1
0
mirror of https://github.com/postgres/postgres.git synced 2025-06-05 23:56:58 +03:00
Tom Lane 88103567cb Disallow setting bogus GUCs within an extension's reserved namespace.
Commit 75d22069e tried to throw a warning for setting a custom GUC whose
prefix belongs to a previously-loaded extension, if there is no such GUC
defined by the extension.  But that caused unstable behavior with
parallel workers, because workers don't necessarily load extensions and
GUCs in the same order their leader did.  To make that work safely, we
have to completely disallow the case.  We now actually remove any such
GUCs at the time of initial extension load, and then throw an error not
just a warning if you try to add one later.  While this might create a
compatibility issue for a few people, the improvement in error-detection
capability seems worth it; it's hard to believe that there's any good
use-case for choosing such GUC names.

This also un-reverts 5609cc01c (Rename EmitWarningsOnPlaceholders() to
MarkGUCPrefixReserved()), since that function's old name is now even
more of a misnomer.

Florin Irion and Tom Lane

Discussion: https://postgr.es/m/1902182.1640711215@sss.pgh.pa.us
2022-02-21 14:10:43 -05:00

394 lines
11 KiB
C

/* -------------------------------------------------------------------------
*
* worker_spi.c
* Sample background worker code that demonstrates various coding
* patterns: establishing a database connection; starting and committing
* transactions; using GUC variables, and heeding SIGHUP to reread
* the configuration file; reporting to pg_stat_activity; using the
* process latch to sleep and exit in case of postmaster death.
*
* This code connects to a database, creates a schema and table, and summarizes
* the numbers contained therein. To see it working, insert an initial value
* with "total" type and some initial value; then insert some other rows with
* "delta" type. Delta rows will be deleted by this worker and their values
* aggregated into the total.
*
* Copyright (c) 2013-2022, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/test/modules/worker_spi/worker_spi.c
*
* -------------------------------------------------------------------------
*/
#include "postgres.h"
/* These are always necessary for a bgworker */
#include "miscadmin.h"
#include "postmaster/bgworker.h"
#include "postmaster/interrupt.h"
#include "storage/ipc.h"
#include "storage/latch.h"
#include "storage/lwlock.h"
#include "storage/proc.h"
#include "storage/shmem.h"
/* these headers are used by this particular worker's code */
#include "access/xact.h"
#include "executor/spi.h"
#include "fmgr.h"
#include "lib/stringinfo.h"
#include "pgstat.h"
#include "utils/builtins.h"
#include "utils/snapmgr.h"
#include "tcop/utility.h"
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(worker_spi_launch);
void _PG_init(void);
void worker_spi_main(Datum) pg_attribute_noreturn();
/* GUC variables */
static int worker_spi_naptime = 10;
static int worker_spi_total_workers = 2;
static char *worker_spi_database = NULL;
typedef struct worktable
{
const char *schema;
const char *name;
} worktable;
/*
* Initialize workspace for a worker process: create the schema if it doesn't
* already exist.
*/
static void
initialize_worker_spi(worktable *table)
{
int ret;
int ntup;
bool isnull;
StringInfoData buf;
SetCurrentStatementStartTimestamp();
StartTransactionCommand();
SPI_connect();
PushActiveSnapshot(GetTransactionSnapshot());
pgstat_report_activity(STATE_RUNNING, "initializing worker_spi schema");
/* XXX could we use CREATE SCHEMA IF NOT EXISTS? */
initStringInfo(&buf);
appendStringInfo(&buf, "select count(*) from pg_namespace where nspname = '%s'",
table->schema);
debug_query_string = buf.data;
ret = SPI_execute(buf.data, true, 0);
if (ret != SPI_OK_SELECT)
elog(FATAL, "SPI_execute failed: error code %d", ret);
if (SPI_processed != 1)
elog(FATAL, "not a singleton result");
ntup = DatumGetInt64(SPI_getbinval(SPI_tuptable->vals[0],
SPI_tuptable->tupdesc,
1, &isnull));
if (isnull)
elog(FATAL, "null result");
if (ntup == 0)
{
debug_query_string = NULL;
resetStringInfo(&buf);
appendStringInfo(&buf,
"CREATE SCHEMA \"%s\" "
"CREATE TABLE \"%s\" ("
" type text CHECK (type IN ('total', 'delta')), "
" value integer)"
"CREATE UNIQUE INDEX \"%s_unique_total\" ON \"%s\" (type) "
"WHERE type = 'total'",
table->schema, table->name, table->name, table->name);
/* set statement start time */
SetCurrentStatementStartTimestamp();
debug_query_string = buf.data;
ret = SPI_execute(buf.data, false, 0);
if (ret != SPI_OK_UTILITY)
elog(FATAL, "failed to create my schema");
debug_query_string = NULL; /* rest is not statement-specific */
}
SPI_finish();
PopActiveSnapshot();
CommitTransactionCommand();
debug_query_string = NULL;
pgstat_report_activity(STATE_IDLE, NULL);
}
void
worker_spi_main(Datum main_arg)
{
int index = DatumGetInt32(main_arg);
worktable *table;
StringInfoData buf;
char name[20];
table = palloc(sizeof(worktable));
sprintf(name, "schema%d", index);
table->schema = pstrdup(name);
table->name = pstrdup("counted");
/* Establish signal handlers before unblocking signals. */
pqsignal(SIGHUP, SignalHandlerForConfigReload);
pqsignal(SIGTERM, die);
/* We're now ready to receive signals */
BackgroundWorkerUnblockSignals();
/* Connect to our database */
BackgroundWorkerInitializeConnection(worker_spi_database, NULL, 0);
elog(LOG, "%s initialized with %s.%s",
MyBgworkerEntry->bgw_name, table->schema, table->name);
initialize_worker_spi(table);
/*
* Quote identifiers passed to us. Note that this must be done after
* initialize_worker_spi, because that routine assumes the names are not
* quoted.
*
* Note some memory might be leaked here.
*/
table->schema = quote_identifier(table->schema);
table->name = quote_identifier(table->name);
initStringInfo(&buf);
appendStringInfo(&buf,
"WITH deleted AS (DELETE "
"FROM %s.%s "
"WHERE type = 'delta' RETURNING value), "
"total AS (SELECT coalesce(sum(value), 0) as sum "
"FROM deleted) "
"UPDATE %s.%s "
"SET value = %s.value + total.sum "
"FROM total WHERE type = 'total' "
"RETURNING %s.value",
table->schema, table->name,
table->schema, table->name,
table->name,
table->name);
/*
* Main loop: do this until SIGTERM is received and processed by
* ProcessInterrupts.
*/
for (;;)
{
int ret;
/*
* Background workers mustn't call usleep() or any direct equivalent:
* instead, they may wait on their process latch, which sleeps as
* necessary, but is awakened if postmaster dies. That way the
* background process goes away immediately in an emergency.
*/
(void) WaitLatch(MyLatch,
WL_LATCH_SET | WL_TIMEOUT | WL_EXIT_ON_PM_DEATH,
worker_spi_naptime * 1000L,
PG_WAIT_EXTENSION);
ResetLatch(MyLatch);
CHECK_FOR_INTERRUPTS();
/*
* In case of a SIGHUP, just reload the configuration.
*/
if (ConfigReloadPending)
{
ConfigReloadPending = false;
ProcessConfigFile(PGC_SIGHUP);
}
/*
* Start a transaction on which we can run queries. Note that each
* StartTransactionCommand() call should be preceded by a
* SetCurrentStatementStartTimestamp() call, which sets both the time
* for the statement we're about the run, and also the transaction
* start time. Also, each other query sent to SPI should probably be
* preceded by SetCurrentStatementStartTimestamp(), so that statement
* start time is always up to date.
*
* The SPI_connect() call lets us run queries through the SPI manager,
* and the PushActiveSnapshot() call creates an "active" snapshot
* which is necessary for queries to have MVCC data to work on.
*
* The pgstat_report_activity() call makes our activity visible
* through the pgstat views.
*/
SetCurrentStatementStartTimestamp();
StartTransactionCommand();
SPI_connect();
PushActiveSnapshot(GetTransactionSnapshot());
debug_query_string = buf.data;
pgstat_report_activity(STATE_RUNNING, buf.data);
/* We can now execute queries via SPI */
ret = SPI_execute(buf.data, false, 0);
if (ret != SPI_OK_UPDATE_RETURNING)
elog(FATAL, "cannot select from table %s.%s: error code %d",
table->schema, table->name, ret);
if (SPI_processed > 0)
{
bool isnull;
int32 val;
val = DatumGetInt32(SPI_getbinval(SPI_tuptable->vals[0],
SPI_tuptable->tupdesc,
1, &isnull));
if (!isnull)
elog(LOG, "%s: count in %s.%s is now %d",
MyBgworkerEntry->bgw_name,
table->schema, table->name, val);
}
/*
* And finish our transaction.
*/
SPI_finish();
PopActiveSnapshot();
CommitTransactionCommand();
debug_query_string = NULL;
pgstat_report_stat(false);
pgstat_report_activity(STATE_IDLE, NULL);
}
/* Not reachable */
}
/*
* Entrypoint of this module.
*
* We register more than one worker process here, to demonstrate how that can
* be done.
*/
void
_PG_init(void)
{
BackgroundWorker worker;
/* get the configuration */
DefineCustomIntVariable("worker_spi.naptime",
"Duration between each check (in seconds).",
NULL,
&worker_spi_naptime,
10,
1,
INT_MAX,
PGC_SIGHUP,
0,
NULL,
NULL,
NULL);
if (!process_shared_preload_libraries_in_progress)
return;
DefineCustomIntVariable("worker_spi.total_workers",
"Number of workers.",
NULL,
&worker_spi_total_workers,
2,
1,
100,
PGC_POSTMASTER,
0,
NULL,
NULL,
NULL);
DefineCustomStringVariable("worker_spi.database",
"Database to connect to.",
NULL,
&worker_spi_database,
"postgres",
PGC_POSTMASTER,
0,
NULL, NULL, NULL);
MarkGUCPrefixReserved("worker_spi");
/* set up common data for all our workers */
memset(&worker, 0, sizeof(worker));
worker.bgw_flags = BGWORKER_SHMEM_ACCESS |
BGWORKER_BACKEND_DATABASE_CONNECTION;
worker.bgw_start_time = BgWorkerStart_RecoveryFinished;
worker.bgw_restart_time = BGW_NEVER_RESTART;
sprintf(worker.bgw_library_name, "worker_spi");
sprintf(worker.bgw_function_name, "worker_spi_main");
worker.bgw_notify_pid = 0;
/*
* Now fill in worker-specific data, and do the actual registrations.
*/
for (int i = 1; i <= worker_spi_total_workers; i++)
{
snprintf(worker.bgw_name, BGW_MAXLEN, "worker_spi worker %d", i);
snprintf(worker.bgw_type, BGW_MAXLEN, "worker_spi");
worker.bgw_main_arg = Int32GetDatum(i);
RegisterBackgroundWorker(&worker);
}
}
/*
* Dynamically launch an SPI worker.
*/
Datum
worker_spi_launch(PG_FUNCTION_ARGS)
{
int32 i = PG_GETARG_INT32(0);
BackgroundWorker worker;
BackgroundWorkerHandle *handle;
BgwHandleStatus status;
pid_t pid;
memset(&worker, 0, sizeof(worker));
worker.bgw_flags = BGWORKER_SHMEM_ACCESS |
BGWORKER_BACKEND_DATABASE_CONNECTION;
worker.bgw_start_time = BgWorkerStart_RecoveryFinished;
worker.bgw_restart_time = BGW_NEVER_RESTART;
sprintf(worker.bgw_library_name, "worker_spi");
sprintf(worker.bgw_function_name, "worker_spi_main");
snprintf(worker.bgw_name, BGW_MAXLEN, "worker_spi worker %d", i);
snprintf(worker.bgw_type, BGW_MAXLEN, "worker_spi");
worker.bgw_main_arg = Int32GetDatum(i);
/* set bgw_notify_pid so that we can use WaitForBackgroundWorkerStartup */
worker.bgw_notify_pid = MyProcPid;
if (!RegisterDynamicBackgroundWorker(&worker, &handle))
PG_RETURN_NULL();
status = WaitForBackgroundWorkerStartup(handle, &pid);
if (status == BGWH_STOPPED)
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_RESOURCES),
errmsg("could not start background process"),
errhint("More details may be available in the server log.")));
if (status == BGWH_POSTMASTER_DIED)
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_RESOURCES),
errmsg("cannot start background processes without postmaster"),
errhint("Kill all remaining database processes and restart the database.")));
Assert(status == BGWH_STARTED);
PG_RETURN_INT32(pid);
}