl are unaffected, because they use the OpenSSL BIGNUM facility instead of imath. Back-patch to 9.0 (all supported versions). Security: CVE-2015-0243
		
			
				
	
	
		
			3688 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3688 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* imath version 1.3 */
 | |
| /*
 | |
|   Name:		imath.c
 | |
|   Purpose:	Arbitrary precision integer arithmetic routines.
 | |
|   Author:	M. J. Fromberger <http://spinning-yarns.org/michael/sw/>
 | |
|   Info:		Id: imath.c 21 2006-04-02 18:58:36Z sting
 | |
| 
 | |
|   Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
 | |
| 
 | |
|   Permission is hereby granted, free of charge, to any person
 | |
|   obtaining a copy of this software and associated documentation files
 | |
|   (the "Software"), to deal in the Software without restriction,
 | |
|   including without limitation the rights to use, copy, modify, merge,
 | |
|   publish, distribute, sublicense, and/or sell copies of the Software,
 | |
|   and to permit persons to whom the Software is furnished to do so,
 | |
|   subject to the following conditions:
 | |
| 
 | |
|   The above copyright notice and this permission notice shall be
 | |
|   included in all copies or substantial portions of the Software.
 | |
| 
 | |
|   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|   NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|   BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|   ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|   SOFTWARE.
 | |
|  */
 | |
| /* contrib/pgcrypto/imath.c */
 | |
| 
 | |
| #include "postgres.h"
 | |
| #include "px.h"
 | |
| #include "imath.h"
 | |
| 
 | |
| #undef assert
 | |
| #define assert(TEST) Assert(TEST)
 | |
| #define TRACEABLE_CLAMP 0
 | |
| #define TRACEABLE_FREE 0
 | |
| 
 | |
| /* {{{ Constants */
 | |
| 
 | |
| const mp_result MP_OK = 0;		/* no error, all is well  */
 | |
| const mp_result MP_FALSE = 0;	/* boolean false		  */
 | |
| const mp_result MP_TRUE = -1;	/* boolean true			  */
 | |
| const mp_result MP_MEMORY = -2; /* out of memory		  */
 | |
| const mp_result MP_RANGE = -3;	/* argument out of range  */
 | |
| const mp_result MP_UNDEF = -4;	/* result undefined		  */
 | |
| const mp_result MP_TRUNC = -5;	/* output truncated		  */
 | |
| const mp_result MP_BADARG = -6; /* invalid null argument  */
 | |
| 
 | |
| const mp_sign MP_NEG = 1;		/* value is strictly negative */
 | |
| const mp_sign MP_ZPOS = 0;		/* value is non-negative	  */
 | |
| 
 | |
| static const char *s_unknown_err = "unknown result code";
 | |
| static const char *s_error_msg[] = {
 | |
| 	"error code 0",
 | |
| 	"boolean true",
 | |
| 	"out of memory",
 | |
| 	"argument out of range",
 | |
| 	"result undefined",
 | |
| 	"output truncated",
 | |
| 	"invalid null argument",
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* Optional library flags */
 | |
| #define MP_CAP_DIGITS	1		/* flag bit to capitalize letter digits */
 | |
| 
 | |
| /* Argument checking macros
 | |
|    Use CHECK() where a return value is required; NRCHECK() elsewhere */
 | |
| #define CHECK(TEST)   assert(TEST)
 | |
| #define NRCHECK(TEST) assert(TEST)
 | |
| 
 | |
| /* {{{ Logarithm table for computing output sizes */
 | |
| 
 | |
| /* The ith entry of this table gives the value of log_i(2).
 | |
| 
 | |
|    An integer value n requires ceil(log_i(n)) digits to be represented
 | |
|    in base i.  Since it is easy to compute lg(n), by counting bits, we
 | |
|    can compute log_i(n) = lg(n) * log_i(2).
 | |
|  */
 | |
| static const double s_log2[] = {
 | |
| 	0.000000000, 0.000000000, 1.000000000, 0.630929754, /* 0  1  2	3 */
 | |
| 	0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4  5  6	7 */
 | |
| 	0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8  9 10 11 */
 | |
| 	0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
 | |
| 	0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
 | |
| 	0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
 | |
| 	0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
 | |
| 	0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
 | |
| 	0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
 | |
| 	0.193426404, 0.191958720, 0.190551412, 0.189200360, /* 36 37 38 39 */
 | |
| 	0.187901825, 0.186652411, 0.185449023, 0.184288833, /* 40 41 42 43 */
 | |
| 	0.183169251, 0.182087900, 0.181042597, 0.180031327, /* 44 45 46 47 */
 | |
| 	0.179052232, 0.178103594, 0.177183820, 0.176291434, /* 48 49 50 51 */
 | |
| 	0.175425064, 0.174583430, 0.173765343, 0.172969690, /* 52 53 54 55 */
 | |
| 	0.172195434, 0.171441601, 0.170707280, 0.169991616, /* 56 57 58 59 */
 | |
| 	0.169293808, 0.168613099, 0.167948779, 0.167300179, /* 60 61 62 63 */
 | |
| 	0.166666667
 | |
| };
 | |
| 
 | |
| /* }}} */
 | |
| /* {{{ Various macros */
 | |
| 
 | |
| /* Return the number of digits needed to represent a static value */
 | |
| #define MP_VALUE_DIGITS(V) \
 | |
| ((sizeof(V)+(sizeof(mp_digit)-1))/sizeof(mp_digit))
 | |
| 
 | |
| /* Round precision P to nearest word boundary */
 | |
| #define ROUND_PREC(P) ((mp_size)(2*(((P)+1)/2)))
 | |
| 
 | |
| /* Set array P of S digits to zero */
 | |
| #define ZERO(P, S) \
 | |
| do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P);memset(p__,0,i__);}while(0)
 | |
| 
 | |
| /* Copy S digits from array P to array Q */
 | |
| #define COPY(P, Q, S) \
 | |
| do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P),*q__=(Q);\
 | |
| memcpy(q__,p__,i__);}while(0)
 | |
| 
 | |
| /* Reverse N elements of type T in array A */
 | |
| #define REV(T, A, N) \
 | |
| do{T *u_=(A),*v_=u_+(N)-1;while(u_<v_){T xch=*u_;*u_++=*v_;*v_--=xch;}}while(0)
 | |
| 
 | |
| #if TRACEABLE_CLAMP
 | |
| #define CLAMP(Z) s_clamp(Z)
 | |
| #else
 | |
| #define CLAMP(Z) \
 | |
| do{mp_int z_=(Z);mp_size uz_=MP_USED(z_);mp_digit *dz_=MP_DIGITS(z_)+uz_-1;\
 | |
| while(uz_ > 1 && (*dz_-- == 0)) --uz_;MP_USED(z_)=uz_;}while(0)
 | |
| #endif
 | |
| 
 | |
| #undef MIN
 | |
| #undef MAX
 | |
| #define MIN(A, B) ((B)<(A)?(B):(A))
 | |
| #define MAX(A, B) ((B)>(A)?(B):(A))
 | |
| #define SWAP(T, A, B) do{T t_=(A);A=(B);B=t_;}while(0)
 | |
| 
 | |
| #define TEMP(K) (temp + (K))
 | |
| #define SETUP(E, C) \
 | |
| do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0)
 | |
| 
 | |
| #define CMPZ(Z) \
 | |
| (((Z)->used==1&&(Z)->digits[0]==0)?0:((Z)->sign==MP_NEG)?-1:1)
 | |
| 
 | |
| #define UMUL(X, Y, Z) \
 | |
| do{mp_size ua_=MP_USED(X),ub_=MP_USED(Y);mp_size o_=ua_+ub_;\
 | |
| ZERO(MP_DIGITS(Z),o_);\
 | |
| (void) s_kmul(MP_DIGITS(X),MP_DIGITS(Y),MP_DIGITS(Z),ua_,ub_);\
 | |
| MP_USED(Z)=o_;CLAMP(Z);}while(0)
 | |
| 
 | |
| #define USQR(X, Z) \
 | |
| do{mp_size ua_=MP_USED(X),o_=ua_+ua_;ZERO(MP_DIGITS(Z),o_);\
 | |
| (void) s_ksqr(MP_DIGITS(X),MP_DIGITS(Z),ua_);MP_USED(Z)=o_;CLAMP(Z);}while(0)
 | |
| 
 | |
| #define UPPER_HALF(W)			((mp_word)((W) >> MP_DIGIT_BIT))
 | |
| #define LOWER_HALF(W)			((mp_digit)(W))
 | |
| #define HIGH_BIT_SET(W)			((W) >> (MP_WORD_BIT - 1))
 | |
| #define ADD_WILL_OVERFLOW(W, V) ((MP_WORD_MAX - (V)) < (W))
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* Default number of digits allocated to a new mp_int */
 | |
| static mp_size default_precision = 64;
 | |
| 
 | |
| /* Minimum number of digits to invoke recursive multiply */
 | |
| static mp_size multiply_threshold = 32;
 | |
| 
 | |
| /* Default library configuration flags */
 | |
| static mp_word mp_flags = MP_CAP_DIGITS;
 | |
| 
 | |
| /* Allocate a buffer of (at least) num digits, or return
 | |
|    NULL if that couldn't be done.  */
 | |
| static mp_digit *s_alloc(mp_size num);
 | |
| 
 | |
| #if TRACEABLE_FREE
 | |
| static void s_free(void *ptr);
 | |
| #else
 | |
| #define s_free(P) px_free(P)
 | |
| #endif
 | |
| 
 | |
| /* Insure that z has at least min digits allocated, resizing if
 | |
|    necessary.  Returns true if successful, false if out of memory. */
 | |
| static int	s_pad(mp_int z, mp_size min);
 | |
| 
 | |
| /* Normalize by removing leading zeroes (except when z = 0) */
 | |
| #if TRACEABLE_CLAMP
 | |
| static void s_clamp(mp_int z);
 | |
| #endif
 | |
| 
 | |
| /* Fill in a "fake" mp_int on the stack with a given value */
 | |
| static void s_fake(mp_int z, int value, mp_digit vbuf[]);
 | |
| 
 | |
| /* Compare two runs of digits of given length, returns <0, 0, >0 */
 | |
| static int	s_cdig(mp_digit *da, mp_digit *db, mp_size len);
 | |
| 
 | |
| /* Pack the unsigned digits of v into array t */
 | |
| static int	s_vpack(int v, mp_digit t[]);
 | |
| 
 | |
| /* Compare magnitudes of a and b, returns <0, 0, >0 */
 | |
| static int	s_ucmp(mp_int a, mp_int b);
 | |
| 
 | |
| /* Compare magnitudes of a and v, returns <0, 0, >0 */
 | |
| static int	s_vcmp(mp_int a, int v);
 | |
| 
 | |
| /* Unsigned magnitude addition; assumes dc is big enough.
 | |
|    Carry out is returned (no memory allocated). */
 | |
| static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
 | |
| 	   mp_size size_a, mp_size size_b);
 | |
| 
 | |
| /* Unsigned magnitude subtraction.  Assumes dc is big enough. */
 | |
| static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
 | |
| 	   mp_size size_a, mp_size size_b);
 | |
| 
 | |
| /* Unsigned recursive multiplication.  Assumes dc is big enough. */
 | |
| static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
 | |
| 	   mp_size size_a, mp_size size_b);
 | |
| 
 | |
| /* Unsigned magnitude multiplication.  Assumes dc is big enough. */
 | |
| static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
 | |
| 	   mp_size size_a, mp_size size_b);
 | |
| 
 | |
| /* Unsigned recursive squaring.  Assumes dc is big enough. */
 | |
| static int	s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
 | |
| 
 | |
| /* Unsigned magnitude squaring.  Assumes dc is big enough. */
 | |
| static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
 | |
| 
 | |
| /* Single digit addition.  Assumes a is big enough. */
 | |
| static void s_dadd(mp_int a, mp_digit b);
 | |
| 
 | |
| /* Single digit multiplication.  Assumes a is big enough. */
 | |
| static void s_dmul(mp_int a, mp_digit b);
 | |
| 
 | |
| /* Single digit multiplication on buffers; assumes dc is big enough. */
 | |
| static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc,
 | |
| 		mp_size size_a);
 | |
| 
 | |
| /* Single digit division.  Replaces a with the quotient,
 | |
|    returns the remainder.  */
 | |
| static mp_digit s_ddiv(mp_int a, mp_digit b);
 | |
| 
 | |
| /* Quick division by a power of 2, replaces z (no allocation) */
 | |
| static void s_qdiv(mp_int z, mp_size p2);
 | |
| 
 | |
| /* Quick remainder by a power of 2, replaces z (no allocation) */
 | |
| static void s_qmod(mp_int z, mp_size p2);
 | |
| 
 | |
| /* Quick multiplication by a power of 2, replaces z.
 | |
|    Allocates if necessary; returns false in case this fails. */
 | |
| static int	s_qmul(mp_int z, mp_size p2);
 | |
| 
 | |
| /* Quick subtraction from a power of 2, replaces z.
 | |
|    Allocates if necessary; returns false in case this fails. */
 | |
| static int	s_qsub(mp_int z, mp_size p2);
 | |
| 
 | |
| /* Return maximum k such that 2^k divides z. */
 | |
| static int	s_dp2k(mp_int z);
 | |
| 
 | |
| /* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
 | |
| static int	s_isp2(mp_int z);
 | |
| 
 | |
| /* Set z to 2^k.  May allocate; returns false in case this fails. */
 | |
| static int	s_2expt(mp_int z, int k);
 | |
| 
 | |
| /* Normalize a and b for division, returns normalization constant */
 | |
| static int	s_norm(mp_int a, mp_int b);
 | |
| 
 | |
| /* Compute constant mu for Barrett reduction, given modulus m, result
 | |
|    replaces z, m is untouched. */
 | |
| static mp_result s_brmu(mp_int z, mp_int m);
 | |
| 
 | |
| /* Reduce a modulo m, using Barrett's algorithm. */
 | |
| static int	s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
 | |
| 
 | |
| /* Modular exponentiation, using Barrett reduction */
 | |
| static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
 | |
| 
 | |
| /* Unsigned magnitude division.  Assumes |a| > |b|.  Allocates
 | |
|    temporaries; overwrites a with quotient, b with remainder. */
 | |
| static mp_result s_udiv(mp_int a, mp_int b);
 | |
| 
 | |
| /* Compute the number of digits in radix r required to represent the
 | |
|    given value.  Does not account for sign flags, terminators, etc. */
 | |
| static int	s_outlen(mp_int z, mp_size r);
 | |
| 
 | |
| /* Guess how many digits of precision will be needed to represent a
 | |
|    radix r value of the specified number of digits.  Returns a value
 | |
|    guaranteed to be no smaller than the actual number required. */
 | |
| static mp_size s_inlen(int len, mp_size r);
 | |
| 
 | |
| /* Convert a character to a digit value in radix r, or
 | |
|    -1 if out of range */
 | |
| static int	s_ch2val(char c, int r);
 | |
| 
 | |
| /* Convert a digit value to a character */
 | |
| static char s_val2ch(int v, int caps);
 | |
| 
 | |
| /* Take 2's complement of a buffer in place */
 | |
| static void s_2comp(unsigned char *buf, int len);
 | |
| 
 | |
| /* Convert a value to binary, ignoring sign.  On input, *limpos is the
 | |
|    bound on how many bytes should be written to buf; on output, *limpos
 | |
|    is set to the number of bytes actually written. */
 | |
| static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
 | |
| 
 | |
| #if 0
 | |
| /* Dump a representation of the mp_int to standard output */
 | |
| void		s_print(char *tag, mp_int z);
 | |
| void		s_print_buf(char *tag, mp_digit *buf, mp_size num);
 | |
| #endif
 | |
| 
 | |
| /* {{{ get_default_precision() */
 | |
| 
 | |
| mp_size
 | |
| mp_get_default_precision(void)
 | |
| {
 | |
| 	return default_precision;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_set_default_precision(s) */
 | |
| 
 | |
| void
 | |
| mp_set_default_precision(mp_size s)
 | |
| {
 | |
| 	NRCHECK(s > 0);
 | |
| 
 | |
| 	default_precision = (mp_size) ROUND_PREC(s);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_get_multiply_threshold() */
 | |
| 
 | |
| mp_size
 | |
| mp_get_multiply_threshold(void)
 | |
| {
 | |
| 	return multiply_threshold;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_set_multiply_threshold(s) */
 | |
| 
 | |
| void
 | |
| mp_set_multiply_threshold(mp_size s)
 | |
| {
 | |
| 	multiply_threshold = s;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_init(z) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_init(mp_int z)
 | |
| {
 | |
| 	return mp_int_init_size(z, default_precision);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_alloc() */
 | |
| 
 | |
| mp_int
 | |
| mp_int_alloc(void)
 | |
| {
 | |
| 	mp_int		out = px_alloc(sizeof(mpz_t));
 | |
| 
 | |
| 	assert(out != NULL);
 | |
| 	out->digits = NULL;
 | |
| 	out->used = 0;
 | |
| 	out->alloc = 0;
 | |
| 	out->sign = 0;
 | |
| 
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_init_size(z, prec) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_init_size(mp_int z, mp_size prec)
 | |
| {
 | |
| 	CHECK(z != NULL);
 | |
| 
 | |
| 	prec = (mp_size) ROUND_PREC(prec);
 | |
| 	prec = MAX(prec, default_precision);
 | |
| 
 | |
| 	if ((MP_DIGITS(z) = s_alloc(prec)) == NULL)
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	z->digits[0] = 0;
 | |
| 	MP_USED(z) = 1;
 | |
| 	MP_ALLOC(z) = prec;
 | |
| 	MP_SIGN(z) = MP_ZPOS;
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_init_copy(z, old) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_init_copy(mp_int z, mp_int old)
 | |
| {
 | |
| 	mp_result	res;
 | |
| 	mp_size		uold,
 | |
| 				target;
 | |
| 
 | |
| 	CHECK(z != NULL && old != NULL);
 | |
| 
 | |
| 	uold = MP_USED(old);
 | |
| 	target = MAX(uold, default_precision);
 | |
| 
 | |
| 	if ((res = mp_int_init_size(z, target)) != MP_OK)
 | |
| 		return res;
 | |
| 
 | |
| 	MP_USED(z) = uold;
 | |
| 	MP_SIGN(z) = MP_SIGN(old);
 | |
| 	COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_init_value(z, value) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_init_value(mp_int z, int value)
 | |
| {
 | |
| 	mp_result	res;
 | |
| 
 | |
| 	CHECK(z != NULL);
 | |
| 
 | |
| 	if ((res = mp_int_init(z)) != MP_OK)
 | |
| 		return res;
 | |
| 
 | |
| 	return mp_int_set_value(z, value);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_set_value(z, value) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_set_value(mp_int z, int value)
 | |
| {
 | |
| 	mp_size		ndig;
 | |
| 
 | |
| 	CHECK(z != NULL);
 | |
| 
 | |
| 	/* How many digits to copy */
 | |
| 	ndig = (mp_size) MP_VALUE_DIGITS(value);
 | |
| 
 | |
| 	if (!s_pad(z, ndig))
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	MP_USED(z) = (mp_size) s_vpack(value, MP_DIGITS(z));
 | |
| 	MP_SIGN(z) = (value < 0) ? MP_NEG : MP_ZPOS;
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_clear(z) */
 | |
| 
 | |
| void
 | |
| mp_int_clear(mp_int z)
 | |
| {
 | |
| 	if (z == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	if (MP_DIGITS(z) != NULL)
 | |
| 	{
 | |
| 		s_free(MP_DIGITS(z));
 | |
| 		MP_DIGITS(z) = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_free(z) */
 | |
| 
 | |
| void
 | |
| mp_int_free(mp_int z)
 | |
| {
 | |
| 	NRCHECK(z != NULL);
 | |
| 
 | |
| 	if (z->digits != NULL)
 | |
| 		mp_int_clear(z);
 | |
| 
 | |
| 	px_free(z);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_copy(a, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_copy(mp_int a, mp_int c)
 | |
| {
 | |
| 	CHECK(a != NULL && c != NULL);
 | |
| 
 | |
| 	if (a != c)
 | |
| 	{
 | |
| 		mp_size		ua = MP_USED(a);
 | |
| 		mp_digit   *da,
 | |
| 				   *dc;
 | |
| 
 | |
| 		if (!s_pad(c, ua))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		da = MP_DIGITS(a);
 | |
| 		dc = MP_DIGITS(c);
 | |
| 		COPY(da, dc, ua);
 | |
| 
 | |
| 		MP_USED(c) = ua;
 | |
| 		MP_SIGN(c) = MP_SIGN(a);
 | |
| 	}
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_swap(a, c) */
 | |
| 
 | |
| void
 | |
| mp_int_swap(mp_int a, mp_int c)
 | |
| {
 | |
| 	if (a != c)
 | |
| 	{
 | |
| 		mpz_t		tmp = *a;
 | |
| 
 | |
| 		*a = *c;
 | |
| 		*c = tmp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_zero(z) */
 | |
| 
 | |
| void
 | |
| mp_int_zero(mp_int z)
 | |
| {
 | |
| 	NRCHECK(z != NULL);
 | |
| 
 | |
| 	z->digits[0] = 0;
 | |
| 	MP_USED(z) = 1;
 | |
| 	MP_SIGN(z) = MP_ZPOS;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_abs(a, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_abs(mp_int a, mp_int c)
 | |
| {
 | |
| 	mp_result	res;
 | |
| 
 | |
| 	CHECK(a != NULL && c != NULL);
 | |
| 
 | |
| 	if ((res = mp_int_copy(a, c)) != MP_OK)
 | |
| 		return res;
 | |
| 
 | |
| 	MP_SIGN(c) = MP_ZPOS;
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_neg(a, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_neg(mp_int a, mp_int c)
 | |
| {
 | |
| 	mp_result	res;
 | |
| 
 | |
| 	CHECK(a != NULL && c != NULL);
 | |
| 
 | |
| 	if ((res = mp_int_copy(a, c)) != MP_OK)
 | |
| 		return res;
 | |
| 
 | |
| 	if (CMPZ(c) != 0)
 | |
| 		MP_SIGN(c) = 1 - MP_SIGN(a);
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_add(a, b, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_add(mp_int a, mp_int b, mp_int c)
 | |
| {
 | |
| 	mp_size		ua,
 | |
| 				ub,
 | |
| 				uc,
 | |
| 				max;
 | |
| 
 | |
| 	CHECK(a != NULL && b != NULL && c != NULL);
 | |
| 
 | |
| 	ua = MP_USED(a);
 | |
| 	ub = MP_USED(b);
 | |
| 	uc = MP_USED(c);
 | |
| 	max = MAX(ua, ub);
 | |
| 
 | |
| 	if (MP_SIGN(a) == MP_SIGN(b))
 | |
| 	{
 | |
| 		/* Same sign -- add magnitudes, preserve sign of addends */
 | |
| 		mp_digit	carry;
 | |
| 
 | |
| 		if (!s_pad(c, max))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
 | |
| 		uc = max;
 | |
| 
 | |
| 		if (carry)
 | |
| 		{
 | |
| 			if (!s_pad(c, max + 1))
 | |
| 				return MP_MEMORY;
 | |
| 
 | |
| 			c->digits[max] = carry;
 | |
| 			++uc;
 | |
| 		}
 | |
| 
 | |
| 		MP_USED(c) = uc;
 | |
| 		MP_SIGN(c) = MP_SIGN(a);
 | |
| 
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		/* Different signs -- subtract magnitudes, preserve sign of greater */
 | |
| 		mp_int		x,
 | |
| 					y;
 | |
| 		int			cmp = s_ucmp(a, b); /* magnitude comparison, sign ignored */
 | |
| 
 | |
| 		/* Set x to max(a, b), y to min(a, b) to simplify later code */
 | |
| 		if (cmp >= 0)
 | |
| 		{
 | |
| 			x = a;
 | |
| 			y = b;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			x = b;
 | |
| 			y = a;
 | |
| 		}
 | |
| 
 | |
| 		if (!s_pad(c, MP_USED(x)))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		/* Subtract smaller from larger */
 | |
| 		s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
 | |
| 		MP_USED(c) = MP_USED(x);
 | |
| 		CLAMP(c);
 | |
| 
 | |
| 		/* Give result the sign of the larger */
 | |
| 		MP_SIGN(c) = MP_SIGN(x);
 | |
| 	}
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_add_value(a, value, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_add_value(mp_int a, int value, mp_int c)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	return mp_int_add(a, &vtmp, c);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_sub(a, b, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_sub(mp_int a, mp_int b, mp_int c)
 | |
| {
 | |
| 	mp_size		ua,
 | |
| 				ub,
 | |
| 				uc,
 | |
| 				max;
 | |
| 
 | |
| 	CHECK(a != NULL && b != NULL && c != NULL);
 | |
| 
 | |
| 	ua = MP_USED(a);
 | |
| 	ub = MP_USED(b);
 | |
| 	uc = MP_USED(c);
 | |
| 	max = MAX(ua, ub);
 | |
| 
 | |
| 	if (MP_SIGN(a) != MP_SIGN(b))
 | |
| 	{
 | |
| 		/* Different signs -- add magnitudes and keep sign of a */
 | |
| 		mp_digit	carry;
 | |
| 
 | |
| 		if (!s_pad(c, max))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
 | |
| 		uc = max;
 | |
| 
 | |
| 		if (carry)
 | |
| 		{
 | |
| 			if (!s_pad(c, max + 1))
 | |
| 				return MP_MEMORY;
 | |
| 
 | |
| 			c->digits[max] = carry;
 | |
| 			++uc;
 | |
| 		}
 | |
| 
 | |
| 		MP_USED(c) = uc;
 | |
| 		MP_SIGN(c) = MP_SIGN(a);
 | |
| 
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		/* Same signs -- subtract magnitudes */
 | |
| 		mp_int		x,
 | |
| 					y;
 | |
| 		mp_sign		osign;
 | |
| 		int			cmp = s_ucmp(a, b);
 | |
| 
 | |
| 		if (!s_pad(c, max))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		if (cmp >= 0)
 | |
| 		{
 | |
| 			x = a;
 | |
| 			y = b;
 | |
| 			osign = MP_ZPOS;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			x = b;
 | |
| 			y = a;
 | |
| 			osign = MP_NEG;
 | |
| 		}
 | |
| 
 | |
| 		if (MP_SIGN(a) == MP_NEG && cmp != 0)
 | |
| 			osign = 1 - osign;
 | |
| 
 | |
| 		s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
 | |
| 		MP_USED(c) = MP_USED(x);
 | |
| 		CLAMP(c);
 | |
| 
 | |
| 		MP_SIGN(c) = osign;
 | |
| 	}
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_sub_value(a, value, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_sub_value(mp_int a, int value, mp_int c)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	return mp_int_sub(a, &vtmp, c);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_mul(a, b, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_mul(mp_int a, mp_int b, mp_int c)
 | |
| {
 | |
| 	mp_digit   *out;
 | |
| 	mp_size		osize,
 | |
| 				ua,
 | |
| 				ub,
 | |
| 				p = 0;
 | |
| 	mp_sign		osign;
 | |
| 
 | |
| 	CHECK(a != NULL && b != NULL && c != NULL);
 | |
| 
 | |
| 	/* If either input is zero, we can shortcut multiplication */
 | |
| 	if (mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0)
 | |
| 	{
 | |
| 		mp_int_zero(c);
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 
 | |
| 	/* Output is positive if inputs have same sign, otherwise negative */
 | |
| 	osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the output is not equal to any of the inputs, we'll write the
 | |
| 	 * results there directly; otherwise, allocate a temporary space.
 | |
| 	 */
 | |
| 	ua = MP_USED(a);
 | |
| 	ub = MP_USED(b);
 | |
| 	osize = MAX(ua, ub);
 | |
| 	osize = 4 * ((osize + 1) / 2);
 | |
| 
 | |
| 	if (c == a || c == b)
 | |
| 	{
 | |
| 		p = ROUND_PREC(osize);
 | |
| 		p = MAX(p, default_precision);
 | |
| 
 | |
| 		if ((out = s_alloc(p)) == NULL)
 | |
| 			return MP_MEMORY;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (!s_pad(c, osize))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		out = MP_DIGITS(c);
 | |
| 	}
 | |
| 	ZERO(out, osize);
 | |
| 
 | |
| 	if (!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub))
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we allocated a new buffer, get rid of whatever memory c was already
 | |
| 	 * using, and fix up its fields to reflect that.
 | |
| 	 */
 | |
| 	if (out != MP_DIGITS(c))
 | |
| 	{
 | |
| 		s_free(MP_DIGITS(c));
 | |
| 		MP_DIGITS(c) = out;
 | |
| 		MP_ALLOC(c) = p;
 | |
| 	}
 | |
| 
 | |
| 	MP_USED(c) = osize;			/* might not be true, but we'll fix it ... */
 | |
| 	CLAMP(c);					/* ... right here */
 | |
| 	MP_SIGN(c) = osign;
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_mul_value(a, value, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_mul_value(mp_int a, int value, mp_int c)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	return mp_int_mul(a, &vtmp, c);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_mul_pow2(a, p2, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_mul_pow2(mp_int a, int p2, mp_int c)
 | |
| {
 | |
| 	mp_result	res;
 | |
| 
 | |
| 	CHECK(a != NULL && c != NULL && p2 >= 0);
 | |
| 
 | |
| 	if ((res = mp_int_copy(a, c)) != MP_OK)
 | |
| 		return res;
 | |
| 
 | |
| 	if (s_qmul(c, (mp_size) p2))
 | |
| 		return MP_OK;
 | |
| 	else
 | |
| 		return MP_MEMORY;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_sqr(a, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_sqr(mp_int a, mp_int c)
 | |
| {
 | |
| 	mp_digit   *out;
 | |
| 	mp_size		osize,
 | |
| 				p = 0;
 | |
| 
 | |
| 	CHECK(a != NULL && c != NULL);
 | |
| 
 | |
| 	/* Get a temporary buffer big enough to hold the result */
 | |
| 	osize = (mp_size) 4 *((MP_USED(a) + 1) / 2);
 | |
| 
 | |
| 	if (a == c)
 | |
| 	{
 | |
| 		p = ROUND_PREC(osize);
 | |
| 		p = MAX(p, default_precision);
 | |
| 
 | |
| 		if ((out = s_alloc(p)) == NULL)
 | |
| 			return MP_MEMORY;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (!s_pad(c, osize))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		out = MP_DIGITS(c);
 | |
| 	}
 | |
| 	ZERO(out, osize);
 | |
| 
 | |
| 	s_ksqr(MP_DIGITS(a), out, MP_USED(a));
 | |
| 
 | |
| 	/*
 | |
| 	 * Get rid of whatever memory c was already using, and fix up its fields
 | |
| 	 * to reflect the new digit array it's using
 | |
| 	 */
 | |
| 	if (out != MP_DIGITS(c))
 | |
| 	{
 | |
| 		s_free(MP_DIGITS(c));
 | |
| 		MP_DIGITS(c) = out;
 | |
| 		MP_ALLOC(c) = p;
 | |
| 	}
 | |
| 
 | |
| 	MP_USED(c) = osize;			/* might not be true, but we'll fix it ... */
 | |
| 	CLAMP(c);					/* ... right here */
 | |
| 	MP_SIGN(c) = MP_ZPOS;
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_div(a, b, q, r) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
 | |
| {
 | |
| 	int			cmp,
 | |
| 				last = 0,
 | |
| 				lg;
 | |
| 	mp_result	res = MP_OK;
 | |
| 	mpz_t		temp[2];
 | |
| 	mp_int		qout,
 | |
| 				rout;
 | |
| 	mp_sign		sa = MP_SIGN(a),
 | |
| 				sb = MP_SIGN(b);
 | |
| 
 | |
| 	CHECK(a != NULL && b != NULL && q != r);
 | |
| 
 | |
| 	if (CMPZ(b) == 0)
 | |
| 		return MP_UNDEF;
 | |
| 	else if ((cmp = s_ucmp(a, b)) < 0)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * If |a| < |b|, no division is required: q = 0, r = a
 | |
| 		 */
 | |
| 		if (r && (res = mp_int_copy(a, r)) != MP_OK)
 | |
| 			return res;
 | |
| 
 | |
| 		if (q)
 | |
| 			mp_int_zero(q);
 | |
| 
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 	else if (cmp == 0)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * If |a| = |b|, no division is required: q = 1 or -1, r = 0
 | |
| 		 */
 | |
| 		if (r)
 | |
| 			mp_int_zero(r);
 | |
| 
 | |
| 		if (q)
 | |
| 		{
 | |
| 			mp_int_zero(q);
 | |
| 			q->digits[0] = 1;
 | |
| 
 | |
| 			if (sa != sb)
 | |
| 				MP_SIGN(q) = MP_NEG;
 | |
| 		}
 | |
| 
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When |a| > |b|, real division is required.  We need someplace to store
 | |
| 	 * quotient and remainder, but q and r are allowed to be NULL or to
 | |
| 	 * overlap with the inputs.
 | |
| 	 */
 | |
| 	if ((lg = s_isp2(b)) < 0)
 | |
| 	{
 | |
| 		if (q && b != q && (res = mp_int_copy(a, q)) == MP_OK)
 | |
| 		{
 | |
| 			qout = q;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			qout = TEMP(last);
 | |
| 			SETUP(mp_int_init_copy(TEMP(last), a), last);
 | |
| 		}
 | |
| 
 | |
| 		if (r && a != r && (res = mp_int_copy(b, r)) == MP_OK)
 | |
| 		{
 | |
| 			rout = r;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			rout = TEMP(last);
 | |
| 			SETUP(mp_int_init_copy(TEMP(last), b), last);
 | |
| 		}
 | |
| 
 | |
| 		if ((res = s_udiv(qout, rout)) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (q && (res = mp_int_copy(a, q)) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 		if (r && (res = mp_int_copy(a, r)) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 
 | |
| 		if (q)
 | |
| 			s_qdiv(q, (mp_size) lg);
 | |
| 		qout = q;
 | |
| 		if (r)
 | |
| 			s_qmod(r, (mp_size) lg);
 | |
| 		rout = r;
 | |
| 	}
 | |
| 
 | |
| 	/* Recompute signs for output */
 | |
| 	if (rout)
 | |
| 	{
 | |
| 		MP_SIGN(rout) = sa;
 | |
| 		if (CMPZ(rout) == 0)
 | |
| 			MP_SIGN(rout) = MP_ZPOS;
 | |
| 	}
 | |
| 	if (qout)
 | |
| 	{
 | |
| 		MP_SIGN(qout) = (sa == sb) ? MP_ZPOS : MP_NEG;
 | |
| 		if (CMPZ(qout) == 0)
 | |
| 			MP_SIGN(qout) = MP_ZPOS;
 | |
| 	}
 | |
| 
 | |
| 	if (q && (res = mp_int_copy(qout, q)) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 	if (r && (res = mp_int_copy(rout, r)) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 
 | |
| CLEANUP:
 | |
| 	while (--last >= 0)
 | |
| 		mp_int_clear(TEMP(last));
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_mod(a, m, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_mod(mp_int a, mp_int m, mp_int c)
 | |
| {
 | |
| 	mp_result	res;
 | |
| 	mpz_t		tmp;
 | |
| 	mp_int		out;
 | |
| 
 | |
| 	if (m == c)
 | |
| 	{
 | |
| 		if ((res = mp_int_init(&tmp)) != MP_OK)
 | |
| 			return res;
 | |
| 
 | |
| 		out = &tmp;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		out = c;
 | |
| 	}
 | |
| 
 | |
| 	if ((res = mp_int_div(a, m, NULL, out)) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 
 | |
| 	if (CMPZ(out) < 0)
 | |
| 		res = mp_int_add(out, m, c);
 | |
| 	else
 | |
| 		res = mp_int_copy(out, c);
 | |
| 
 | |
| CLEANUP:
 | |
| 	if (out != c)
 | |
| 		mp_int_clear(&tmp);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| 
 | |
| /* {{{ mp_int_div_value(a, value, q, r) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_div_value(mp_int a, int value, mp_int q, int *r)
 | |
| {
 | |
| 	mpz_t		vtmp,
 | |
| 				rtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 	mp_result	res;
 | |
| 
 | |
| 	if ((res = mp_int_init(&rtmp)) != MP_OK)
 | |
| 		return res;
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	if ((res = mp_int_div(a, &vtmp, q, &rtmp)) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 
 | |
| 	if (r)
 | |
| 		(void) mp_int_to_int(&rtmp, r); /* can't fail */
 | |
| 
 | |
| CLEANUP:
 | |
| 	mp_int_clear(&rtmp);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_div_pow2(a, p2, q, r) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_div_pow2(mp_int a, int p2, mp_int q, mp_int r)
 | |
| {
 | |
| 	mp_result	res = MP_OK;
 | |
| 
 | |
| 	CHECK(a != NULL && p2 >= 0 && q != r);
 | |
| 
 | |
| 	if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
 | |
| 		s_qdiv(q, (mp_size) p2);
 | |
| 
 | |
| 	if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
 | |
| 		s_qmod(r, (mp_size) p2);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_expt(a, b, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_expt(mp_int a, int b, mp_int c)
 | |
| {
 | |
| 	mpz_t		t;
 | |
| 	mp_result	res;
 | |
| 	unsigned int v = abs(b);
 | |
| 
 | |
| 	CHECK(b >= 0 && c != NULL);
 | |
| 
 | |
| 	if ((res = mp_int_init_copy(&t, a)) != MP_OK)
 | |
| 		return res;
 | |
| 
 | |
| 	(void) mp_int_set_value(c, 1);
 | |
| 	while (v != 0)
 | |
| 	{
 | |
| 		if (v & 1)
 | |
| 		{
 | |
| 			if ((res = mp_int_mul(c, &t, c)) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 		}
 | |
| 
 | |
| 		v >>= 1;
 | |
| 		if (v == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if ((res = mp_int_sqr(&t, &t)) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 	}
 | |
| 
 | |
| CLEANUP:
 | |
| 	mp_int_clear(&t);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_expt_value(a, b, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_expt_value(int a, int b, mp_int c)
 | |
| {
 | |
| 	mpz_t		t;
 | |
| 	mp_result	res;
 | |
| 	unsigned int v = abs(b);
 | |
| 
 | |
| 	CHECK(b >= 0 && c != NULL);
 | |
| 
 | |
| 	if ((res = mp_int_init_value(&t, a)) != MP_OK)
 | |
| 		return res;
 | |
| 
 | |
| 	(void) mp_int_set_value(c, 1);
 | |
| 	while (v != 0)
 | |
| 	{
 | |
| 		if (v & 1)
 | |
| 		{
 | |
| 			if ((res = mp_int_mul(c, &t, c)) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 		}
 | |
| 
 | |
| 		v >>= 1;
 | |
| 		if (v == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if ((res = mp_int_sqr(&t, &t)) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 	}
 | |
| 
 | |
| CLEANUP:
 | |
| 	mp_int_clear(&t);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_compare(a, b) */
 | |
| 
 | |
| int
 | |
| mp_int_compare(mp_int a, mp_int b)
 | |
| {
 | |
| 	mp_sign		sa;
 | |
| 
 | |
| 	CHECK(a != NULL && b != NULL);
 | |
| 
 | |
| 	sa = MP_SIGN(a);
 | |
| 	if (sa == MP_SIGN(b))
 | |
| 	{
 | |
| 		int			cmp = s_ucmp(a, b);
 | |
| 
 | |
| 		/*
 | |
| 		 * If they're both zero or positive, the normal comparison applies; if
 | |
| 		 * both negative, the sense is reversed.
 | |
| 		 */
 | |
| 		if (sa == MP_ZPOS)
 | |
| 			return cmp;
 | |
| 		else
 | |
| 			return -cmp;
 | |
| 
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (sa == MP_ZPOS)
 | |
| 			return 1;
 | |
| 		else
 | |
| 			return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_compare_unsigned(a, b) */
 | |
| 
 | |
| int
 | |
| mp_int_compare_unsigned(mp_int a, mp_int b)
 | |
| {
 | |
| 	NRCHECK(a != NULL && b != NULL);
 | |
| 
 | |
| 	return s_ucmp(a, b);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_compare_zero(z) */
 | |
| 
 | |
| int
 | |
| mp_int_compare_zero(mp_int z)
 | |
| {
 | |
| 	NRCHECK(z != NULL);
 | |
| 
 | |
| 	if (MP_USED(z) == 1 && z->digits[0] == 0)
 | |
| 		return 0;
 | |
| 	else if (MP_SIGN(z) == MP_ZPOS)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return -1;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_compare_value(z, value) */
 | |
| 
 | |
| int
 | |
| mp_int_compare_value(mp_int z, int value)
 | |
| {
 | |
| 	mp_sign		vsign = (value < 0) ? MP_NEG : MP_ZPOS;
 | |
| 	int			cmp;
 | |
| 
 | |
| 	CHECK(z != NULL);
 | |
| 
 | |
| 	if (vsign == MP_SIGN(z))
 | |
| 	{
 | |
| 		cmp = s_vcmp(z, value);
 | |
| 
 | |
| 		if (vsign == MP_ZPOS)
 | |
| 			return cmp;
 | |
| 		else
 | |
| 			return -cmp;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (value < 0)
 | |
| 			return 1;
 | |
| 		else
 | |
| 			return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_exptmod(a, b, m, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
 | |
| {
 | |
| 	mp_result	res;
 | |
| 	mp_size		um;
 | |
| 	mpz_t		temp[3];
 | |
| 	mp_int		s;
 | |
| 	int			last = 0;
 | |
| 
 | |
| 	CHECK(a != NULL && b != NULL && c != NULL && m != NULL);
 | |
| 
 | |
| 	/* Zero moduli and negative exponents are not considered. */
 | |
| 	if (CMPZ(m) == 0)
 | |
| 		return MP_UNDEF;
 | |
| 	if (CMPZ(b) < 0)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	um = MP_USED(m);
 | |
| 	SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
 | |
| 	SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
 | |
| 
 | |
| 	if (c == b || c == m)
 | |
| 	{
 | |
| 		SETUP(mp_int_init_size(TEMP(2), 2 * um), last);
 | |
| 		s = TEMP(2);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		s = c;
 | |
| 	}
 | |
| 
 | |
| 	if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 
 | |
| 	if ((res = s_brmu(TEMP(1), m)) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 
 | |
| 	if ((res = s_embar(TEMP(0), b, m, TEMP(1), s)) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 
 | |
| 	res = mp_int_copy(s, c);
 | |
| 
 | |
| CLEANUP:
 | |
| 	while (--last >= 0)
 | |
| 		mp_int_clear(TEMP(last));
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_exptmod_evalue(a, value, m, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_exptmod_evalue(mp_int a, int value, mp_int m, mp_int c)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	return mp_int_exptmod(a, &vtmp, m, c);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_exptmod_bvalue(v, b, m, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_exptmod_bvalue(int value, mp_int b,
 | |
| 					  mp_int m, mp_int c)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	return mp_int_exptmod(&vtmp, b, m, c);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_exptmod_known(a, b, m, mu, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
 | |
| {
 | |
| 	mp_result	res;
 | |
| 	mp_size		um;
 | |
| 	mpz_t		temp[2];
 | |
| 	mp_int		s;
 | |
| 	int			last = 0;
 | |
| 
 | |
| 	CHECK(a && b && m && c);
 | |
| 
 | |
| 	/* Zero moduli and negative exponents are not considered. */
 | |
| 	if (CMPZ(m) == 0)
 | |
| 		return MP_UNDEF;
 | |
| 	if (CMPZ(b) < 0)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	um = MP_USED(m);
 | |
| 	SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
 | |
| 
 | |
| 	if (c == b || c == m)
 | |
| 	{
 | |
| 		SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
 | |
| 		s = TEMP(1);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		s = c;
 | |
| 	}
 | |
| 
 | |
| 	if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 
 | |
| 	if ((res = s_embar(TEMP(0), b, m, mu, s)) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 
 | |
| 	res = mp_int_copy(s, c);
 | |
| 
 | |
| CLEANUP:
 | |
| 	while (--last >= 0)
 | |
| 		mp_int_clear(TEMP(last));
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_redux_const(m, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_redux_const(mp_int m, mp_int c)
 | |
| {
 | |
| 	CHECK(m != NULL && c != NULL && m != c);
 | |
| 
 | |
| 	return s_brmu(c, m);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_invmod(a, m, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_invmod(mp_int a, mp_int m, mp_int c)
 | |
| {
 | |
| 	mp_result	res;
 | |
| 	mp_sign		sa;
 | |
| 	int			last = 0;
 | |
| 	mpz_t		temp[2];
 | |
| 
 | |
| 	CHECK(a != NULL && m != NULL && c != NULL);
 | |
| 
 | |
| 	if (CMPZ(a) == 0 || CMPZ(m) <= 0)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	sa = MP_SIGN(a);			/* need this for the result later */
 | |
| 
 | |
| 	for (last = 0; last < 2; ++last)
 | |
| 		if ((res = mp_int_init(TEMP(last))) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 
 | |
| 	if ((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 
 | |
| 	if (mp_int_compare_value(TEMP(0), 1) != 0)
 | |
| 	{
 | |
| 		res = MP_UNDEF;
 | |
| 		goto CLEANUP;
 | |
| 	}
 | |
| 
 | |
| 	/* It is first necessary to constrain the value to the proper range */
 | |
| 	if ((res = mp_int_mod(TEMP(1), m, TEMP(1))) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now, if 'a' was originally negative, the value we have is actually the
 | |
| 	 * magnitude of the negative representative; to get the positive value we
 | |
| 	 * have to subtract from the modulus.  Otherwise, the value is okay as it
 | |
| 	 * stands.
 | |
| 	 */
 | |
| 	if (sa == MP_NEG)
 | |
| 		res = mp_int_sub(m, TEMP(1), c);
 | |
| 	else
 | |
| 		res = mp_int_copy(TEMP(1), c);
 | |
| 
 | |
| CLEANUP:
 | |
| 	while (--last >= 0)
 | |
| 		mp_int_clear(TEMP(last));
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_gcd(a, b, c) */
 | |
| 
 | |
| /* Binary GCD algorithm due to Josef Stein, 1961 */
 | |
| mp_result
 | |
| mp_int_gcd(mp_int a, mp_int b, mp_int c)
 | |
| {
 | |
| 	int			ca,
 | |
| 				cb,
 | |
| 				k = 0;
 | |
| 	mpz_t		u,
 | |
| 				v,
 | |
| 				t;
 | |
| 	mp_result	res;
 | |
| 
 | |
| 	CHECK(a != NULL && b != NULL && c != NULL);
 | |
| 
 | |
| 	ca = CMPZ(a);
 | |
| 	cb = CMPZ(b);
 | |
| 	if (ca == 0 && cb == 0)
 | |
| 		return MP_UNDEF;
 | |
| 	else if (ca == 0)
 | |
| 		return mp_int_abs(b, c);
 | |
| 	else if (cb == 0)
 | |
| 		return mp_int_abs(a, c);
 | |
| 
 | |
| 	if ((res = mp_int_init(&t)) != MP_OK)
 | |
| 		return res;
 | |
| 	if ((res = mp_int_init_copy(&u, a)) != MP_OK)
 | |
| 		goto U;
 | |
| 	if ((res = mp_int_init_copy(&v, b)) != MP_OK)
 | |
| 		goto V;
 | |
| 
 | |
| 	MP_SIGN(&u) = MP_ZPOS;
 | |
| 	MP_SIGN(&v) = MP_ZPOS;
 | |
| 
 | |
| 	{							/* Divide out common factors of 2 from u and v */
 | |
| 		int			div2_u = s_dp2k(&u),
 | |
| 					div2_v = s_dp2k(&v);
 | |
| 
 | |
| 		k = MIN(div2_u, div2_v);
 | |
| 		s_qdiv(&u, (mp_size) k);
 | |
| 		s_qdiv(&v, (mp_size) k);
 | |
| 	}
 | |
| 
 | |
| 	if (mp_int_is_odd(&u))
 | |
| 	{
 | |
| 		if ((res = mp_int_neg(&v, &t)) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if ((res = mp_int_copy(&u, &t)) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 	}
 | |
| 
 | |
| 	for (;;)
 | |
| 	{
 | |
| 		s_qdiv(&t, s_dp2k(&t));
 | |
| 
 | |
| 		if (CMPZ(&t) > 0)
 | |
| 		{
 | |
| 			if ((res = mp_int_copy(&t, &u)) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			if ((res = mp_int_neg(&t, &v)) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 		}
 | |
| 
 | |
| 		if ((res = mp_int_sub(&u, &v, &t)) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 
 | |
| 		if (CMPZ(&t) == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if ((res = mp_int_abs(&u, c)) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 	if (!s_qmul(c, (mp_size) k))
 | |
| 		res = MP_MEMORY;
 | |
| 
 | |
| CLEANUP:
 | |
| 	mp_int_clear(&v);
 | |
| V: mp_int_clear(&u);
 | |
| U: mp_int_clear(&t);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_egcd(a, b, c, x, y) */
 | |
| 
 | |
| /* This is the binary GCD algorithm again, but this time we keep track
 | |
|    of the elementary matrix operations as we go, so we can get values
 | |
|    x and y satisfying c = ax + by.
 | |
|  */
 | |
| mp_result
 | |
| mp_int_egcd(mp_int a, mp_int b, mp_int c,
 | |
| 			mp_int x, mp_int y)
 | |
| {
 | |
| 	int			k,
 | |
| 				last = 0,
 | |
| 				ca,
 | |
| 				cb;
 | |
| 	mpz_t		temp[8];
 | |
| 	mp_result	res;
 | |
| 
 | |
| 	CHECK(a != NULL && b != NULL && c != NULL &&
 | |
| 		  (x != NULL || y != NULL));
 | |
| 
 | |
| 	ca = CMPZ(a);
 | |
| 	cb = CMPZ(b);
 | |
| 	if (ca == 0 && cb == 0)
 | |
| 		return MP_UNDEF;
 | |
| 	else if (ca == 0)
 | |
| 	{
 | |
| 		if ((res = mp_int_abs(b, c)) != MP_OK)
 | |
| 			return res;
 | |
| 		mp_int_zero(x);
 | |
| 		(void) mp_int_set_value(y, 1);
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 	else if (cb == 0)
 | |
| 	{
 | |
| 		if ((res = mp_int_abs(a, c)) != MP_OK)
 | |
| 			return res;
 | |
| 		(void) mp_int_set_value(x, 1);
 | |
| 		mp_int_zero(y);
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize temporaries: A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7
 | |
| 	 */
 | |
| 	for (last = 0; last < 4; ++last)
 | |
| 	{
 | |
| 		if ((res = mp_int_init(TEMP(last))) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 	}
 | |
| 	TEMP(0)->digits[0] = 1;
 | |
| 	TEMP(3)->digits[0] = 1;
 | |
| 
 | |
| 	SETUP(mp_int_init_copy(TEMP(4), a), last);
 | |
| 	SETUP(mp_int_init_copy(TEMP(5), b), last);
 | |
| 
 | |
| 	/* We will work with absolute values here */
 | |
| 	MP_SIGN(TEMP(4)) = MP_ZPOS;
 | |
| 	MP_SIGN(TEMP(5)) = MP_ZPOS;
 | |
| 
 | |
| 	{							/* Divide out common factors of 2 from u and v */
 | |
| 		int			div2_u = s_dp2k(TEMP(4)),
 | |
| 					div2_v = s_dp2k(TEMP(5));
 | |
| 
 | |
| 		k = MIN(div2_u, div2_v);
 | |
| 		s_qdiv(TEMP(4), k);
 | |
| 		s_qdiv(TEMP(5), k);
 | |
| 	}
 | |
| 
 | |
| 	SETUP(mp_int_init_copy(TEMP(6), TEMP(4)), last);
 | |
| 	SETUP(mp_int_init_copy(TEMP(7), TEMP(5)), last);
 | |
| 
 | |
| 	for (;;)
 | |
| 	{
 | |
| 		while (mp_int_is_even(TEMP(4)))
 | |
| 		{
 | |
| 			s_qdiv(TEMP(4), 1);
 | |
| 
 | |
| 			if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1)))
 | |
| 			{
 | |
| 				if ((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK)
 | |
| 					goto CLEANUP;
 | |
| 				if ((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK)
 | |
| 					goto CLEANUP;
 | |
| 			}
 | |
| 
 | |
| 			s_qdiv(TEMP(0), 1);
 | |
| 			s_qdiv(TEMP(1), 1);
 | |
| 		}
 | |
| 
 | |
| 		while (mp_int_is_even(TEMP(5)))
 | |
| 		{
 | |
| 			s_qdiv(TEMP(5), 1);
 | |
| 
 | |
| 			if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3)))
 | |
| 			{
 | |
| 				if ((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK)
 | |
| 					goto CLEANUP;
 | |
| 				if ((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK)
 | |
| 					goto CLEANUP;
 | |
| 			}
 | |
| 
 | |
| 			s_qdiv(TEMP(2), 1);
 | |
| 			s_qdiv(TEMP(3), 1);
 | |
| 		}
 | |
| 
 | |
| 		if (mp_int_compare(TEMP(4), TEMP(5)) >= 0)
 | |
| 		{
 | |
| 			if ((res = mp_int_sub(TEMP(4), TEMP(5), TEMP(4))) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 			if ((res = mp_int_sub(TEMP(0), TEMP(2), TEMP(0))) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 			if ((res = mp_int_sub(TEMP(1), TEMP(3), TEMP(1))) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			if ((res = mp_int_sub(TEMP(5), TEMP(4), TEMP(5))) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 			if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 			if ((res = mp_int_sub(TEMP(3), TEMP(1), TEMP(3))) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 		}
 | |
| 
 | |
| 		if (CMPZ(TEMP(4)) == 0)
 | |
| 		{
 | |
| 			if (x && (res = mp_int_copy(TEMP(2), x)) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 			if (y && (res = mp_int_copy(TEMP(3), y)) != MP_OK)
 | |
| 				goto CLEANUP;
 | |
| 			if (c)
 | |
| 			{
 | |
| 				if (!s_qmul(TEMP(5), k))
 | |
| 				{
 | |
| 					res = MP_MEMORY;
 | |
| 					goto CLEANUP;
 | |
| 				}
 | |
| 
 | |
| 				res = mp_int_copy(TEMP(5), c);
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| CLEANUP:
 | |
| 	while (--last >= 0)
 | |
| 		mp_int_clear(TEMP(last));
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_divisible_value(a, v) */
 | |
| 
 | |
| int
 | |
| mp_int_divisible_value(mp_int a, int v)
 | |
| {
 | |
| 	int			rem = 0;
 | |
| 
 | |
| 	if (mp_int_div_value(a, v, NULL, &rem) != MP_OK)
 | |
| 		return 0;
 | |
| 
 | |
| 	return rem == 0;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_is_pow2(z) */
 | |
| 
 | |
| int
 | |
| mp_int_is_pow2(mp_int z)
 | |
| {
 | |
| 	CHECK(z != NULL);
 | |
| 
 | |
| 	return s_isp2(z);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_sqrt(a, c) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_sqrt(mp_int a, mp_int c)
 | |
| {
 | |
| 	mp_result	res = MP_OK;
 | |
| 	mpz_t		temp[2];
 | |
| 	int			last = 0;
 | |
| 
 | |
| 	CHECK(a != NULL && c != NULL);
 | |
| 
 | |
| 	/* The square root of a negative value does not exist in the integers. */
 | |
| 	if (MP_SIGN(a) == MP_NEG)
 | |
| 		return MP_UNDEF;
 | |
| 
 | |
| 	SETUP(mp_int_init_copy(TEMP(last), a), last);
 | |
| 	SETUP(mp_int_init(TEMP(last)), last);
 | |
| 
 | |
| 	for (;;)
 | |
| 	{
 | |
| 		if ((res = mp_int_sqr(TEMP(0), TEMP(1))) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 
 | |
| 		if (mp_int_compare_unsigned(a, TEMP(1)) == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if ((res = mp_int_copy(a, TEMP(1))) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 		if ((res = mp_int_div(TEMP(1), TEMP(0), TEMP(1), NULL)) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 		if ((res = mp_int_add(TEMP(0), TEMP(1), TEMP(1))) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 		if ((res = mp_int_div_pow2(TEMP(1), 1, TEMP(1), NULL)) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 
 | |
| 		if (mp_int_compare_unsigned(TEMP(0), TEMP(1)) == 0)
 | |
| 			break;
 | |
| 		if ((res = mp_int_sub_value(TEMP(0), 1, TEMP(0))) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 		if (mp_int_compare_unsigned(TEMP(0), TEMP(1)) == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if ((res = mp_int_copy(TEMP(1), TEMP(0))) != MP_OK)
 | |
| 			goto CLEANUP;
 | |
| 	}
 | |
| 
 | |
| 	res = mp_int_copy(TEMP(0), c);
 | |
| 
 | |
| CLEANUP:
 | |
| 	while (--last >= 0)
 | |
| 		mp_int_clear(TEMP(last));
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_to_int(z, out) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_to_int(mp_int z, int *out)
 | |
| {
 | |
| 	unsigned int uv = 0;
 | |
| 	mp_size		uz;
 | |
| 	mp_digit   *dz;
 | |
| 	mp_sign		sz;
 | |
| 
 | |
| 	CHECK(z != NULL);
 | |
| 
 | |
| 	/* Make sure the value is representable as an int */
 | |
| 	sz = MP_SIGN(z);
 | |
| 	if ((sz == MP_ZPOS && mp_int_compare_value(z, INT_MAX) > 0) ||
 | |
| 		mp_int_compare_value(z, INT_MIN) < 0)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	uz = MP_USED(z);
 | |
| 	dz = MP_DIGITS(z) + uz - 1;
 | |
| 
 | |
| 	while (uz > 0)
 | |
| 	{
 | |
| 		uv <<= MP_DIGIT_BIT / 2;
 | |
| 		uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
 | |
| 		--uz;
 | |
| 	}
 | |
| 
 | |
| 	if (out)
 | |
| 		*out = (sz == MP_NEG) ? -(int) uv : (int) uv;
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_to_string(z, radix, str, limit) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_to_string(mp_int z, mp_size radix,
 | |
| 				 char *str, int limit)
 | |
| {
 | |
| 	mp_result	res;
 | |
| 	int			cmp = 0;
 | |
| 
 | |
| 	CHECK(z != NULL && str != NULL && limit >= 2);
 | |
| 
 | |
| 	if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	if (CMPZ(z) == 0)
 | |
| 	{
 | |
| 		*str++ = s_val2ch(0, mp_flags & MP_CAP_DIGITS);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		mpz_t		tmp;
 | |
| 		char	   *h,
 | |
| 				   *t;
 | |
| 
 | |
| 		if ((res = mp_int_init_copy(&tmp, z)) != MP_OK)
 | |
| 			return res;
 | |
| 
 | |
| 		if (MP_SIGN(z) == MP_NEG)
 | |
| 		{
 | |
| 			*str++ = '-';
 | |
| 			--limit;
 | |
| 		}
 | |
| 		h = str;
 | |
| 
 | |
| 		/* Generate digits in reverse order until finished or limit reached */
 | |
| 		for ( /* */ ; limit > 0; --limit)
 | |
| 		{
 | |
| 			mp_digit	d;
 | |
| 
 | |
| 			if ((cmp = CMPZ(&tmp)) == 0)
 | |
| 				break;
 | |
| 
 | |
| 			d = s_ddiv(&tmp, (mp_digit) radix);
 | |
| 			*str++ = s_val2ch(d, mp_flags & MP_CAP_DIGITS);
 | |
| 		}
 | |
| 		t = str - 1;
 | |
| 
 | |
| 		/* Put digits back in correct output order */
 | |
| 		while (h < t)
 | |
| 		{
 | |
| 			char		tc = *h;
 | |
| 
 | |
| 			*h++ = *t;
 | |
| 			*t-- = tc;
 | |
| 		}
 | |
| 
 | |
| 		mp_int_clear(&tmp);
 | |
| 	}
 | |
| 
 | |
| 	*str = '\0';
 | |
| 	if (cmp == 0)
 | |
| 		return MP_OK;
 | |
| 	else
 | |
| 		return MP_TRUNC;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_string_len(z, radix) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_string_len(mp_int z, mp_size radix)
 | |
| {
 | |
| 	int			len;
 | |
| 
 | |
| 	CHECK(z != NULL);
 | |
| 
 | |
| 	if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	len = s_outlen(z, radix) + 1;		/* for terminator */
 | |
| 
 | |
| 	/* Allow for sign marker on negatives */
 | |
| 	if (MP_SIGN(z) == MP_NEG)
 | |
| 		len += 1;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_read_string(z, radix, *str) */
 | |
| 
 | |
| /* Read zero-terminated string into z */
 | |
| mp_result
 | |
| mp_int_read_string(mp_int z, mp_size radix, const char *str)
 | |
| {
 | |
| 	return mp_int_read_cstring(z, radix, str, NULL);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_read_cstring(z, radix, *str, **end) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
 | |
| {
 | |
| 	int			ch;
 | |
| 
 | |
| 	CHECK(z != NULL && str != NULL);
 | |
| 
 | |
| 	if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	/* Skip leading whitespace */
 | |
| 	while (isspace((unsigned char) *str))
 | |
| 		++str;
 | |
| 
 | |
| 	/* Handle leading sign tag (+/-, positive default) */
 | |
| 	switch (*str)
 | |
| 	{
 | |
| 		case '-':
 | |
| 			MP_SIGN(z) = MP_NEG;
 | |
| 			++str;
 | |
| 			break;
 | |
| 		case '+':
 | |
| 			++str;				/* fallthrough */
 | |
| 		default:
 | |
| 			MP_SIGN(z) = MP_ZPOS;
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Skip leading zeroes */
 | |
| 	while ((ch = s_ch2val(*str, radix)) == 0)
 | |
| 		++str;
 | |
| 
 | |
| 	/* Make sure there is enough space for the value */
 | |
| 	if (!s_pad(z, s_inlen(strlen(str), radix)))
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	MP_USED(z) = 1;
 | |
| 	z->digits[0] = 0;
 | |
| 
 | |
| 	while (*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0))
 | |
| 	{
 | |
| 		s_dmul(z, (mp_digit) radix);
 | |
| 		s_dadd(z, (mp_digit) ch);
 | |
| 		++str;
 | |
| 	}
 | |
| 
 | |
| 	CLAMP(z);
 | |
| 
 | |
| 	/* Override sign for zero, even if negative specified. */
 | |
| 	if (CMPZ(z) == 0)
 | |
| 		MP_SIGN(z) = MP_ZPOS;
 | |
| 
 | |
| 	if (end != NULL)
 | |
| 		*end = (char *) str;
 | |
| 
 | |
| 	/*
 | |
| 	 * Return a truncation error if the string has unprocessed characters
 | |
| 	 * remaining, so the caller can tell if the whole string was done
 | |
| 	 */
 | |
| 	if (*str != '\0')
 | |
| 		return MP_TRUNC;
 | |
| 	else
 | |
| 		return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_count_bits(z) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_count_bits(mp_int z)
 | |
| {
 | |
| 	mp_size		nbits = 0,
 | |
| 				uz;
 | |
| 	mp_digit	d;
 | |
| 
 | |
| 	CHECK(z != NULL);
 | |
| 
 | |
| 	uz = MP_USED(z);
 | |
| 	if (uz == 1 && z->digits[0] == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	--uz;
 | |
| 	nbits = uz * MP_DIGIT_BIT;
 | |
| 	d = z->digits[uz];
 | |
| 
 | |
| 	while (d != 0)
 | |
| 	{
 | |
| 		d >>= 1;
 | |
| 		++nbits;
 | |
| 	}
 | |
| 
 | |
| 	return nbits;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_to_binary(z, buf, limit) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
 | |
| {
 | |
| 	static const int PAD_FOR_2C = 1;
 | |
| 
 | |
| 	mp_result	res;
 | |
| 	int			limpos = limit;
 | |
| 
 | |
| 	CHECK(z != NULL && buf != NULL);
 | |
| 
 | |
| 	res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
 | |
| 
 | |
| 	if (MP_SIGN(z) == MP_NEG)
 | |
| 		s_2comp(buf, limpos);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_read_binary(z, buf, len) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_read_binary(mp_int z, unsigned char *buf, int len)
 | |
| {
 | |
| 	mp_size		need,
 | |
| 				i;
 | |
| 	unsigned char *tmp;
 | |
| 	mp_digit   *dz;
 | |
| 
 | |
| 	CHECK(z != NULL && buf != NULL && len > 0);
 | |
| 
 | |
| 	/* Figure out how many digits are needed to represent this value */
 | |
| 	need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
 | |
| 	if (!s_pad(z, need))
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	mp_int_zero(z);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the high-order bit is set, take the 2's complement before reading
 | |
| 	 * the value (it will be restored afterward)
 | |
| 	 */
 | |
| 	if (buf[0] >> (CHAR_BIT - 1))
 | |
| 	{
 | |
| 		MP_SIGN(z) = MP_NEG;
 | |
| 		s_2comp(buf, len);
 | |
| 	}
 | |
| 
 | |
| 	dz = MP_DIGITS(z);
 | |
| 	for (tmp = buf, i = len; i > 0; --i, ++tmp)
 | |
| 	{
 | |
| 		s_qmul(z, (mp_size) CHAR_BIT);
 | |
| 		*dz |= *tmp;
 | |
| 	}
 | |
| 
 | |
| 	/* Restore 2's complement if we took it before */
 | |
| 	if (MP_SIGN(z) == MP_NEG)
 | |
| 		s_2comp(buf, len);
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_binary_len(z) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_binary_len(mp_int z)
 | |
| {
 | |
| 	mp_result	res = mp_int_count_bits(z);
 | |
| 	int			bytes = mp_int_unsigned_len(z);
 | |
| 
 | |
| 	if (res <= 0)
 | |
| 		return res;
 | |
| 
 | |
| 	bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the highest-order bit falls exactly on a byte boundary, we need to
 | |
| 	 * pad with an extra byte so that the sign will be read correctly when
 | |
| 	 * reading it back in.
 | |
| 	 */
 | |
| 	if (bytes * CHAR_BIT == res)
 | |
| 		++bytes;
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_to_unsigned(z, buf, limit) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit)
 | |
| {
 | |
| 	static const int NO_PADDING = 0;
 | |
| 
 | |
| 	CHECK(z != NULL && buf != NULL);
 | |
| 
 | |
| 	return s_tobin(z, buf, &limit, NO_PADDING);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_read_unsigned(z, buf, len) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_read_unsigned(mp_int z, unsigned char *buf, int len)
 | |
| {
 | |
| 	mp_size		need,
 | |
| 				i;
 | |
| 	unsigned char *tmp;
 | |
| 	mp_digit   *dz;
 | |
| 
 | |
| 	CHECK(z != NULL && buf != NULL && len > 0);
 | |
| 
 | |
| 	/* Figure out how many digits are needed to represent this value */
 | |
| 	need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
 | |
| 	if (!s_pad(z, need))
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	mp_int_zero(z);
 | |
| 
 | |
| 	dz = MP_DIGITS(z);
 | |
| 	for (tmp = buf, i = len; i > 0; --i, ++tmp)
 | |
| 	{
 | |
| 		(void) s_qmul(z, CHAR_BIT);
 | |
| 		*dz |= *tmp;
 | |
| 	}
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_unsigned_len(z) */
 | |
| 
 | |
| mp_result
 | |
| mp_int_unsigned_len(mp_int z)
 | |
| {
 | |
| 	mp_result	res = mp_int_count_bits(z);
 | |
| 	int			bytes;
 | |
| 
 | |
| 	if (res <= 0)
 | |
| 		return res;
 | |
| 
 | |
| 	bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_error_string(res) */
 | |
| 
 | |
| const char *
 | |
| mp_error_string(mp_result res)
 | |
| {
 | |
| 	int			ix;
 | |
| 
 | |
| 	if (res > 0)
 | |
| 		return s_unknown_err;
 | |
| 
 | |
| 	res = -res;
 | |
| 	for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
 | |
| 		;
 | |
| 
 | |
| 	if (s_error_msg[ix] != NULL)
 | |
| 		return s_error_msg[ix];
 | |
| 	else
 | |
| 		return s_unknown_err;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* Private functions for internal use.  These make assumptions.           */
 | |
| 
 | |
| /* {{{ s_alloc(num) */
 | |
| 
 | |
| static mp_digit *
 | |
| s_alloc(mp_size num)
 | |
| {
 | |
| 	mp_digit   *out = px_alloc(num * sizeof(mp_digit));
 | |
| 
 | |
| 	assert(out != NULL);		/* for debugging */
 | |
| 
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_realloc(old, num) */
 | |
| 
 | |
| static mp_digit *
 | |
| s_realloc(mp_digit *old, mp_size num)
 | |
| {
 | |
| 	mp_digit   *new = px_realloc(old, num * sizeof(mp_digit));
 | |
| 
 | |
| 	assert(new != NULL);		/* for debugging */
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_free(ptr) */
 | |
| 
 | |
| #if TRACEABLE_FREE
 | |
| static void
 | |
| s_free(void *ptr)
 | |
| {
 | |
| 	px_free(ptr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_pad(z, min) */
 | |
| 
 | |
| static int
 | |
| s_pad(mp_int z, mp_size min)
 | |
| {
 | |
| 	if (MP_ALLOC(z) < min)
 | |
| 	{
 | |
| 		mp_size		nsize = ROUND_PREC(min);
 | |
| 		mp_digit   *tmp = s_realloc(MP_DIGITS(z), nsize);
 | |
| 
 | |
| 		if (tmp == NULL)
 | |
| 			return 0;
 | |
| 
 | |
| 		MP_DIGITS(z) = tmp;
 | |
| 		MP_ALLOC(z) = nsize;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_clamp(z) */
 | |
| 
 | |
| #if TRACEABLE_CLAMP
 | |
| static void
 | |
| s_clamp(mp_int z)
 | |
| {
 | |
| 	mp_size		uz = MP_USED(z);
 | |
| 	mp_digit   *zd = MP_DIGITS(z) + uz - 1;
 | |
| 
 | |
| 	while (uz > 1 && (*zd-- == 0))
 | |
| 		--uz;
 | |
| 
 | |
| 	MP_USED(z) = uz;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_fake(z, value, vbuf) */
 | |
| 
 | |
| static void
 | |
| s_fake(mp_int z, int value, mp_digit vbuf[])
 | |
| {
 | |
| 	mp_size		uv = (mp_size) s_vpack(value, vbuf);
 | |
| 
 | |
| 	z->used = uv;
 | |
| 	z->alloc = MP_VALUE_DIGITS(value);
 | |
| 	z->sign = (value < 0) ? MP_NEG : MP_ZPOS;
 | |
| 	z->digits = vbuf;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_cdig(da, db, len) */
 | |
| 
 | |
| static int
 | |
| s_cdig(mp_digit *da, mp_digit *db, mp_size len)
 | |
| {
 | |
| 	mp_digit   *dat = da + len - 1,
 | |
| 			   *dbt = db + len - 1;
 | |
| 
 | |
| 	for ( /* */ ; len != 0; --len, --dat, --dbt)
 | |
| 	{
 | |
| 		if (*dat > *dbt)
 | |
| 			return 1;
 | |
| 		else if (*dat < *dbt)
 | |
| 			return -1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_vpack(v, t[]) */
 | |
| 
 | |
| static int
 | |
| s_vpack(int v, mp_digit t[])
 | |
| {
 | |
| 	unsigned int uv = (unsigned int) ((v < 0) ? -v : v);
 | |
| 	int			ndig = 0;
 | |
| 
 | |
| 	if (uv == 0)
 | |
| 		t[ndig++] = 0;
 | |
| 	else
 | |
| 	{
 | |
| 		while (uv != 0)
 | |
| 		{
 | |
| 			t[ndig++] = (mp_digit) uv;
 | |
| 			uv >>= MP_DIGIT_BIT / 2;
 | |
| 			uv >>= MP_DIGIT_BIT / 2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ndig;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_ucmp(a, b) */
 | |
| 
 | |
| static int
 | |
| s_ucmp(mp_int a, mp_int b)
 | |
| {
 | |
| 	mp_size		ua = MP_USED(a),
 | |
| 				ub = MP_USED(b);
 | |
| 
 | |
| 	if (ua > ub)
 | |
| 		return 1;
 | |
| 	else if (ub > ua)
 | |
| 		return -1;
 | |
| 	else
 | |
| 		return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_vcmp(a, v) */
 | |
| 
 | |
| static int
 | |
| s_vcmp(mp_int a, int v)
 | |
| {
 | |
| 	mp_digit	vdig[MP_VALUE_DIGITS(v)];
 | |
| 	int			ndig = 0;
 | |
| 	mp_size		ua = MP_USED(a);
 | |
| 
 | |
| 	ndig = s_vpack(v, vdig);
 | |
| 
 | |
| 	if (ua > ndig)
 | |
| 		return 1;
 | |
| 	else if (ua < ndig)
 | |
| 		return -1;
 | |
| 	else
 | |
| 		return s_cdig(MP_DIGITS(a), vdig, ndig);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_uadd(da, db, dc, size_a, size_b) */
 | |
| 
 | |
| static mp_digit
 | |
| s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
 | |
| 	   mp_size size_a, mp_size size_b)
 | |
| {
 | |
| 	mp_size		pos;
 | |
| 	mp_word		w = 0;
 | |
| 
 | |
| 	/* Insure that da is the longer of the two to simplify later code */
 | |
| 	if (size_b > size_a)
 | |
| 	{
 | |
| 		SWAP(mp_digit *, da, db);
 | |
| 		SWAP(mp_size, size_a, size_b);
 | |
| 	}
 | |
| 
 | |
| 	/* Add corresponding digits until the shorter number runs out */
 | |
| 	for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc)
 | |
| 	{
 | |
| 		w = w + (mp_word) *da + (mp_word) *db;
 | |
| 		*dc = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 	}
 | |
| 
 | |
| 	/* Propagate carries as far as necessary */
 | |
| 	for ( /* */ ; pos < size_a; ++pos, ++da, ++dc)
 | |
| 	{
 | |
| 		w = w + *da;
 | |
| 
 | |
| 		*dc = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 	}
 | |
| 
 | |
| 	/* Return carry out */
 | |
| 	return (mp_digit) w;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_usub(da, db, dc, size_a, size_b) */
 | |
| 
 | |
| static void
 | |
| s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
 | |
| 	   mp_size size_a, mp_size size_b)
 | |
| {
 | |
| 	mp_size		pos;
 | |
| 	mp_word		w = 0;
 | |
| 
 | |
| 	/* We assume that |a| >= |b| so this should definitely hold */
 | |
| 	assert(size_a >= size_b);
 | |
| 
 | |
| 	/* Subtract corresponding digits and propagate borrow */
 | |
| 	for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc)
 | |
| 	{
 | |
| 		w = ((mp_word) MP_DIGIT_MAX + 1 +		/* MP_RADIX */
 | |
| 			 (mp_word) *da) - w - (mp_word) *db;
 | |
| 
 | |
| 		*dc = LOWER_HALF(w);
 | |
| 		w = (UPPER_HALF(w) == 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Finish the subtraction for remaining upper digits of da */
 | |
| 	for ( /* */ ; pos < size_a; ++pos, ++da, ++dc)
 | |
| 	{
 | |
| 		w = ((mp_word) MP_DIGIT_MAX + 1 +		/* MP_RADIX */
 | |
| 			 (mp_word) *da) - w;
 | |
| 
 | |
| 		*dc = LOWER_HALF(w);
 | |
| 		w = (UPPER_HALF(w) == 0);
 | |
| 	}
 | |
| 
 | |
| 	/* If there is a borrow out at the end, it violates the precondition */
 | |
| 	assert(w == 0);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_kmul(da, db, dc, size_a, size_b) */
 | |
| 
 | |
| static int
 | |
| s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
 | |
| 	   mp_size size_a, mp_size size_b)
 | |
| {
 | |
| 	mp_size		bot_size;
 | |
| 
 | |
| 	/* Make sure b is the smaller of the two input values */
 | |
| 	if (size_b > size_a)
 | |
| 	{
 | |
| 		SWAP(mp_digit *, da, db);
 | |
| 		SWAP(mp_size, size_a, size_b);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Insure that the bottom is the larger half in an odd-length split; the
 | |
| 	 * code below relies on this being true.
 | |
| 	 */
 | |
| 	bot_size = (size_a + 1) / 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the values are big enough to bother with recursion, use the
 | |
| 	 * Karatsuba algorithm to compute the product; otherwise use the normal
 | |
| 	 * multiplication algorithm
 | |
| 	 */
 | |
| 	if (multiply_threshold &&
 | |
| 		size_a >= multiply_threshold &&
 | |
| 		size_b > bot_size)
 | |
| 	{
 | |
| 
 | |
| 		mp_digit   *t1,
 | |
| 				   *t2,
 | |
| 				   *t3,
 | |
| 					carry;
 | |
| 
 | |
| 		mp_digit   *a_top = da + bot_size;
 | |
| 		mp_digit   *b_top = db + bot_size;
 | |
| 
 | |
| 		mp_size		at_size = size_a - bot_size;
 | |
| 		mp_size		bt_size = size_b - bot_size;
 | |
| 		mp_size		buf_size = 2 * bot_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do a single allocation for all three temporary buffers needed; each
 | |
| 		 * buffer must be big enough to hold the product of two bottom halves,
 | |
| 		 * and one buffer needs space for the completed product; twice the
 | |
| 		 * space is plenty.
 | |
| 		 */
 | |
| 		if ((t1 = s_alloc(4 * buf_size)) == NULL)
 | |
| 			return 0;
 | |
| 		t2 = t1 + buf_size;
 | |
| 		t3 = t2 + buf_size;
 | |
| 		ZERO(t1, 4 * buf_size);
 | |
| 
 | |
| 		/*
 | |
| 		 * t1 and t2 are initially used as temporaries to compute the inner
 | |
| 		 * product (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
 | |
| 		 */
 | |
| 		carry = s_uadd(da, a_top, t1, bot_size, at_size);		/* t1 = a1 + a0 */
 | |
| 		t1[bot_size] = carry;
 | |
| 
 | |
| 		carry = s_uadd(db, b_top, t2, bot_size, bt_size);		/* t2 = b1 + b0 */
 | |
| 		t2[bot_size] = carry;
 | |
| 
 | |
| 		(void) s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1);	/* t3 = t1 * t2 */
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so
 | |
| 		 * that we're left with only the pieces we want:  t3 = a1b0 + a0b1
 | |
| 		 */
 | |
| 		ZERO(t1, buf_size);
 | |
| 		ZERO(t2, buf_size);
 | |
| 		(void) s_kmul(da, db, t1, bot_size, bot_size);	/* t1 = a0 * b0 */
 | |
| 		(void) s_kmul(a_top, b_top, t2, at_size, bt_size);		/* t2 = a1 * b1 */
 | |
| 
 | |
| 		/* Subtract out t1 and t2 to get the inner product */
 | |
| 		s_usub(t3, t1, t3, buf_size + 2, buf_size);
 | |
| 		s_usub(t3, t2, t3, buf_size + 2, buf_size);
 | |
| 
 | |
| 		/* Assemble the output value */
 | |
| 		COPY(t1, dc, buf_size);
 | |
| 		carry = s_uadd(t3, dc + bot_size, dc + bot_size,
 | |
| 					   buf_size + 1, buf_size);
 | |
| 		assert(carry == 0);
 | |
| 
 | |
| 		carry = s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size,
 | |
| 					   buf_size, buf_size);
 | |
| 		assert(carry == 0);
 | |
| 
 | |
| 		s_free(t1);				/* note t2 and t3 are just internal pointers
 | |
| 								 * to t1 */
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		s_umul(da, db, dc, size_a, size_b);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_umul(da, db, dc, size_a, size_b) */
 | |
| 
 | |
| static void
 | |
| s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
 | |
| 	   mp_size size_a, mp_size size_b)
 | |
| {
 | |
| 	mp_size		a,
 | |
| 				b;
 | |
| 	mp_word		w;
 | |
| 
 | |
| 	for (a = 0; a < size_a; ++a, ++dc, ++da)
 | |
| 	{
 | |
| 		mp_digit   *dct = dc;
 | |
| 		mp_digit   *dbt = db;
 | |
| 
 | |
| 		if (*da == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		w = 0;
 | |
| 		for (b = 0; b < size_b; ++b, ++dbt, ++dct)
 | |
| 		{
 | |
| 			w = (mp_word) *da * (mp_word) *dbt + w + (mp_word) *dct;
 | |
| 
 | |
| 			*dct = LOWER_HALF(w);
 | |
| 			w = UPPER_HALF(w);
 | |
| 		}
 | |
| 
 | |
| 		*dct = (mp_digit) w;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_ksqr(da, dc, size_a) */
 | |
| 
 | |
| static int
 | |
| s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
 | |
| {
 | |
| 	if (multiply_threshold && size_a > multiply_threshold)
 | |
| 	{
 | |
| 		mp_size		bot_size = (size_a + 1) / 2;
 | |
| 		mp_digit   *a_top = da + bot_size;
 | |
| 		mp_digit   *t1,
 | |
| 				   *t2,
 | |
| 				   *t3;
 | |
| 		mp_size		at_size = size_a - bot_size;
 | |
| 		mp_size		buf_size = 2 * bot_size;
 | |
| 
 | |
| 		if ((t1 = s_alloc(4 * buf_size)) == NULL)
 | |
| 			return 0;
 | |
| 		t2 = t1 + buf_size;
 | |
| 		t3 = t2 + buf_size;
 | |
| 		ZERO(t1, 4 * buf_size);
 | |
| 
 | |
| 		(void) s_ksqr(da, t1, bot_size);		/* t1 = a0 ^ 2 */
 | |
| 		(void) s_ksqr(a_top, t2, at_size);		/* t2 = a1 ^ 2 */
 | |
| 
 | |
| 		(void) s_kmul(da, a_top, t3, bot_size, at_size);		/* t3 = a0 * a1 */
 | |
| 
 | |
| 		/* Quick multiply t3 by 2, shifting left (can't overflow) */
 | |
| 		{
 | |
| 			int			i,
 | |
| 						top = bot_size + at_size;
 | |
| 			mp_word		w,
 | |
| 						save = 0;
 | |
| 
 | |
| 			for (i = 0; i < top; ++i)
 | |
| 			{
 | |
| 				w = t3[i];
 | |
| 				w = (w << 1) | save;
 | |
| 				t3[i] = LOWER_HALF(w);
 | |
| 				save = UPPER_HALF(w);
 | |
| 			}
 | |
| 			t3[i] = LOWER_HALF(save);
 | |
| 		}
 | |
| 
 | |
| 		/* Assemble the output value */
 | |
| 		COPY(t1, dc, 2 * bot_size);
 | |
| 		(void) s_uadd(t3, dc + bot_size, dc + bot_size,
 | |
| 					  buf_size + 1, buf_size + 1);
 | |
| 
 | |
| 		(void) s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size,
 | |
| 					  buf_size, buf_size);
 | |
| 
 | |
| 		px_free(t1);			/* note that t2 and t2 are internal pointers
 | |
| 								 * only */
 | |
| 
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		s_usqr(da, dc, size_a);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_usqr(da, dc, size_a) */
 | |
| 
 | |
| static void
 | |
| s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
 | |
| {
 | |
| 	mp_size		i,
 | |
| 				j;
 | |
| 	mp_word		w;
 | |
| 
 | |
| 	for (i = 0; i < size_a; ++i, dc += 2, ++da)
 | |
| 	{
 | |
| 		mp_digit   *dct = dc,
 | |
| 				   *dat = da;
 | |
| 
 | |
| 		if (*da == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Take care of the first digit, no rollover */
 | |
| 		w = (mp_word) *dat * (mp_word) *dat + (mp_word) *dct;
 | |
| 		*dct = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 		++dat;
 | |
| 		++dct;
 | |
| 
 | |
| 		for (j = i + 1; j < size_a; ++j, ++dat, ++dct)
 | |
| 		{
 | |
| 			mp_word		t = (mp_word) *da * (mp_word) *dat;
 | |
| 			mp_word		u = w + (mp_word) *dct,
 | |
| 						ov = 0;
 | |
| 
 | |
| 			/* Check if doubling t will overflow a word */
 | |
| 			if (HIGH_BIT_SET(t))
 | |
| 				ov = 1;
 | |
| 
 | |
| 			w = t + t;
 | |
| 
 | |
| 			/* Check if adding u to w will overflow a word */
 | |
| 			if (ADD_WILL_OVERFLOW(w, u))
 | |
| 				ov = 1;
 | |
| 
 | |
| 			w += u;
 | |
| 
 | |
| 			*dct = LOWER_HALF(w);
 | |
| 			w = UPPER_HALF(w);
 | |
| 			if (ov)
 | |
| 			{
 | |
| 				w += MP_DIGIT_MAX;		/* MP_RADIX */
 | |
| 				++w;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		w = w + *dct;
 | |
| 		*dct = (mp_digit) w;
 | |
| 		while ((w = UPPER_HALF(w)) != 0)
 | |
| 		{
 | |
| 			++dct;
 | |
| 			w = w + *dct;
 | |
| 			*dct = LOWER_HALF(w);
 | |
| 		}
 | |
| 
 | |
| 		assert(w == 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_dadd(a, b) */
 | |
| 
 | |
| static void
 | |
| s_dadd(mp_int a, mp_digit b)
 | |
| {
 | |
| 	mp_word		w = 0;
 | |
| 	mp_digit   *da = MP_DIGITS(a);
 | |
| 	mp_size		ua = MP_USED(a);
 | |
| 
 | |
| 	w = (mp_word) *da + b;
 | |
| 	*da++ = LOWER_HALF(w);
 | |
| 	w = UPPER_HALF(w);
 | |
| 
 | |
| 	for (ua -= 1; ua > 0; --ua, ++da)
 | |
| 	{
 | |
| 		w = (mp_word) *da + w;
 | |
| 
 | |
| 		*da = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 	}
 | |
| 
 | |
| 	if (w)
 | |
| 	{
 | |
| 		*da = (mp_digit) w;
 | |
| 		MP_USED(a) += 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_dmul(a, b) */
 | |
| 
 | |
| static void
 | |
| s_dmul(mp_int a, mp_digit b)
 | |
| {
 | |
| 	mp_word		w = 0;
 | |
| 	mp_digit   *da = MP_DIGITS(a);
 | |
| 	mp_size		ua = MP_USED(a);
 | |
| 
 | |
| 	while (ua > 0)
 | |
| 	{
 | |
| 		w = (mp_word) *da * b + w;
 | |
| 		*da++ = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 		--ua;
 | |
| 	}
 | |
| 
 | |
| 	if (w)
 | |
| 	{
 | |
| 		*da = (mp_digit) w;
 | |
| 		MP_USED(a) += 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_dbmul(da, b, dc, size_a) */
 | |
| 
 | |
| static void
 | |
| s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
 | |
| {
 | |
| 	mp_word		w = 0;
 | |
| 
 | |
| 	while (size_a > 0)
 | |
| 	{
 | |
| 		w = (mp_word) *da++ * (mp_word) b + w;
 | |
| 
 | |
| 		*dc++ = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 		--size_a;
 | |
| 	}
 | |
| 
 | |
| 	if (w)
 | |
| 		*dc = LOWER_HALF(w);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_ddiv(da, d, dc, size_a) */
 | |
| 
 | |
| static mp_digit
 | |
| s_ddiv(mp_int a, mp_digit b)
 | |
| {
 | |
| 	mp_word		w = 0,
 | |
| 				qdigit;
 | |
| 	mp_size		ua = MP_USED(a);
 | |
| 	mp_digit   *da = MP_DIGITS(a) + ua - 1;
 | |
| 
 | |
| 	for ( /* */ ; ua > 0; --ua, --da)
 | |
| 	{
 | |
| 		w = (w << MP_DIGIT_BIT) | *da;
 | |
| 
 | |
| 		if (w >= b)
 | |
| 		{
 | |
| 			qdigit = w / b;
 | |
| 			w = w % b;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			qdigit = 0;
 | |
| 		}
 | |
| 
 | |
| 		*da = (mp_digit) qdigit;
 | |
| 	}
 | |
| 
 | |
| 	CLAMP(a);
 | |
| 	return (mp_digit) w;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_qdiv(z, p2) */
 | |
| 
 | |
| static void
 | |
| s_qdiv(mp_int z, mp_size p2)
 | |
| {
 | |
| 	mp_size		ndig = p2 / MP_DIGIT_BIT,
 | |
| 				nbits = p2 % MP_DIGIT_BIT;
 | |
| 	mp_size		uz = MP_USED(z);
 | |
| 
 | |
| 	if (ndig)
 | |
| 	{
 | |
| 		mp_size		mark;
 | |
| 		mp_digit   *to,
 | |
| 				   *from;
 | |
| 
 | |
| 		if (ndig >= uz)
 | |
| 		{
 | |
| 			mp_int_zero(z);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		to = MP_DIGITS(z);
 | |
| 		from = to + ndig;
 | |
| 
 | |
| 		for (mark = ndig; mark < uz; ++mark)
 | |
| 			*to++ = *from++;
 | |
| 
 | |
| 		MP_USED(z) = uz - ndig;
 | |
| 	}
 | |
| 
 | |
| 	if (nbits)
 | |
| 	{
 | |
| 		mp_digit	d = 0,
 | |
| 				   *dz,
 | |
| 					save;
 | |
| 		mp_size		up = MP_DIGIT_BIT - nbits;
 | |
| 
 | |
| 		uz = MP_USED(z);
 | |
| 		dz = MP_DIGITS(z) + uz - 1;
 | |
| 
 | |
| 		for ( /* */ ; uz > 0; --uz, --dz)
 | |
| 		{
 | |
| 			save = *dz;
 | |
| 
 | |
| 			*dz = (*dz >> nbits) | (d << up);
 | |
| 			d = save;
 | |
| 		}
 | |
| 
 | |
| 		CLAMP(z);
 | |
| 	}
 | |
| 
 | |
| 	if (MP_USED(z) == 1 && z->digits[0] == 0)
 | |
| 		MP_SIGN(z) = MP_ZPOS;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_qmod(z, p2) */
 | |
| 
 | |
| static void
 | |
| s_qmod(mp_int z, mp_size p2)
 | |
| {
 | |
| 	mp_size		start = p2 / MP_DIGIT_BIT + 1,
 | |
| 				rest = p2 % MP_DIGIT_BIT;
 | |
| 	mp_size		uz = MP_USED(z);
 | |
| 	mp_digit	mask = (1 << rest) - 1;
 | |
| 
 | |
| 	if (start <= uz)
 | |
| 	{
 | |
| 		MP_USED(z) = start;
 | |
| 		z->digits[start - 1] &= mask;
 | |
| 		CLAMP(z);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_qmul(z, p2) */
 | |
| 
 | |
| static int
 | |
| s_qmul(mp_int z, mp_size p2)
 | |
| {
 | |
| 	mp_size		uz,
 | |
| 				need,
 | |
| 				rest,
 | |
| 				extra,
 | |
| 				i;
 | |
| 	mp_digit   *from,
 | |
| 			   *to,
 | |
| 				d;
 | |
| 
 | |
| 	if (p2 == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	uz = MP_USED(z);
 | |
| 	need = p2 / MP_DIGIT_BIT;
 | |
| 	rest = p2 % MP_DIGIT_BIT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out if we need an extra digit at the top end; this occurs if the
 | |
| 	 * topmost `rest' bits of the high-order digit of z are not zero, meaning
 | |
| 	 * they will be shifted off the end if not preserved
 | |
| 	 */
 | |
| 	extra = 0;
 | |
| 	if (rest != 0)
 | |
| 	{
 | |
| 		mp_digit   *dz = MP_DIGITS(z) + uz - 1;
 | |
| 
 | |
| 		if ((*dz >> (MP_DIGIT_BIT - rest)) != 0)
 | |
| 			extra = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!s_pad(z, uz + need + extra))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we need to shift by whole digits, do that in one pass, then to back
 | |
| 	 * and shift by partial digits.
 | |
| 	 */
 | |
| 	if (need > 0)
 | |
| 	{
 | |
| 		from = MP_DIGITS(z) + uz - 1;
 | |
| 		to = from + need;
 | |
| 
 | |
| 		for (i = 0; i < uz; ++i)
 | |
| 			*to-- = *from--;
 | |
| 
 | |
| 		ZERO(MP_DIGITS(z), need);
 | |
| 		uz += need;
 | |
| 	}
 | |
| 
 | |
| 	if (rest)
 | |
| 	{
 | |
| 		d = 0;
 | |
| 		for (i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from)
 | |
| 		{
 | |
| 			mp_digit	save = *from;
 | |
| 
 | |
| 			*from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
 | |
| 			d = save;
 | |
| 		}
 | |
| 
 | |
| 		d >>= (MP_DIGIT_BIT - rest);
 | |
| 		if (d != 0)
 | |
| 		{
 | |
| 			*from = d;
 | |
| 			uz += extra;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	MP_USED(z) = uz;
 | |
| 	CLAMP(z);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_qsub(z, p2) */
 | |
| 
 | |
| /* Subtract |z| from 2^p2, assuming 2^p2 > |z|, and set z to be positive */
 | |
| static int
 | |
| s_qsub(mp_int z, mp_size p2)
 | |
| {
 | |
| 	mp_digit	hi = (1 << (p2 % MP_DIGIT_BIT)),
 | |
| 			   *zp;
 | |
| 	mp_size		tdig = (p2 / MP_DIGIT_BIT),
 | |
| 				pos;
 | |
| 	mp_word		w = 0;
 | |
| 
 | |
| 	if (!s_pad(z, tdig + 1))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp)
 | |
| 	{
 | |
| 		w = ((mp_word) MP_DIGIT_MAX + 1) - w - (mp_word) *zp;
 | |
| 
 | |
| 		*zp = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w) ? 0 : 1;
 | |
| 	}
 | |
| 
 | |
| 	w = ((mp_word) MP_DIGIT_MAX + 1 + hi) - w - (mp_word) *zp;
 | |
| 	*zp = LOWER_HALF(w);
 | |
| 
 | |
| 	assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
 | |
| 
 | |
| 	MP_SIGN(z) = MP_ZPOS;
 | |
| 	CLAMP(z);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_dp2k(z) */
 | |
| 
 | |
| static int
 | |
| s_dp2k(mp_int z)
 | |
| {
 | |
| 	int			k = 0;
 | |
| 	mp_digit   *dp = MP_DIGITS(z),
 | |
| 				d;
 | |
| 
 | |
| 	if (MP_USED(z) == 1 && *dp == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	while (*dp == 0)
 | |
| 	{
 | |
| 		k += MP_DIGIT_BIT;
 | |
| 		++dp;
 | |
| 	}
 | |
| 
 | |
| 	d = *dp;
 | |
| 	while ((d & 1) == 0)
 | |
| 	{
 | |
| 		d >>= 1;
 | |
| 		++k;
 | |
| 	}
 | |
| 
 | |
| 	return k;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_isp2(z) */
 | |
| 
 | |
| static int
 | |
| s_isp2(mp_int z)
 | |
| {
 | |
| 	mp_size		uz = MP_USED(z),
 | |
| 				k = 0;
 | |
| 	mp_digit   *dz = MP_DIGITS(z),
 | |
| 				d;
 | |
| 
 | |
| 	while (uz > 1)
 | |
| 	{
 | |
| 		if (*dz++ != 0)
 | |
| 			return -1;
 | |
| 		k += MP_DIGIT_BIT;
 | |
| 		--uz;
 | |
| 	}
 | |
| 
 | |
| 	d = *dz;
 | |
| 	while (d > 1)
 | |
| 	{
 | |
| 		if (d & 1)
 | |
| 			return -1;
 | |
| 		++k;
 | |
| 		d >>= 1;
 | |
| 	}
 | |
| 
 | |
| 	return (int) k;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_2expt(z, k) */
 | |
| 
 | |
| static int
 | |
| s_2expt(mp_int z, int k)
 | |
| {
 | |
| 	mp_size		ndig,
 | |
| 				rest;
 | |
| 	mp_digit   *dz;
 | |
| 
 | |
| 	ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
 | |
| 	rest = k % MP_DIGIT_BIT;
 | |
| 
 | |
| 	if (!s_pad(z, ndig))
 | |
| 		return 0;
 | |
| 
 | |
| 	dz = MP_DIGITS(z);
 | |
| 	ZERO(dz, ndig);
 | |
| 	*(dz + ndig - 1) = (1 << rest);
 | |
| 	MP_USED(z) = ndig;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_norm(a, b) */
 | |
| 
 | |
| static int
 | |
| s_norm(mp_int a, mp_int b)
 | |
| {
 | |
| 	mp_digit	d = b->digits[MP_USED(b) - 1];
 | |
| 	int			k = 0;
 | |
| 
 | |
| 	while (d < (mp_digit) ((mp_digit) 1 << (MP_DIGIT_BIT - 1)))
 | |
| 	{							/* d < (MP_RADIX / 2) */
 | |
| 		d <<= 1;
 | |
| 		++k;
 | |
| 	}
 | |
| 
 | |
| 	/* These multiplications can't fail */
 | |
| 	if (k != 0)
 | |
| 	{
 | |
| 		(void) s_qmul(a, (mp_size) k);
 | |
| 		(void) s_qmul(b, (mp_size) k);
 | |
| 	}
 | |
| 
 | |
| 	return k;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_brmu(z, m) */
 | |
| 
 | |
| static mp_result
 | |
| s_brmu(mp_int z, mp_int m)
 | |
| {
 | |
| 	mp_size		um = MP_USED(m) * 2;
 | |
| 
 | |
| 	if (!s_pad(z, um))
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	s_2expt(z, MP_DIGIT_BIT * um);
 | |
| 	return mp_int_div(z, m, z, NULL);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_reduce(x, m, mu, q1, q2) */
 | |
| 
 | |
| static int
 | |
| s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
 | |
| {
 | |
| 	mp_size		um = MP_USED(m),
 | |
| 				umb_p1,
 | |
| 				umb_m1;
 | |
| 
 | |
| 	umb_p1 = (um + 1) * MP_DIGIT_BIT;
 | |
| 	umb_m1 = (um - 1) * MP_DIGIT_BIT;
 | |
| 
 | |
| 	if (mp_int_copy(x, q1) != MP_OK)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
 | |
| 	s_qdiv(q1, umb_m1);
 | |
| 	UMUL(q1, mu, q2);
 | |
| 	s_qdiv(q2, umb_p1);
 | |
| 
 | |
| 	/* Set x = x mod b^(k+1) */
 | |
| 	s_qmod(x, umb_p1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now, q is a guess for the quotient a / m. Compute x - q * m mod
 | |
| 	 * b^(k+1), replacing x.  This may be off by a factor of 2m, but no more
 | |
| 	 * than that.
 | |
| 	 */
 | |
| 	UMUL(q2, m, q1);
 | |
| 	s_qmod(q1, umb_p1);
 | |
| 	(void) mp_int_sub(x, q1, x);	/* can't fail */
 | |
| 
 | |
| 	/*
 | |
| 	 * The result may be < 0; if it is, add b^(k+1) to pin it in the proper
 | |
| 	 * range.
 | |
| 	 */
 | |
| 	if ((CMPZ(x) < 0) && !s_qsub(x, umb_p1))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If x > m, we need to back it off until it is in range. This will be
 | |
| 	 * required at most twice.
 | |
| 	 */
 | |
| 	if (mp_int_compare(x, m) >= 0)
 | |
| 		(void) mp_int_sub(x, m, x);
 | |
| 	if (mp_int_compare(x, m) >= 0)
 | |
| 		(void) mp_int_sub(x, m, x);
 | |
| 
 | |
| 	/* At this point, x has been properly reduced. */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_embar(a, b, m, mu, c) */
 | |
| 
 | |
| /* Perform modular exponentiation using Barrett's method, where mu is
 | |
|    the reduction constant for m.  Assumes a < m, b > 0. */
 | |
| static mp_result
 | |
| s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
 | |
| {
 | |
| 	mp_digit   *db,
 | |
| 			   *dbt,
 | |
| 				umu,
 | |
| 				d;
 | |
| 	mpz_t		temp[3];
 | |
| 	mp_result	res;
 | |
| 	int			last = 0;
 | |
| 
 | |
| 	umu = MP_USED(mu);
 | |
| 	db = MP_DIGITS(b);
 | |
| 	dbt = db + MP_USED(b) - 1;
 | |
| 
 | |
| 	while (last < 3)
 | |
| 	{
 | |
| 		SETUP(mp_int_init_size(TEMP(last), 4 * umu), last);
 | |
| 		ZERO(MP_DIGITS(TEMP(last - 1)), MP_ALLOC(TEMP(last - 1)));
 | |
| 	}
 | |
| 
 | |
| 	(void) mp_int_set_value(c, 1);
 | |
| 
 | |
| 	/* Take care of low-order digits */
 | |
| 	while (db < dbt)
 | |
| 	{
 | |
| 		int			i;
 | |
| 
 | |
| 		for (d = *db, i = MP_DIGIT_BIT; i > 0; --i, d >>= 1)
 | |
| 		{
 | |
| 			if (d & 1)
 | |
| 			{
 | |
| 				/* The use of a second temporary avoids allocation */
 | |
| 				UMUL(c, a, TEMP(0));
 | |
| 				if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
 | |
| 				{
 | |
| 					res = MP_MEMORY;
 | |
| 					goto CLEANUP;
 | |
| 				}
 | |
| 				mp_int_copy(TEMP(0), c);
 | |
| 			}
 | |
| 
 | |
| 
 | |
| 			USQR(a, TEMP(0));
 | |
| 			assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
 | |
| 			if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
 | |
| 			{
 | |
| 				res = MP_MEMORY;
 | |
| 				goto CLEANUP;
 | |
| 			}
 | |
| 			assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
 | |
| 			mp_int_copy(TEMP(0), a);
 | |
| 
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		++db;
 | |
| 	}
 | |
| 
 | |
| 	/* Take care of highest-order digit */
 | |
| 	d = *dbt;
 | |
| 	for (;;)
 | |
| 	{
 | |
| 		if (d & 1)
 | |
| 		{
 | |
| 			UMUL(c, a, TEMP(0));
 | |
| 			if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
 | |
| 			{
 | |
| 				res = MP_MEMORY;
 | |
| 				goto CLEANUP;
 | |
| 			}
 | |
| 			mp_int_copy(TEMP(0), c);
 | |
| 		}
 | |
| 
 | |
| 		d >>= 1;
 | |
| 		if (!d)
 | |
| 			break;
 | |
| 
 | |
| 		USQR(a, TEMP(0));
 | |
| 		if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
 | |
| 		{
 | |
| 			res = MP_MEMORY;
 | |
| 			goto CLEANUP;
 | |
| 		}
 | |
| 		(void) mp_int_copy(TEMP(0), a);
 | |
| 	}
 | |
| 
 | |
| CLEANUP:
 | |
| 	while (--last >= 0)
 | |
| 		mp_int_clear(TEMP(last));
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_udiv(a, b) */
 | |
| 
 | |
| /* Precondition:  a >= b and b > 0
 | |
|    Postcondition: a' = a / b, b' = a % b
 | |
|  */
 | |
| static mp_result
 | |
| s_udiv(mp_int a, mp_int b)
 | |
| {
 | |
| 	mpz_t		q,
 | |
| 				r,
 | |
| 				t;
 | |
| 	mp_size		ua,
 | |
| 				ub,
 | |
| 				qpos = 0;
 | |
| 	mp_digit   *da,
 | |
| 				btop;
 | |
| 	mp_result	res = MP_OK;
 | |
| 	int			k,
 | |
| 				skip = 0;
 | |
| 
 | |
| 	/* Force signs to positive */
 | |
| 	MP_SIGN(a) = MP_ZPOS;
 | |
| 	MP_SIGN(b) = MP_ZPOS;
 | |
| 
 | |
| 	/* Normalize, per Knuth */
 | |
| 	k = s_norm(a, b);
 | |
| 
 | |
| 	ua = MP_USED(a);
 | |
| 	ub = MP_USED(b);
 | |
| 	btop = b->digits[ub - 1];
 | |
| 	if ((res = mp_int_init_size(&q, ua)) != MP_OK)
 | |
| 		return res;
 | |
| 	if ((res = mp_int_init_size(&t, ua + 1)) != MP_OK)
 | |
| 		goto CLEANUP;
 | |
| 
 | |
| 	da = MP_DIGITS(a);
 | |
| 	r.digits = da + ua - 1;		/* The contents of r are shared with a */
 | |
| 	r.used = 1;
 | |
| 	r.sign = MP_ZPOS;
 | |
| 	r.alloc = MP_ALLOC(a);
 | |
| 	ZERO(t.digits, t.alloc);
 | |
| 
 | |
| 	/* Solve for quotient digits, store in q.digits in reverse order */
 | |
| 	while (r.digits >= da)
 | |
| 	{
 | |
| 		assert(qpos <= q.alloc);
 | |
| 
 | |
| 		if (s_ucmp(b, &r) > 0)
 | |
| 		{
 | |
| 			r.digits -= 1;
 | |
| 			r.used += 1;
 | |
| 
 | |
| 			if (++skip > 1)
 | |
| 				q.digits[qpos++] = 0;
 | |
| 
 | |
| 			CLAMP(&r);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			mp_word		pfx = r.digits[r.used - 1];
 | |
| 			mp_word		qdigit;
 | |
| 
 | |
| 			if (r.used > 1 && (pfx < btop || r.digits[r.used - 2] == 0))
 | |
| 			{
 | |
| 				pfx <<= MP_DIGIT_BIT / 2;
 | |
| 				pfx <<= MP_DIGIT_BIT / 2;
 | |
| 				pfx |= r.digits[r.used - 2];
 | |
| 			}
 | |
| 
 | |
| 			qdigit = pfx / btop;
 | |
| 			if (qdigit > MP_DIGIT_MAX)
 | |
| 				qdigit = 1;
 | |
| 
 | |
| 			s_dbmul(MP_DIGITS(b), (mp_digit) qdigit, t.digits, ub);
 | |
| 			t.used = ub + 1;
 | |
| 			CLAMP(&t);
 | |
| 			while (s_ucmp(&t, &r) > 0)
 | |
| 			{
 | |
| 				--qdigit;
 | |
| 				(void) mp_int_sub(&t, b, &t);	/* cannot fail */
 | |
| 			}
 | |
| 
 | |
| 			s_usub(r.digits, t.digits, r.digits, r.used, t.used);
 | |
| 			CLAMP(&r);
 | |
| 
 | |
| 			q.digits[qpos++] = (mp_digit) qdigit;
 | |
| 			ZERO(t.digits, t.used);
 | |
| 			skip = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Put quotient digits in the correct order, and discard extra zeroes */
 | |
| 	q.used = qpos;
 | |
| 	REV(mp_digit, q.digits, qpos);
 | |
| 	CLAMP(&q);
 | |
| 
 | |
| 	/* Denormalize the remainder */
 | |
| 	CLAMP(a);
 | |
| 	if (k != 0)
 | |
| 		s_qdiv(a, k);
 | |
| 
 | |
| 	mp_int_copy(a, b);			/* ok:	0 <= r < b */
 | |
| 	mp_int_copy(&q, a);			/* ok:	q <= a	   */
 | |
| 
 | |
| 	mp_int_clear(&t);
 | |
| CLEANUP:
 | |
| 	mp_int_clear(&q);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_outlen(z, r) */
 | |
| 
 | |
| /* Precondition:  2 <= r < 64 */
 | |
| static int
 | |
| s_outlen(mp_int z, mp_size r)
 | |
| {
 | |
| 	mp_result	bits;
 | |
| 	double		raw;
 | |
| 
 | |
| 	bits = mp_int_count_bits(z);
 | |
| 	raw = (double) bits *s_log2[r];
 | |
| 
 | |
| 	return (int) (raw + 0.999999);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_inlen(len, r) */
 | |
| 
 | |
| static mp_size
 | |
| s_inlen(int len, mp_size r)
 | |
| {
 | |
| 	double		raw = (double) len / s_log2[r];
 | |
| 	mp_size		bits = (mp_size) (raw + 0.5);
 | |
| 
 | |
| 	return (mp_size) ((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_ch2val(c, r) */
 | |
| 
 | |
| static int
 | |
| s_ch2val(char c, int r)
 | |
| {
 | |
| 	int			out;
 | |
| 
 | |
| 	if (isdigit((unsigned char) c))
 | |
| 		out = c - '0';
 | |
| 	else if (r > 10 && isalpha((unsigned char) c))
 | |
| 		out = toupper((unsigned char) c) - 'A' + 10;
 | |
| 	else
 | |
| 		return -1;
 | |
| 
 | |
| 	return (out >= r) ? -1 : out;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_val2ch(v, caps) */
 | |
| 
 | |
| static char
 | |
| s_val2ch(int v, int caps)
 | |
| {
 | |
| 	assert(v >= 0);
 | |
| 
 | |
| 	if (v < 10)
 | |
| 		return v + '0';
 | |
| 	else
 | |
| 	{
 | |
| 		char		out = (v - 10) + 'a';
 | |
| 
 | |
| 		if (caps)
 | |
| 			return toupper((unsigned char) out);
 | |
| 		else
 | |
| 			return out;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_2comp(buf, len) */
 | |
| 
 | |
| static void
 | |
| s_2comp(unsigned char *buf, int len)
 | |
| {
 | |
| 	int			i;
 | |
| 	unsigned short s = 1;
 | |
| 
 | |
| 	for (i = len - 1; i >= 0; --i)
 | |
| 	{
 | |
| 		unsigned char c = ~buf[i];
 | |
| 
 | |
| 		s = c + s;
 | |
| 		c = s & UCHAR_MAX;
 | |
| 		s >>= CHAR_BIT;
 | |
| 
 | |
| 		buf[i] = c;
 | |
| 	}
 | |
| 
 | |
| 	/* last carry out is ignored */
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_tobin(z, buf, *limpos) */
 | |
| 
 | |
| static mp_result
 | |
| s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
 | |
| {
 | |
| 	mp_size		uz;
 | |
| 	mp_digit   *dz;
 | |
| 	int			pos = 0,
 | |
| 				limit = *limpos;
 | |
| 
 | |
| 	uz = MP_USED(z);
 | |
| 	dz = MP_DIGITS(z);
 | |
| 	while (uz > 0 && pos < limit)
 | |
| 	{
 | |
| 		mp_digit	d = *dz++;
 | |
| 		int			i;
 | |
| 
 | |
| 		for (i = sizeof(mp_digit); i > 0 && pos < limit; --i)
 | |
| 		{
 | |
| 			buf[pos++] = (unsigned char) d;
 | |
| 			d >>= CHAR_BIT;
 | |
| 
 | |
| 			/* Don't write leading zeroes */
 | |
| 			if (d == 0 && uz == 1)
 | |
| 				i = 0;			/* exit loop without signaling truncation */
 | |
| 		}
 | |
| 
 | |
| 		/* Detect truncation (loop exited with pos >= limit) */
 | |
| 		if (i > 0)
 | |
| 			break;
 | |
| 
 | |
| 		--uz;
 | |
| 	}
 | |
| 
 | |
| 	if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1)))
 | |
| 	{
 | |
| 		if (pos < limit)
 | |
| 			buf[pos++] = 0;
 | |
| 		else
 | |
| 			uz = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Digits are in reverse order, fix that */
 | |
| 	REV(unsigned char, buf, pos);
 | |
| 
 | |
| 	/* Return the number of bytes actually written */
 | |
| 	*limpos = pos;
 | |
| 
 | |
| 	return (uz == 0) ? MP_OK : MP_TRUNC;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_print(tag, z) */
 | |
| 
 | |
| #if 0
 | |
| void
 | |
| s_print(char *tag, mp_int z)
 | |
| {
 | |
| 	int			i;
 | |
| 
 | |
| 	fprintf(stderr, "%s: %c ", tag,
 | |
| 			(MP_SIGN(z) == MP_NEG) ? '-' : '+');
 | |
| 
 | |
| 	for (i = MP_USED(z) - 1; i >= 0; --i)
 | |
| 		fprintf(stderr, "%0*X", (int) (MP_DIGIT_BIT / 4), z->digits[i]);
 | |
| 
 | |
| 	fputc('\n', stderr);
 | |
| 
 | |
| }
 | |
| 
 | |
| void
 | |
| s_print_buf(char *tag, mp_digit *buf, mp_size num)
 | |
| {
 | |
| 	int			i;
 | |
| 
 | |
| 	fprintf(stderr, "%s: ", tag);
 | |
| 
 | |
| 	for (i = num - 1; i >= 0; --i)
 | |
| 		fprintf(stderr, "%0*X", (int) (MP_DIGIT_BIT / 4), buf[i]);
 | |
| 
 | |
| 	fputc('\n', stderr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* HERE THERE BE DRAGONS */
 |