1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-17 06:41:24 +03:00
postgres/src/backend/executor/nodeRecursiveunion.c
Peter Eisentraut 5e1963fb76 Collations with nondeterministic comparison
This adds a flag "deterministic" to collations.  If that is false,
such a collation disables various optimizations that assume that
strings are equal only if they are byte-wise equal.  That then allows
use cases such as case-insensitive or accent-insensitive comparisons
or handling of strings with different Unicode normal forms.

This functionality is only supported with the ICU provider.  At least
glibc doesn't appear to have any locales that work in a
nondeterministic way, so it's not worth supporting this for the libc
provider.

The term "deterministic comparison" in this context is from Unicode
Technical Standard #10
(https://unicode.org/reports/tr10/#Deterministic_Comparison).

This patch makes changes in three areas:

- CREATE COLLATION DDL changes and system catalog changes to support
  this new flag.

- Many executor nodes and auxiliary code are extended to track
  collations.  Previously, this code would just throw away collation
  information, because the eventually-called user-defined functions
  didn't use it since they only cared about equality, which didn't
  need collation information.

- String data type functions that do equality comparisons and hashing
  are changed to take the (non-)deterministic flag into account.  For
  comparison, this just means skipping various shortcuts and tie
  breakers that use byte-wise comparison.  For hashing, we first need
  to convert the input string to a canonical "sort key" using the ICU
  analogue of strxfrm().

Reviewed-by: Daniel Verite <daniel@manitou-mail.org>
Reviewed-by: Peter Geoghegan <pg@bowt.ie>
Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com
2019-03-22 12:12:43 +01:00

332 lines
9.0 KiB
C

/*-------------------------------------------------------------------------
*
* nodeRecursiveunion.c
* routines to handle RecursiveUnion nodes.
*
* To implement UNION (without ALL), we need a hashtable that stores tuples
* already seen. The hash key is computed from the grouping columns.
*
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeRecursiveunion.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "executor/execdebug.h"
#include "executor/nodeRecursiveunion.h"
#include "miscadmin.h"
#include "utils/memutils.h"
/*
* Initialize the hash table to empty.
*/
static void
build_hash_table(RecursiveUnionState *rustate)
{
RecursiveUnion *node = (RecursiveUnion *) rustate->ps.plan;
TupleDesc desc = ExecGetResultType(outerPlanState(rustate));
Assert(node->numCols > 0);
Assert(node->numGroups > 0);
rustate->hashtable = BuildTupleHashTableExt(&rustate->ps,
desc,
node->numCols,
node->dupColIdx,
rustate->eqfuncoids,
rustate->hashfunctions,
node->dupCollations,
node->numGroups,
0,
rustate->ps.state->es_query_cxt,
rustate->tableContext,
rustate->tempContext,
false);
}
/* ----------------------------------------------------------------
* ExecRecursiveUnion(node)
*
* Scans the recursive query sequentially and returns the next
* qualifying tuple.
*
* 1. evaluate non recursive term and assign the result to RT
*
* 2. execute recursive terms
*
* 2.1 WT := RT
* 2.2 while WT is not empty repeat 2.3 to 2.6. if WT is empty returns RT
* 2.3 replace the name of recursive term with WT
* 2.4 evaluate the recursive term and store into WT
* 2.5 append WT to RT
* 2.6 go back to 2.2
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecRecursiveUnion(PlanState *pstate)
{
RecursiveUnionState *node = castNode(RecursiveUnionState, pstate);
PlanState *outerPlan = outerPlanState(node);
PlanState *innerPlan = innerPlanState(node);
RecursiveUnion *plan = (RecursiveUnion *) node->ps.plan;
TupleTableSlot *slot;
bool isnew;
CHECK_FOR_INTERRUPTS();
/* 1. Evaluate non-recursive term */
if (!node->recursing)
{
for (;;)
{
slot = ExecProcNode(outerPlan);
if (TupIsNull(slot))
break;
if (plan->numCols > 0)
{
/* Find or build hashtable entry for this tuple's group */
LookupTupleHashEntry(node->hashtable, slot, &isnew);
/* Must reset temp context after each hashtable lookup */
MemoryContextReset(node->tempContext);
/* Ignore tuple if already seen */
if (!isnew)
continue;
}
/* Each non-duplicate tuple goes to the working table ... */
tuplestore_puttupleslot(node->working_table, slot);
/* ... and to the caller */
return slot;
}
node->recursing = true;
}
/* 2. Execute recursive term */
for (;;)
{
slot = ExecProcNode(innerPlan);
if (TupIsNull(slot))
{
/* Done if there's nothing in the intermediate table */
if (node->intermediate_empty)
break;
/* done with old working table ... */
tuplestore_end(node->working_table);
/* intermediate table becomes working table */
node->working_table = node->intermediate_table;
/* create new empty intermediate table */
node->intermediate_table = tuplestore_begin_heap(false, false,
work_mem);
node->intermediate_empty = true;
/* reset the recursive term */
innerPlan->chgParam = bms_add_member(innerPlan->chgParam,
plan->wtParam);
/* and continue fetching from recursive term */
continue;
}
if (plan->numCols > 0)
{
/* Find or build hashtable entry for this tuple's group */
LookupTupleHashEntry(node->hashtable, slot, &isnew);
/* Must reset temp context after each hashtable lookup */
MemoryContextReset(node->tempContext);
/* Ignore tuple if already seen */
if (!isnew)
continue;
}
/* Else, tuple is good; stash it in intermediate table ... */
node->intermediate_empty = false;
tuplestore_puttupleslot(node->intermediate_table, slot);
/* ... and return it */
return slot;
}
return NULL;
}
/* ----------------------------------------------------------------
* ExecInitRecursiveUnionScan
* ----------------------------------------------------------------
*/
RecursiveUnionState *
ExecInitRecursiveUnion(RecursiveUnion *node, EState *estate, int eflags)
{
RecursiveUnionState *rustate;
ParamExecData *prmdata;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
/*
* create state structure
*/
rustate = makeNode(RecursiveUnionState);
rustate->ps.plan = (Plan *) node;
rustate->ps.state = estate;
rustate->ps.ExecProcNode = ExecRecursiveUnion;
rustate->eqfuncoids = NULL;
rustate->hashfunctions = NULL;
rustate->hashtable = NULL;
rustate->tempContext = NULL;
rustate->tableContext = NULL;
/* initialize processing state */
rustate->recursing = false;
rustate->intermediate_empty = true;
rustate->working_table = tuplestore_begin_heap(false, false, work_mem);
rustate->intermediate_table = tuplestore_begin_heap(false, false, work_mem);
/*
* If hashing, we need a per-tuple memory context for comparisons, and a
* longer-lived context to store the hash table. The table can't just be
* kept in the per-query context because we want to be able to throw it
* away when rescanning.
*/
if (node->numCols > 0)
{
rustate->tempContext =
AllocSetContextCreate(CurrentMemoryContext,
"RecursiveUnion",
ALLOCSET_DEFAULT_SIZES);
rustate->tableContext =
AllocSetContextCreate(CurrentMemoryContext,
"RecursiveUnion hash table",
ALLOCSET_DEFAULT_SIZES);
}
/*
* Make the state structure available to descendant WorkTableScan nodes
* via the Param slot reserved for it.
*/
prmdata = &(estate->es_param_exec_vals[node->wtParam]);
Assert(prmdata->execPlan == NULL);
prmdata->value = PointerGetDatum(rustate);
prmdata->isnull = false;
/*
* Miscellaneous initialization
*
* RecursiveUnion plans don't have expression contexts because they never
* call ExecQual or ExecProject.
*/
Assert(node->plan.qual == NIL);
/*
* RecursiveUnion nodes still have Result slots, which hold pointers to
* tuples, so we have to initialize them.
*/
ExecInitResultTypeTL(&rustate->ps);
/*
* Initialize result tuple type. (Note: we have to set up the result type
* before initializing child nodes, because nodeWorktablescan.c expects it
* to be valid.)
*/
rustate->ps.ps_ProjInfo = NULL;
/*
* initialize child nodes
*/
outerPlanState(rustate) = ExecInitNode(outerPlan(node), estate, eflags);
innerPlanState(rustate) = ExecInitNode(innerPlan(node), estate, eflags);
/*
* If hashing, precompute fmgr lookup data for inner loop, and create the
* hash table.
*/
if (node->numCols > 0)
{
execTuplesHashPrepare(node->numCols,
node->dupOperators,
&rustate->eqfuncoids,
&rustate->hashfunctions);
build_hash_table(rustate);
}
return rustate;
}
/* ----------------------------------------------------------------
* ExecEndRecursiveUnionScan
*
* frees any storage allocated through C routines.
* ----------------------------------------------------------------
*/
void
ExecEndRecursiveUnion(RecursiveUnionState *node)
{
/* Release tuplestores */
tuplestore_end(node->working_table);
tuplestore_end(node->intermediate_table);
/* free subsidiary stuff including hashtable */
if (node->tempContext)
MemoryContextDelete(node->tempContext);
if (node->tableContext)
MemoryContextDelete(node->tableContext);
/*
* close down subplans
*/
ExecEndNode(outerPlanState(node));
ExecEndNode(innerPlanState(node));
}
/* ----------------------------------------------------------------
* ExecReScanRecursiveUnion
*
* Rescans the relation.
* ----------------------------------------------------------------
*/
void
ExecReScanRecursiveUnion(RecursiveUnionState *node)
{
PlanState *outerPlan = outerPlanState(node);
PlanState *innerPlan = innerPlanState(node);
RecursiveUnion *plan = (RecursiveUnion *) node->ps.plan;
/*
* Set recursive term's chgParam to tell it that we'll modify the working
* table and therefore it has to rescan.
*/
innerPlan->chgParam = bms_add_member(innerPlan->chgParam, plan->wtParam);
/*
* if chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode. Because of above, we only have to do this to the
* non-recursive term.
*/
if (outerPlan->chgParam == NULL)
ExecReScan(outerPlan);
/* Release any hashtable storage */
if (node->tableContext)
MemoryContextResetAndDeleteChildren(node->tableContext);
/* Empty hashtable if needed */
if (plan->numCols > 0)
ResetTupleHashTable(node->hashtable);
/* reset processing state */
node->recursing = false;
node->intermediate_empty = true;
tuplestore_clear(node->working_table);
tuplestore_clear(node->intermediate_table);
}