1
0
mirror of https://github.com/postgres/postgres.git synced 2025-11-18 02:02:55 +03:00
Files
postgres/src/backend/nodes/outfuncs.c
Richard Guo 247dea89f7 Introduce an RTE for the grouping step
If there are subqueries in the grouping expressions, each of these
subqueries in the targetlist and HAVING clause is expanded into
distinct SubPlan nodes.  As a result, only one of these SubPlan nodes
would be converted to reference to the grouping key column output by
the Agg node; others would have to get evaluated afresh.  This is not
efficient, and with grouping sets this can cause wrong results issues
in cases where they should go to NULL because they are from the wrong
grouping set.  Furthermore, during re-evaluation, these SubPlan nodes
might use nulled column values from grouping sets, which is not
correct.

This issue is not limited to subqueries.  For other types of
expressions that are part of grouping items, if they are transformed
into another form during preprocessing, they may fail to match lower
target items.  This can also lead to wrong results with grouping sets.

To fix this issue, we introduce a new kind of RTE representing the
output of the grouping step, with columns that are the Vars or
expressions being grouped on.  In the parser, we replace the grouping
expressions in the targetlist and HAVING clause with Vars referencing
this new RTE, so that the output of the parser directly expresses the
semantic requirement that the grouping expressions be gotten from the
grouping output rather than computed some other way.  In the planner,
we first preprocess all the columns of this new RTE and then replace
any Vars in the targetlist and HAVING clause that reference this new
RTE with the underlying grouping expressions, so that we will have
only one instance of a SubPlan node for each subquery contained in the
grouping expressions.

Bump catversion because this changes the querytree produced by the
parser.

Thanks to Tom Lane for the idea to invent a new kind of RTE.

Per reports from Geoff Winkless, Tobias Wendorff, Richard Guo from
various threads.

Author: Richard Guo
Reviewed-by: Ashutosh Bapat, Sutou Kouhei
Discussion: https://postgr.es/m/CAMbWs4_dp7e7oTwaiZeBX8+P1rXw4ThkZxh1QG81rhu9Z47VsQ@mail.gmail.com
2024-09-10 12:35:34 +09:00

820 lines
21 KiB
C

/*-------------------------------------------------------------------------
*
* outfuncs.c
* Output functions for Postgres tree nodes.
*
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/nodes/outfuncs.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include "access/attnum.h"
#include "common/shortest_dec.h"
#include "lib/stringinfo.h"
#include "miscadmin.h"
#include "nodes/bitmapset.h"
#include "nodes/nodes.h"
#include "nodes/pg_list.h"
#include "utils/datum.h"
/* State flag that determines how nodeToStringInternal() should treat location fields */
static bool write_location_fields = false;
static void outChar(StringInfo str, char c);
static void outDouble(StringInfo str, double d);
/*
* Macros to simplify output of different kinds of fields. Use these
* wherever possible to reduce the chance for silly typos. Note that these
* hard-wire conventions about the names of the local variables in an Out
* routine.
*/
/* Write the label for the node type */
#define WRITE_NODE_TYPE(nodelabel) \
appendStringInfoString(str, nodelabel)
/* Write an integer field (anything written as ":fldname %d") */
#define WRITE_INT_FIELD(fldname) \
appendStringInfo(str, " :" CppAsString(fldname) " %d", node->fldname)
/* Write an unsigned integer field (anything written as ":fldname %u") */
#define WRITE_UINT_FIELD(fldname) \
appendStringInfo(str, " :" CppAsString(fldname) " %u", node->fldname)
/* Write an unsigned integer field (anything written with UINT64_FORMAT) */
#define WRITE_UINT64_FIELD(fldname) \
appendStringInfo(str, " :" CppAsString(fldname) " " UINT64_FORMAT, \
node->fldname)
/* Write an OID field (don't hard-wire assumption that OID is same as uint) */
#define WRITE_OID_FIELD(fldname) \
appendStringInfo(str, " :" CppAsString(fldname) " %u", node->fldname)
/* Write a long-integer field */
#define WRITE_LONG_FIELD(fldname) \
appendStringInfo(str, " :" CppAsString(fldname) " %ld", node->fldname)
/* Write a char field (ie, one ascii character) */
#define WRITE_CHAR_FIELD(fldname) \
(appendStringInfo(str, " :" CppAsString(fldname) " "), \
outChar(str, node->fldname))
/* Write an enumerated-type field as an integer code */
#define WRITE_ENUM_FIELD(fldname, enumtype) \
appendStringInfo(str, " :" CppAsString(fldname) " %d", \
(int) node->fldname)
/* Write a float field (actually, they're double) */
#define WRITE_FLOAT_FIELD(fldname) \
(appendStringInfo(str, " :" CppAsString(fldname) " "), \
outDouble(str, node->fldname))
/* Write a boolean field */
#define WRITE_BOOL_FIELD(fldname) \
appendStringInfo(str, " :" CppAsString(fldname) " %s", \
booltostr(node->fldname))
/* Write a character-string (possibly NULL) field */
#define WRITE_STRING_FIELD(fldname) \
(appendStringInfoString(str, " :" CppAsString(fldname) " "), \
outToken(str, node->fldname))
/* Write a parse location field (actually same as INT case) */
#define WRITE_LOCATION_FIELD(fldname) \
appendStringInfo(str, " :" CppAsString(fldname) " %d", write_location_fields ? node->fldname : -1)
/* Write a Node field */
#define WRITE_NODE_FIELD(fldname) \
(appendStringInfoString(str, " :" CppAsString(fldname) " "), \
outNode(str, node->fldname))
/* Write a bitmapset field */
#define WRITE_BITMAPSET_FIELD(fldname) \
(appendStringInfoString(str, " :" CppAsString(fldname) " "), \
outBitmapset(str, node->fldname))
/* Write a variable-length array (not a List) of Node pointers */
#define WRITE_NODE_ARRAY(fldname, len) \
(appendStringInfoString(str, " :" CppAsString(fldname) " "), \
writeNodeArray(str, (const Node * const *) node->fldname, len))
/* Write a variable-length array of AttrNumber */
#define WRITE_ATTRNUMBER_ARRAY(fldname, len) \
(appendStringInfoString(str, " :" CppAsString(fldname) " "), \
writeAttrNumberCols(str, node->fldname, len))
/* Write a variable-length array of Oid */
#define WRITE_OID_ARRAY(fldname, len) \
(appendStringInfoString(str, " :" CppAsString(fldname) " "), \
writeOidCols(str, node->fldname, len))
/* Write a variable-length array of Index */
#define WRITE_INDEX_ARRAY(fldname, len) \
(appendStringInfoString(str, " :" CppAsString(fldname) " "), \
writeIndexCols(str, node->fldname, len))
/* Write a variable-length array of int */
#define WRITE_INT_ARRAY(fldname, len) \
(appendStringInfoString(str, " :" CppAsString(fldname) " "), \
writeIntCols(str, node->fldname, len))
/* Write a variable-length array of bool */
#define WRITE_BOOL_ARRAY(fldname, len) \
(appendStringInfoString(str, " :" CppAsString(fldname) " "), \
writeBoolCols(str, node->fldname, len))
#define booltostr(x) ((x) ? "true" : "false")
/*
* outToken
* Convert an ordinary string (eg, an identifier) into a form that
* will be decoded back to a plain token by read.c's functions.
*
* If a null string pointer is given, it is encoded as '<>'.
* An empty string is encoded as '""'. To avoid ambiguity, input
* strings beginning with '<' or '"' receive a leading backslash.
*/
void
outToken(StringInfo str, const char *s)
{
if (s == NULL)
{
appendStringInfoString(str, "<>");
return;
}
if (*s == '\0')
{
appendStringInfoString(str, "\"\"");
return;
}
/*
* Look for characters or patterns that are treated specially by read.c
* (either in pg_strtok() or in nodeRead()), and therefore need a
* protective backslash.
*/
/* These characters only need to be quoted at the start of the string */
if (*s == '<' ||
*s == '"' ||
isdigit((unsigned char) *s) ||
((*s == '+' || *s == '-') &&
(isdigit((unsigned char) s[1]) || s[1] == '.')))
appendStringInfoChar(str, '\\');
while (*s)
{
/* These chars must be backslashed anywhere in the string */
if (*s == ' ' || *s == '\n' || *s == '\t' ||
*s == '(' || *s == ')' || *s == '{' || *s == '}' ||
*s == '\\')
appendStringInfoChar(str, '\\');
appendStringInfoChar(str, *s++);
}
}
/*
* Convert one char. Goes through outToken() so that special characters are
* escaped.
*/
static void
outChar(StringInfo str, char c)
{
char in[2];
/* Traditionally, we've represented \0 as <>, so keep doing that */
if (c == '\0')
{
appendStringInfoString(str, "<>");
return;
}
in[0] = c;
in[1] = '\0';
outToken(str, in);
}
/*
* Convert a double value, attempting to ensure the value is preserved exactly.
*/
static void
outDouble(StringInfo str, double d)
{
char buf[DOUBLE_SHORTEST_DECIMAL_LEN];
double_to_shortest_decimal_buf(d, buf);
appendStringInfoString(str, buf);
}
/*
* common implementation for scalar-array-writing functions
*
* The data format is either "<>" for a NULL pointer or "(item item item)".
* fmtstr must include a leading space, and the rest of it must produce
* something that will be seen as a single simple token by pg_strtok().
* convfunc can be empty, or the name of a conversion macro or function.
*/
#define WRITE_SCALAR_ARRAY(fnname, datatype, fmtstr, convfunc) \
static void \
fnname(StringInfo str, const datatype *arr, int len) \
{ \
if (arr != NULL) \
{ \
appendStringInfoChar(str, '('); \
for (int i = 0; i < len; i++) \
appendStringInfo(str, fmtstr, convfunc(arr[i])); \
appendStringInfoChar(str, ')'); \
} \
else \
appendStringInfoString(str, "<>"); \
}
WRITE_SCALAR_ARRAY(writeAttrNumberCols, AttrNumber, " %d",)
WRITE_SCALAR_ARRAY(writeOidCols, Oid, " %u",)
WRITE_SCALAR_ARRAY(writeIndexCols, Index, " %u",)
WRITE_SCALAR_ARRAY(writeIntCols, int, " %d",)
WRITE_SCALAR_ARRAY(writeBoolCols, bool, " %s", booltostr)
/*
* Print an array (not a List) of Node pointers.
*
* The decoration is identical to that of scalar arrays, but we can't
* quite use appendStringInfo() in the loop.
*/
static void
writeNodeArray(StringInfo str, const Node *const *arr, int len)
{
if (arr != NULL)
{
appendStringInfoChar(str, '(');
for (int i = 0; i < len; i++)
{
appendStringInfoChar(str, ' ');
outNode(str, arr[i]);
}
appendStringInfoChar(str, ')');
}
else
appendStringInfoString(str, "<>");
}
/*
* Print a List.
*/
static void
_outList(StringInfo str, const List *node)
{
const ListCell *lc;
appendStringInfoChar(str, '(');
if (IsA(node, IntList))
appendStringInfoChar(str, 'i');
else if (IsA(node, OidList))
appendStringInfoChar(str, 'o');
else if (IsA(node, XidList))
appendStringInfoChar(str, 'x');
foreach(lc, node)
{
/*
* For the sake of backward compatibility, we emit a slightly
* different whitespace format for lists of nodes vs. other types of
* lists. XXX: is this necessary?
*/
if (IsA(node, List))
{
outNode(str, lfirst(lc));
if (lnext(node, lc))
appendStringInfoChar(str, ' ');
}
else if (IsA(node, IntList))
appendStringInfo(str, " %d", lfirst_int(lc));
else if (IsA(node, OidList))
appendStringInfo(str, " %u", lfirst_oid(lc));
else if (IsA(node, XidList))
appendStringInfo(str, " %u", lfirst_xid(lc));
else
elog(ERROR, "unrecognized list node type: %d",
(int) node->type);
}
appendStringInfoChar(str, ')');
}
/*
* outBitmapset -
* converts a bitmap set of integers
*
* Note: the output format is "(b int int ...)", similar to an integer List.
*
* We export this function for use by extensions that define extensible nodes.
* That's somewhat historical, though, because calling outNode() will work.
*/
void
outBitmapset(StringInfo str, const Bitmapset *bms)
{
int x;
appendStringInfoChar(str, '(');
appendStringInfoChar(str, 'b');
x = -1;
while ((x = bms_next_member(bms, x)) >= 0)
appendStringInfo(str, " %d", x);
appendStringInfoChar(str, ')');
}
/*
* Print the value of a Datum given its type.
*/
void
outDatum(StringInfo str, Datum value, int typlen, bool typbyval)
{
Size length,
i;
char *s;
length = datumGetSize(value, typbyval, typlen);
if (typbyval)
{
s = (char *) (&value);
appendStringInfo(str, "%u [ ", (unsigned int) length);
for (i = 0; i < (Size) sizeof(Datum); i++)
appendStringInfo(str, "%d ", (int) (s[i]));
appendStringInfoChar(str, ']');
}
else
{
s = (char *) DatumGetPointer(value);
if (!PointerIsValid(s))
appendStringInfoString(str, "0 [ ]");
else
{
appendStringInfo(str, "%u [ ", (unsigned int) length);
for (i = 0; i < length; i++)
appendStringInfo(str, "%d ", (int) (s[i]));
appendStringInfoChar(str, ']');
}
}
}
#include "outfuncs.funcs.c"
/*
* Support functions for nodes with custom_read_write attribute or
* special_read_write attribute
*/
static void
_outConst(StringInfo str, const Const *node)
{
WRITE_NODE_TYPE("CONST");
WRITE_OID_FIELD(consttype);
WRITE_INT_FIELD(consttypmod);
WRITE_OID_FIELD(constcollid);
WRITE_INT_FIELD(constlen);
WRITE_BOOL_FIELD(constbyval);
WRITE_BOOL_FIELD(constisnull);
WRITE_LOCATION_FIELD(location);
appendStringInfoString(str, " :constvalue ");
if (node->constisnull)
appendStringInfoString(str, "<>");
else
outDatum(str, node->constvalue, node->constlen, node->constbyval);
}
static void
_outBoolExpr(StringInfo str, const BoolExpr *node)
{
char *opstr = NULL;
WRITE_NODE_TYPE("BOOLEXPR");
/* do-it-yourself enum representation */
switch (node->boolop)
{
case AND_EXPR:
opstr = "and";
break;
case OR_EXPR:
opstr = "or";
break;
case NOT_EXPR:
opstr = "not";
break;
}
appendStringInfoString(str, " :boolop ");
outToken(str, opstr);
WRITE_NODE_FIELD(args);
WRITE_LOCATION_FIELD(location);
}
static void
_outForeignKeyOptInfo(StringInfo str, const ForeignKeyOptInfo *node)
{
int i;
WRITE_NODE_TYPE("FOREIGNKEYOPTINFO");
WRITE_UINT_FIELD(con_relid);
WRITE_UINT_FIELD(ref_relid);
WRITE_INT_FIELD(nkeys);
WRITE_ATTRNUMBER_ARRAY(conkey, node->nkeys);
WRITE_ATTRNUMBER_ARRAY(confkey, node->nkeys);
WRITE_OID_ARRAY(conpfeqop, node->nkeys);
WRITE_INT_FIELD(nmatched_ec);
WRITE_INT_FIELD(nconst_ec);
WRITE_INT_FIELD(nmatched_rcols);
WRITE_INT_FIELD(nmatched_ri);
/* for compactness, just print the number of matches per column: */
appendStringInfoString(str, " :eclass");
for (i = 0; i < node->nkeys; i++)
appendStringInfo(str, " %d", (node->eclass[i] != NULL));
appendStringInfoString(str, " :rinfos");
for (i = 0; i < node->nkeys; i++)
appendStringInfo(str, " %d", list_length(node->rinfos[i]));
}
static void
_outEquivalenceClass(StringInfo str, const EquivalenceClass *node)
{
/*
* To simplify reading, we just chase up to the topmost merged EC and
* print that, without bothering to show the merge-ees separately.
*/
while (node->ec_merged)
node = node->ec_merged;
WRITE_NODE_TYPE("EQUIVALENCECLASS");
WRITE_NODE_FIELD(ec_opfamilies);
WRITE_OID_FIELD(ec_collation);
WRITE_NODE_FIELD(ec_members);
WRITE_NODE_FIELD(ec_sources);
WRITE_NODE_FIELD(ec_derives);
WRITE_BITMAPSET_FIELD(ec_relids);
WRITE_BOOL_FIELD(ec_has_const);
WRITE_BOOL_FIELD(ec_has_volatile);
WRITE_BOOL_FIELD(ec_broken);
WRITE_UINT_FIELD(ec_sortref);
WRITE_UINT_FIELD(ec_min_security);
WRITE_UINT_FIELD(ec_max_security);
}
static void
_outExtensibleNode(StringInfo str, const ExtensibleNode *node)
{
const ExtensibleNodeMethods *methods;
methods = GetExtensibleNodeMethods(node->extnodename, false);
WRITE_NODE_TYPE("EXTENSIBLENODE");
WRITE_STRING_FIELD(extnodename);
/* serialize the private fields */
methods->nodeOut(str, node);
}
static void
_outRangeTblEntry(StringInfo str, const RangeTblEntry *node)
{
WRITE_NODE_TYPE("RANGETBLENTRY");
WRITE_NODE_FIELD(alias);
WRITE_NODE_FIELD(eref);
WRITE_ENUM_FIELD(rtekind, RTEKind);
switch (node->rtekind)
{
case RTE_RELATION:
WRITE_OID_FIELD(relid);
WRITE_BOOL_FIELD(inh);
WRITE_CHAR_FIELD(relkind);
WRITE_INT_FIELD(rellockmode);
WRITE_UINT_FIELD(perminfoindex);
WRITE_NODE_FIELD(tablesample);
break;
case RTE_SUBQUERY:
WRITE_NODE_FIELD(subquery);
WRITE_BOOL_FIELD(security_barrier);
/* we re-use these RELATION fields, too: */
WRITE_OID_FIELD(relid);
WRITE_BOOL_FIELD(inh);
WRITE_CHAR_FIELD(relkind);
WRITE_INT_FIELD(rellockmode);
WRITE_UINT_FIELD(perminfoindex);
break;
case RTE_JOIN:
WRITE_ENUM_FIELD(jointype, JoinType);
WRITE_INT_FIELD(joinmergedcols);
WRITE_NODE_FIELD(joinaliasvars);
WRITE_NODE_FIELD(joinleftcols);
WRITE_NODE_FIELD(joinrightcols);
WRITE_NODE_FIELD(join_using_alias);
break;
case RTE_FUNCTION:
WRITE_NODE_FIELD(functions);
WRITE_BOOL_FIELD(funcordinality);
break;
case RTE_TABLEFUNC:
WRITE_NODE_FIELD(tablefunc);
break;
case RTE_VALUES:
WRITE_NODE_FIELD(values_lists);
WRITE_NODE_FIELD(coltypes);
WRITE_NODE_FIELD(coltypmods);
WRITE_NODE_FIELD(colcollations);
break;
case RTE_CTE:
WRITE_STRING_FIELD(ctename);
WRITE_UINT_FIELD(ctelevelsup);
WRITE_BOOL_FIELD(self_reference);
WRITE_NODE_FIELD(coltypes);
WRITE_NODE_FIELD(coltypmods);
WRITE_NODE_FIELD(colcollations);
break;
case RTE_NAMEDTUPLESTORE:
WRITE_STRING_FIELD(enrname);
WRITE_FLOAT_FIELD(enrtuples);
WRITE_NODE_FIELD(coltypes);
WRITE_NODE_FIELD(coltypmods);
WRITE_NODE_FIELD(colcollations);
/* we re-use these RELATION fields, too: */
WRITE_OID_FIELD(relid);
break;
case RTE_RESULT:
/* no extra fields */
break;
case RTE_GROUP:
WRITE_NODE_FIELD(groupexprs);
break;
default:
elog(ERROR, "unrecognized RTE kind: %d", (int) node->rtekind);
break;
}
WRITE_BOOL_FIELD(lateral);
WRITE_BOOL_FIELD(inFromCl);
WRITE_NODE_FIELD(securityQuals);
}
static void
_outA_Expr(StringInfo str, const A_Expr *node)
{
WRITE_NODE_TYPE("A_EXPR");
switch (node->kind)
{
case AEXPR_OP:
WRITE_NODE_FIELD(name);
break;
case AEXPR_OP_ANY:
appendStringInfoString(str, " ANY");
WRITE_NODE_FIELD(name);
break;
case AEXPR_OP_ALL:
appendStringInfoString(str, " ALL");
WRITE_NODE_FIELD(name);
break;
case AEXPR_DISTINCT:
appendStringInfoString(str, " DISTINCT");
WRITE_NODE_FIELD(name);
break;
case AEXPR_NOT_DISTINCT:
appendStringInfoString(str, " NOT_DISTINCT");
WRITE_NODE_FIELD(name);
break;
case AEXPR_NULLIF:
appendStringInfoString(str, " NULLIF");
WRITE_NODE_FIELD(name);
break;
case AEXPR_IN:
appendStringInfoString(str, " IN");
WRITE_NODE_FIELD(name);
break;
case AEXPR_LIKE:
appendStringInfoString(str, " LIKE");
WRITE_NODE_FIELD(name);
break;
case AEXPR_ILIKE:
appendStringInfoString(str, " ILIKE");
WRITE_NODE_FIELD(name);
break;
case AEXPR_SIMILAR:
appendStringInfoString(str, " SIMILAR");
WRITE_NODE_FIELD(name);
break;
case AEXPR_BETWEEN:
appendStringInfoString(str, " BETWEEN");
WRITE_NODE_FIELD(name);
break;
case AEXPR_NOT_BETWEEN:
appendStringInfoString(str, " NOT_BETWEEN");
WRITE_NODE_FIELD(name);
break;
case AEXPR_BETWEEN_SYM:
appendStringInfoString(str, " BETWEEN_SYM");
WRITE_NODE_FIELD(name);
break;
case AEXPR_NOT_BETWEEN_SYM:
appendStringInfoString(str, " NOT_BETWEEN_SYM");
WRITE_NODE_FIELD(name);
break;
default:
elog(ERROR, "unrecognized A_Expr_Kind: %d", (int) node->kind);
break;
}
WRITE_NODE_FIELD(lexpr);
WRITE_NODE_FIELD(rexpr);
WRITE_LOCATION_FIELD(location);
}
static void
_outInteger(StringInfo str, const Integer *node)
{
appendStringInfo(str, "%d", node->ival);
}
static void
_outFloat(StringInfo str, const Float *node)
{
/*
* We assume the value is a valid numeric literal and so does not need
* quoting.
*/
appendStringInfoString(str, node->fval);
}
static void
_outBoolean(StringInfo str, const Boolean *node)
{
appendStringInfoString(str, node->boolval ? "true" : "false");
}
static void
_outString(StringInfo str, const String *node)
{
/*
* We use outToken to provide escaping of the string's content, but we
* don't want it to convert an empty string to '""', because we're putting
* double quotes around the string already.
*/
appendStringInfoChar(str, '"');
if (node->sval[0] != '\0')
outToken(str, node->sval);
appendStringInfoChar(str, '"');
}
static void
_outBitString(StringInfo str, const BitString *node)
{
/*
* The lexer will always produce a string starting with 'b' or 'x'. There
* might be characters following that that need escaping, but outToken
* won't escape the 'b' or 'x'. This is relied on by nodeTokenType.
*/
Assert(node->bsval[0] == 'b' || node->bsval[0] == 'x');
outToken(str, node->bsval);
}
static void
_outA_Const(StringInfo str, const A_Const *node)
{
WRITE_NODE_TYPE("A_CONST");
if (node->isnull)
appendStringInfoString(str, " NULL");
else
{
appendStringInfoString(str, " :val ");
outNode(str, &node->val);
}
WRITE_LOCATION_FIELD(location);
}
/*
* outNode -
* converts a Node into ascii string and append it to 'str'
*/
void
outNode(StringInfo str, const void *obj)
{
/* Guard against stack overflow due to overly complex expressions */
check_stack_depth();
if (obj == NULL)
appendStringInfoString(str, "<>");
else if (IsA(obj, List) || IsA(obj, IntList) || IsA(obj, OidList) ||
IsA(obj, XidList))
_outList(str, obj);
/* nodeRead does not want to see { } around these! */
else if (IsA(obj, Integer))
_outInteger(str, (Integer *) obj);
else if (IsA(obj, Float))
_outFloat(str, (Float *) obj);
else if (IsA(obj, Boolean))
_outBoolean(str, (Boolean *) obj);
else if (IsA(obj, String))
_outString(str, (String *) obj);
else if (IsA(obj, BitString))
_outBitString(str, (BitString *) obj);
else if (IsA(obj, Bitmapset))
outBitmapset(str, (Bitmapset *) obj);
else
{
appendStringInfoChar(str, '{');
switch (nodeTag(obj))
{
#include "outfuncs.switch.c"
default:
/*
* This should be an ERROR, but it's too useful to be able to
* dump structures that outNode only understands part of.
*/
elog(WARNING, "could not dump unrecognized node type: %d",
(int) nodeTag(obj));
break;
}
appendStringInfoChar(str, '}');
}
}
/*
* nodeToString -
* returns the ascii representation of the Node as a palloc'd string
*
* write_loc_fields determines whether location fields are output with their
* actual value rather than -1. The actual value can be useful for debugging,
* but for most uses, the actual value is not useful, since the original query
* string is no longer available.
*/
static char *
nodeToStringInternal(const void *obj, bool write_loc_fields)
{
StringInfoData str;
bool save_write_location_fields;
save_write_location_fields = write_location_fields;
write_location_fields = write_loc_fields;
/* see stringinfo.h for an explanation of this maneuver */
initStringInfo(&str);
outNode(&str, obj);
write_location_fields = save_write_location_fields;
return str.data;
}
/*
* Externally visible entry points
*/
char *
nodeToString(const void *obj)
{
return nodeToStringInternal(obj, false);
}
char *
nodeToStringWithLocations(const void *obj)
{
return nodeToStringInternal(obj, true);
}
/*
* bmsToString -
* returns the ascii representation of the Bitmapset as a palloc'd string
*/
char *
bmsToString(const Bitmapset *bms)
{
StringInfoData str;
/* see stringinfo.h for an explanation of this maneuver */
initStringInfo(&str);
outBitmapset(&str, bms);
return str.data;
}