1
0
mirror of https://github.com/postgres/postgres.git synced 2025-06-14 18:42:34 +03:00
Files
postgres/src/backend/lib/binaryheap.c
Robert Haas 7a2fe9bd03 Basic binary heap implementation.
There are probably other places where this can be used, but for now,
this just makes MergeAppend use it, so that this code will have test
coverage.  There is other work in the queue that will use this, as
well.

Abhijit Menon-Sen, reviewed by Andres Freund, Robert Haas, Álvaro
Herrera, Tom Lane, and others.
2012-11-29 11:16:59 -05:00

294 lines
6.5 KiB
C

/*-------------------------------------------------------------------------
*
* binaryheap.c
* A simple binary heap implementaion
*
* Portions Copyright (c) 2012, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/backend/lib/binaryheap.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include "lib/binaryheap.h"
static void sift_down(binaryheap *heap, int node_off);
static void sift_up(binaryheap *heap, int node_off);
static inline void swap_nodes(binaryheap *heap, int a, int b);
/*
* binaryheap_allocate
*
* Returns a pointer to a newly-allocated heap that has the capacity to
* store the given number of nodes, with the heap property defined by
* the given comparator function, which will be invoked with the additional
* argument specified by 'arg'.
*/
binaryheap *
binaryheap_allocate(int capacity, binaryheap_comparator compare, void *arg)
{
int sz;
binaryheap *heap;
sz = offsetof(binaryheap, bh_nodes) + sizeof(Datum) * capacity;
heap = palloc(sz);
heap->bh_size = 0;
heap->bh_space = capacity;
heap->bh_has_heap_property = true;
heap->bh_compare = compare;
heap->bh_arg = arg;
return heap;
}
/*
* binaryheap_free
*
* Releases memory used by the given binaryheap.
*/
void
binaryheap_free(binaryheap *heap)
{
pfree(heap);
}
/*
* These utility functions return the offset of the left child, right
* child, and parent of the node at the given index, respectively.
*
* The heap is represented as an array of nodes, with the root node
* stored at index 0. The left child of node i is at index 2*i+1, and
* the right child at 2*i+2. The parent of node i is at index (i-1)/2.
*/
static inline int
left_offset(int i)
{
return 2 * i + 1;
}
static inline int
right_offset(int i)
{
return 2 * i + 2;
}
static inline int
parent_offset(int i)
{
return (i - 1) / 2;
}
/*
* binaryheap_add_unordered
*
* Adds the given datum to the end of the heap's list of nodes in O(1) without
* preserving the heap property. This is a convenience to add elements quickly
* to a new heap. To obtain a valid heap, one must call binaryheap_build()
* afterwards.
*/
void
binaryheap_add_unordered(binaryheap *heap, Datum d)
{
if (heap->bh_size >= heap->bh_space)
elog(ERROR, "out of binary heap slots");
heap->bh_has_heap_property = false;
heap->bh_nodes[heap->bh_size] = d;
heap->bh_size++;
}
/*
* binaryheap_build
*
* Assembles a valid heap in O(n) from the nodes added by
* binaryheap_add_unordered(). Not needed otherwise.
*/
void
binaryheap_build(binaryheap *heap)
{
int i;
for (i = parent_offset(heap->bh_size - 1); i >= 0; i--)
sift_down(heap, i);
heap->bh_has_heap_property = true;
}
/*
* binaryheap_add
*
* Adds the given datum to the heap in O(log n) time, while preserving
* the heap property.
*/
void
binaryheap_add(binaryheap *heap, Datum d)
{
if (heap->bh_size >= heap->bh_space)
elog(ERROR, "out of binary heap slots");
heap->bh_nodes[heap->bh_size] = d;
heap->bh_size++;
sift_up(heap, heap->bh_size - 1);
}
/*
* binaryheap_first
*
* Returns a pointer to the first (root, topmost) node in the heap
* without modifying the heap. The caller must ensure that this
* routine is not used on an empty heap. Always O(1).
*/
Datum
binaryheap_first(binaryheap *heap)
{
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
return heap->bh_nodes[0];
}
/*
* binaryheap_remove_first
*
* Removes the first (root, topmost) node in the heap and returns a
* pointer to it after rebalancing the heap. The caller must ensure
* that this routine is not used on an empty heap. O(log n) worst
* case.
*/
Datum
binaryheap_remove_first(binaryheap *heap)
{
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
if (heap->bh_size == 1)
{
heap->bh_size--;
return heap->bh_nodes[0];
}
/*
* Swap the root and last nodes, decrease the size of the heap (i.e.
* remove the former root node) and sift the new root node down to its
* correct position.
*/
swap_nodes(heap, 0, heap->bh_size - 1);
heap->bh_size--;
sift_down(heap, 0);
return heap->bh_nodes[heap->bh_size];
}
/*
* binaryheap_replace_first
*
* Replace the topmost element of a non-empty heap, preserving the heap
* property. O(1) in the best case, or O(log n) if it must fall back to
* sifting the new node down.
*/
void
binaryheap_replace_first(binaryheap *heap, Datum d)
{
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
heap->bh_nodes[0] = d;
if (heap->bh_size > 1)
sift_down(heap, 0);
}
/*
* Swap the contents of two nodes.
*/
static inline void
swap_nodes(binaryheap *heap, int a, int b)
{
Datum swap;
swap = heap->bh_nodes[a];
heap->bh_nodes[a] = heap->bh_nodes[b];
heap->bh_nodes[b] = swap;
}
/*
* Sift a node up to the highest position it can hold according to the
* comparator.
*/
static void
sift_up(binaryheap *heap, int node_off)
{
while (node_off != 0)
{
int cmp;
int parent_off;
/*
* If this node is smaller than its parent, the heap condition is
* satisfied, and we're done.
*/
parent_off = parent_offset(node_off);
cmp = heap->bh_compare(heap->bh_nodes[node_off],
heap->bh_nodes[parent_off],
heap->bh_arg);
if (cmp <= 0)
break;
/*
* Otherwise, swap the node and its parent and go on to check the
* node's new parent.
*/
swap_nodes(heap, node_off, parent_off);
node_off = parent_off;
}
}
/*
* Sift a node down from its current position to satisfy the heap
* property.
*/
static void
sift_down(binaryheap *heap, int node_off)
{
while (true)
{
int left_off = left_offset(node_off);
int right_off = right_offset(node_off);
int swap_off = 0;
/* Is the left child larger than the parent? */
if (left_off < heap->bh_size &&
heap->bh_compare(heap->bh_nodes[node_off],
heap->bh_nodes[left_off],
heap->bh_arg) < 0)
swap_off = left_off;
/* Is the right child larger than the parent? */
if (right_off < heap->bh_size &&
heap->bh_compare(heap->bh_nodes[node_off],
heap->bh_nodes[right_off],
heap->bh_arg) < 0)
{
/* swap with the larger child */
if (!swap_off ||
heap->bh_compare(heap->bh_nodes[left_off],
heap->bh_nodes[right_off],
heap->bh_arg) < 0)
swap_off = right_off;
}
/*
* If we didn't find anything to swap, the heap condition is
* satisfied, and we're done.
*/
if (!swap_off)
break;
/*
* Otherwise, swap the node with the child that violates the heap
* property; then go on to check its children.
*/
swap_nodes(heap, swap_off, node_off);
node_off = swap_off;
}
}