mirror of
https://github.com/postgres/postgres.git
synced 2025-04-20 00:42:27 +03:00
expressions, ARRAY(sub-SELECT) expressions, some array functions. Polymorphic functions using ANYARRAY/ANYELEMENT argument and return types. Some regression tests in place, documentation is lacking. Joe Conway, with some kibitzing from Tom Lane.
2171 lines
57 KiB
C
2171 lines
57 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* arrayfuncs.c
|
|
* Support functions for arrays.
|
|
*
|
|
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $Header: /cvsroot/pgsql/src/backend/utils/adt/arrayfuncs.c,v 1.87 2003/04/08 23:20:02 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
|
|
#include "access/tupmacs.h"
|
|
#include "catalog/catalog.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "utils/array.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
|
|
|
|
/*----------
|
|
* A standard varlena array has the following internal structure:
|
|
* <size> - total number of bytes (also, TOAST info flags)
|
|
* <ndim> - number of dimensions of the array
|
|
* <flags> - bit mask of flags
|
|
* <elemtype> - element type OID
|
|
* <dim> - size of each array axis (C array of int)
|
|
* <dim_lower> - lower boundary of each dimension (C array of int)
|
|
* <actual data> - whatever is the stored data
|
|
* The actual data starts on a MAXALIGN boundary. Individual items in the
|
|
* array are aligned as specified by the array element type.
|
|
*
|
|
* NOTE: it is important that array elements of toastable datatypes NOT be
|
|
* toasted, since the tupletoaster won't know they are there. (We could
|
|
* support compressed toasted items; only out-of-line items are dangerous.
|
|
* However, it seems preferable to store such items uncompressed and allow
|
|
* the toaster to compress the whole array as one input.)
|
|
*
|
|
* There is currently no support for NULL elements in arrays, either.
|
|
* A reasonable (and backwards-compatible) way to add support would be to
|
|
* add a nulls bitmap following the <dim_lower> array, which would be present
|
|
* if needed; and its presence would be signaled by a bit in the flags word.
|
|
*
|
|
*
|
|
* There are also some "fixed-length array" datatypes, such as NAME and
|
|
* OIDVECTOR. These are simply a sequence of a fixed number of items each
|
|
* of a fixed-length datatype, with no overhead; the item size must be
|
|
* a multiple of its alignment requirement, because we do no padding.
|
|
* We support subscripting on these types, but array_in() and array_out()
|
|
* only work with varlena arrays.
|
|
*----------
|
|
*/
|
|
|
|
|
|
/* ----------
|
|
* Local definitions
|
|
* ----------
|
|
*/
|
|
#define ASSGN "="
|
|
|
|
#define RETURN_NULL(type) do { *isNull = true; return (type) 0; } while (0)
|
|
|
|
|
|
static int ArrayCount(char *str, int *dim, char typdelim);
|
|
static Datum *ReadArrayStr(char *arrayStr, int nitems, int ndim, int *dim,
|
|
FmgrInfo *inputproc, Oid typelem, int32 typmod,
|
|
char typdelim,
|
|
int typlen, bool typbyval, char typalign,
|
|
int *nbytes);
|
|
static void CopyArrayEls(char *p, Datum *values, int nitems,
|
|
int typlen, bool typbyval, char typalign,
|
|
bool freedata);
|
|
static void system_cache_lookup(Oid element_type, bool input, int *typlen,
|
|
bool *typbyval, char *typdelim, Oid *typelem,
|
|
Oid *proc, char *typalign);
|
|
static Datum ArrayCast(char *value, bool byval, int len);
|
|
static int ArrayCastAndSet(Datum src,
|
|
int typlen, bool typbyval, char typalign,
|
|
char *dest);
|
|
static int array_nelems_size(char *ptr, int nitems,
|
|
int typlen, bool typbyval, char typalign);
|
|
static char *array_seek(char *ptr, int nitems,
|
|
int typlen, bool typbyval, char typalign);
|
|
static int array_copy(char *destptr, int nitems, char *srcptr,
|
|
int typlen, bool typbyval, char typalign);
|
|
static int array_slice_size(int ndim, int *dim, int *lb, char *arraydataptr,
|
|
int *st, int *endp,
|
|
int typlen, bool typbyval, char typalign);
|
|
static void array_extract_slice(int ndim, int *dim, int *lb,
|
|
char *arraydataptr,
|
|
int *st, int *endp, char *destPtr,
|
|
int typlen, bool typbyval, char typalign);
|
|
static void array_insert_slice(int ndim, int *dim, int *lb,
|
|
char *origPtr, int origdatasize,
|
|
char *destPtr,
|
|
int *st, int *endp, char *srcPtr,
|
|
int typlen, bool typbyval, char typalign);
|
|
|
|
|
|
/*---------------------------------------------------------------------
|
|
* array_in :
|
|
* converts an array from the external format in "string" to
|
|
* its internal format.
|
|
* return value :
|
|
* the internal representation of the input array
|
|
*--------------------------------------------------------------------
|
|
*/
|
|
Datum
|
|
array_in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *string = PG_GETARG_CSTRING(0); /* external form */
|
|
Oid element_type = PG_GETARG_OID(1); /* type of an array
|
|
* element */
|
|
int32 typmod = PG_GETARG_INT32(2); /* typmod for array
|
|
* elements */
|
|
int typlen;
|
|
bool typbyval;
|
|
char typdelim;
|
|
Oid typinput;
|
|
Oid typelem;
|
|
char *string_save,
|
|
*p;
|
|
FmgrInfo inputproc;
|
|
int i,
|
|
nitems;
|
|
int32 nbytes;
|
|
Datum *dataPtr;
|
|
ArrayType *retval;
|
|
int ndim,
|
|
dim[MAXDIM],
|
|
lBound[MAXDIM];
|
|
char typalign;
|
|
|
|
/* Get info about element type, including its input conversion proc */
|
|
system_cache_lookup(element_type, true, &typlen, &typbyval, &typdelim,
|
|
&typelem, &typinput, &typalign);
|
|
fmgr_info(typinput, &inputproc);
|
|
|
|
/* Make a modifiable copy of the input */
|
|
/* XXX why are we allocating an extra 2 bytes here? */
|
|
string_save = (char *) palloc(strlen(string) + 3);
|
|
strcpy(string_save, string);
|
|
|
|
/*
|
|
* If the input string starts with dimension info, read and use that.
|
|
* Otherwise, we require the input to be in curly-brace style, and we
|
|
* prescan the input to determine dimensions.
|
|
*
|
|
* Dimension info takes the form of one or more [n] or [m:n] items. The
|
|
* outer loop iterates once per dimension item.
|
|
*/
|
|
p = string_save;
|
|
ndim = 0;
|
|
for (;;)
|
|
{
|
|
char *q;
|
|
int ub;
|
|
|
|
/*
|
|
* Note: we currently allow whitespace between, but not within,
|
|
* dimension items.
|
|
*/
|
|
while (isspace((unsigned char) *p))
|
|
p++;
|
|
if (*p != '[')
|
|
break; /* no more dimension items */
|
|
p++;
|
|
if (ndim >= MAXDIM)
|
|
elog(ERROR, "array_in: more than %d dimensions", MAXDIM);
|
|
for (q = p; isdigit((unsigned char) *q); q++);
|
|
if (q == p) /* no digits? */
|
|
elog(ERROR, "array_in: missing dimension value");
|
|
if (*q == ':')
|
|
{
|
|
/* [m:n] format */
|
|
*q = '\0';
|
|
lBound[ndim] = atoi(p);
|
|
p = q + 1;
|
|
for (q = p; isdigit((unsigned char) *q); q++);
|
|
if (q == p) /* no digits? */
|
|
elog(ERROR, "array_in: missing dimension value");
|
|
}
|
|
else
|
|
{
|
|
/* [n] format */
|
|
lBound[ndim] = 1;
|
|
}
|
|
if (*q != ']')
|
|
elog(ERROR, "array_in: missing ']' in array declaration");
|
|
*q = '\0';
|
|
ub = atoi(p);
|
|
p = q + 1;
|
|
if (ub < lBound[ndim])
|
|
elog(ERROR, "array_in: upper_bound cannot be < lower_bound");
|
|
dim[ndim] = ub - lBound[ndim] + 1;
|
|
ndim++;
|
|
}
|
|
|
|
if (ndim == 0)
|
|
{
|
|
/* No array dimensions, so intuit dimensions from brace structure */
|
|
if (*p != '{')
|
|
elog(ERROR, "array_in: Need to specify dimension");
|
|
ndim = ArrayCount(p, dim, typdelim);
|
|
for (i = 0; i < ndim; i++)
|
|
lBound[i] = 1;
|
|
}
|
|
else
|
|
{
|
|
/* If array dimensions are given, expect '=' operator */
|
|
if (strncmp(p, ASSGN, strlen(ASSGN)) != 0)
|
|
elog(ERROR, "array_in: missing assignment operator");
|
|
p += strlen(ASSGN);
|
|
while (isspace((unsigned char) *p))
|
|
p++;
|
|
}
|
|
|
|
#ifdef ARRAYDEBUG
|
|
printf("array_in- ndim %d (", ndim);
|
|
for (i = 0; i < ndim; i++)
|
|
{
|
|
printf(" %d", dim[i]);
|
|
};
|
|
printf(") for %s\n", string);
|
|
#endif
|
|
|
|
nitems = ArrayGetNItems(ndim, dim);
|
|
if (nitems == 0)
|
|
{
|
|
/* Return empty array */
|
|
retval = (ArrayType *) palloc0(sizeof(ArrayType));
|
|
retval->size = sizeof(ArrayType);
|
|
retval->elemtype = element_type;
|
|
PG_RETURN_ARRAYTYPE_P(retval);
|
|
}
|
|
|
|
if (*p != '{')
|
|
elog(ERROR, "array_in: missing left brace");
|
|
|
|
dataPtr = ReadArrayStr(p, nitems, ndim, dim, &inputproc, typelem,
|
|
typmod, typdelim, typlen, typbyval, typalign,
|
|
&nbytes);
|
|
nbytes += ARR_OVERHEAD(ndim);
|
|
retval = (ArrayType *) palloc0(nbytes);
|
|
retval->size = nbytes;
|
|
retval->ndim = ndim;
|
|
retval->elemtype = element_type;
|
|
memcpy((char *) ARR_DIMS(retval), (char *) dim,
|
|
ndim * sizeof(int));
|
|
memcpy((char *) ARR_LBOUND(retval), (char *) lBound,
|
|
ndim * sizeof(int));
|
|
|
|
CopyArrayEls(ARR_DATA_PTR(retval), dataPtr, nitems,
|
|
typlen, typbyval, typalign, true);
|
|
pfree(dataPtr);
|
|
pfree(string_save);
|
|
PG_RETURN_ARRAYTYPE_P(retval);
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* ArrayCount
|
|
* Counts the number of dimensions and the *dim array for an array string.
|
|
* The syntax for array input is C-like nested curly braces
|
|
*-----------------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
ArrayCount(char *str, int *dim, char typdelim)
|
|
{
|
|
int nest_level = 0,
|
|
i;
|
|
int ndim = 1,
|
|
temp[MAXDIM];
|
|
bool scanning_string = false;
|
|
bool eoArray = false;
|
|
char *ptr;
|
|
|
|
for (i = 0; i < MAXDIM; ++i)
|
|
temp[i] = dim[i] = 0;
|
|
|
|
if (strncmp(str, "{}", 2) == 0)
|
|
return 0;
|
|
|
|
ptr = str;
|
|
while (!eoArray)
|
|
{
|
|
bool itemdone = false;
|
|
|
|
while (!itemdone)
|
|
{
|
|
switch (*ptr)
|
|
{
|
|
case '\0':
|
|
/* Signal a premature end of the string */
|
|
elog(ERROR, "malformed array constant: %s", str);
|
|
break;
|
|
case '\\':
|
|
/* skip the escaped character */
|
|
if (*(ptr + 1))
|
|
ptr++;
|
|
else
|
|
elog(ERROR, "malformed array constant: %s", str);
|
|
break;
|
|
case '\"':
|
|
scanning_string = !scanning_string;
|
|
break;
|
|
case '{':
|
|
if (!scanning_string)
|
|
{
|
|
if (nest_level >= MAXDIM)
|
|
elog(ERROR, "array_in: illformed array constant");
|
|
temp[nest_level] = 0;
|
|
nest_level++;
|
|
if (ndim < nest_level)
|
|
ndim = nest_level;
|
|
}
|
|
break;
|
|
case '}':
|
|
if (!scanning_string)
|
|
{
|
|
if (nest_level == 0)
|
|
elog(ERROR, "array_in: illformed array constant");
|
|
nest_level--;
|
|
if (nest_level == 0)
|
|
eoArray = itemdone = true;
|
|
else
|
|
{
|
|
/*
|
|
* We don't set itemdone here; see comments in
|
|
* ReadArrayStr
|
|
*/
|
|
temp[nest_level - 1]++;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
if (*ptr == typdelim && !scanning_string)
|
|
itemdone = true;
|
|
break;
|
|
}
|
|
if (!itemdone)
|
|
ptr++;
|
|
}
|
|
temp[ndim - 1]++;
|
|
ptr++;
|
|
}
|
|
for (i = 0; i < ndim; ++i)
|
|
dim[i] = temp[i];
|
|
|
|
return ndim;
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------
|
|
* ReadArrayStr :
|
|
* parses the array string pointed by "arrayStr" and converts it to
|
|
* internal format. The external format expected is like C array
|
|
* declaration. Unspecified elements are initialized to zero for fixed length
|
|
* base types and to empty varlena structures for variable length base
|
|
* types. (This is pretty bogus; NULL would be much safer.)
|
|
* result :
|
|
* returns a palloc'd array of Datum representations of the array elements.
|
|
* If element type is pass-by-ref, the Datums point to palloc'd values.
|
|
* *nbytes is set to the amount of data space needed for the array,
|
|
* including alignment padding but not including array header overhead.
|
|
* CAUTION: the contents of "arrayStr" may be modified!
|
|
*---------------------------------------------------------------------------
|
|
*/
|
|
static Datum *
|
|
ReadArrayStr(char *arrayStr,
|
|
int nitems,
|
|
int ndim,
|
|
int *dim,
|
|
FmgrInfo *inputproc,
|
|
Oid typelem,
|
|
int32 typmod,
|
|
char typdelim,
|
|
int typlen,
|
|
bool typbyval,
|
|
char typalign,
|
|
int *nbytes)
|
|
{
|
|
int i,
|
|
nest_level = 0;
|
|
Datum *values;
|
|
char *ptr;
|
|
bool scanning_string = false;
|
|
bool eoArray = false;
|
|
int indx[MAXDIM],
|
|
prod[MAXDIM];
|
|
|
|
mda_get_prod(ndim, dim, prod);
|
|
values = (Datum *) palloc0(nitems * sizeof(Datum));
|
|
MemSet(indx, 0, sizeof(indx));
|
|
|
|
/* read array enclosed within {} */
|
|
ptr = arrayStr;
|
|
while (!eoArray)
|
|
{
|
|
bool itemdone = false;
|
|
int i = -1;
|
|
char *itemstart;
|
|
|
|
/* skip leading whitespace */
|
|
while (isspace((unsigned char) *ptr))
|
|
ptr++;
|
|
itemstart = ptr;
|
|
|
|
while (!itemdone)
|
|
{
|
|
switch (*ptr)
|
|
{
|
|
case '\0':
|
|
/* Signal a premature end of the string */
|
|
elog(ERROR, "malformed array constant: %s", arrayStr);
|
|
break;
|
|
case '\\':
|
|
{
|
|
char *cptr;
|
|
|
|
/* Crunch the string on top of the backslash. */
|
|
for (cptr = ptr; *cptr != '\0'; cptr++)
|
|
*cptr = *(cptr + 1);
|
|
if (*ptr == '\0')
|
|
elog(ERROR, "malformed array constant: %s", arrayStr);
|
|
break;
|
|
}
|
|
case '\"':
|
|
{
|
|
char *cptr;
|
|
|
|
scanning_string = !scanning_string;
|
|
/* Crunch the string on top of the quote. */
|
|
for (cptr = ptr; *cptr != '\0'; cptr++)
|
|
*cptr = *(cptr + 1);
|
|
/* Back up to not miss following character. */
|
|
ptr--;
|
|
break;
|
|
}
|
|
case '{':
|
|
if (!scanning_string)
|
|
{
|
|
if (nest_level >= ndim)
|
|
elog(ERROR, "array_in: illformed array constant");
|
|
nest_level++;
|
|
indx[nest_level - 1] = 0;
|
|
/* skip leading whitespace */
|
|
while (isspace((unsigned char) *(ptr + 1)))
|
|
ptr++;
|
|
itemstart = ptr + 1;
|
|
}
|
|
break;
|
|
case '}':
|
|
if (!scanning_string)
|
|
{
|
|
if (nest_level == 0)
|
|
elog(ERROR, "array_in: illformed array constant");
|
|
if (i == -1)
|
|
i = ArrayGetOffset0(ndim, indx, prod);
|
|
indx[nest_level - 1] = 0;
|
|
nest_level--;
|
|
if (nest_level == 0)
|
|
eoArray = itemdone = true;
|
|
else
|
|
{
|
|
/*
|
|
* tricky coding: terminate item value string
|
|
* at first '}', but don't process it till we
|
|
* see a typdelim char or end of array. This
|
|
* handles case where several '}'s appear
|
|
* successively in a multidimensional array.
|
|
*/
|
|
*ptr = '\0';
|
|
indx[nest_level - 1]++;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
if (*ptr == typdelim && !scanning_string)
|
|
{
|
|
if (i == -1)
|
|
i = ArrayGetOffset0(ndim, indx, prod);
|
|
itemdone = true;
|
|
indx[ndim - 1]++;
|
|
}
|
|
break;
|
|
}
|
|
if (!itemdone)
|
|
ptr++;
|
|
}
|
|
*ptr++ = '\0';
|
|
if (i < 0 || i >= nitems)
|
|
elog(ERROR, "array_in: illformed array constant");
|
|
values[i] = FunctionCall3(inputproc,
|
|
CStringGetDatum(itemstart),
|
|
ObjectIdGetDatum(typelem),
|
|
Int32GetDatum(typmod));
|
|
}
|
|
|
|
/*
|
|
* Initialize any unset items and compute total data space needed
|
|
*/
|
|
if (typlen > 0)
|
|
{
|
|
*nbytes = nitems * att_align(typlen, typalign);
|
|
if (!typbyval)
|
|
for (i = 0; i < nitems; i++)
|
|
if (values[i] == (Datum) 0)
|
|
values[i] = PointerGetDatum(palloc0(typlen));
|
|
}
|
|
else
|
|
{
|
|
Assert(!typbyval);
|
|
*nbytes = 0;
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
if (values[i] != (Datum) 0)
|
|
{
|
|
/* let's just make sure data is not toasted */
|
|
if (typlen == -1)
|
|
values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i]));
|
|
*nbytes = att_addlength(*nbytes, typlen, values[i]);
|
|
*nbytes = att_align(*nbytes, typalign);
|
|
}
|
|
else if (typlen == -1)
|
|
{
|
|
/* dummy varlena value (XXX bogus, see notes above) */
|
|
values[i] = PointerGetDatum(palloc(sizeof(int32)));
|
|
VARATT_SIZEP(DatumGetPointer(values[i])) = sizeof(int32);
|
|
*nbytes += sizeof(int32);
|
|
*nbytes = att_align(*nbytes, typalign);
|
|
}
|
|
else
|
|
{
|
|
/* dummy cstring value */
|
|
Assert(typlen == -2);
|
|
values[i] = PointerGetDatum(palloc(1));
|
|
*((char *) DatumGetPointer(values[i])) = '\0';
|
|
*nbytes += 1;
|
|
*nbytes = att_align(*nbytes, typalign);
|
|
}
|
|
}
|
|
}
|
|
return values;
|
|
}
|
|
|
|
|
|
/*----------
|
|
* Copy data into an array object from a temporary array of Datums.
|
|
*
|
|
* p: pointer to start of array data area
|
|
* values: array of Datums to be copied
|
|
* nitems: number of Datums to be copied
|
|
* typbyval, typlen, typalign: info about element datatype
|
|
* freedata: if TRUE and element type is pass-by-ref, pfree data values
|
|
* referenced by Datums after copying them.
|
|
*
|
|
* If the input data is of varlena type, the caller must have ensured that
|
|
* the values are not toasted. (Doing it here doesn't work since the
|
|
* caller has already allocated space for the array...)
|
|
*----------
|
|
*/
|
|
static void
|
|
CopyArrayEls(char *p,
|
|
Datum *values,
|
|
int nitems,
|
|
int typlen,
|
|
bool typbyval,
|
|
char typalign,
|
|
bool freedata)
|
|
{
|
|
int i;
|
|
|
|
if (typbyval)
|
|
freedata = false;
|
|
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
p += ArrayCastAndSet(values[i], typlen, typbyval, typalign, p);
|
|
if (freedata)
|
|
pfree(DatumGetPointer(values[i]));
|
|
}
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------
|
|
* array_out :
|
|
* takes the internal representation of an array and returns a string
|
|
* containing the array in its external format.
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
Datum
|
|
array_out(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *v = PG_GETARG_ARRAYTYPE_P(0);
|
|
Oid element_type;
|
|
int typlen;
|
|
bool typbyval;
|
|
char typdelim;
|
|
Oid typoutput,
|
|
typelem;
|
|
FmgrInfo outputproc;
|
|
char typalign;
|
|
char *p,
|
|
*tmp,
|
|
*retval,
|
|
**values;
|
|
bool *needquotes;
|
|
int nitems,
|
|
overall_length,
|
|
i,
|
|
j,
|
|
k,
|
|
indx[MAXDIM];
|
|
int ndim,
|
|
*dim;
|
|
|
|
element_type = ARR_ELEMTYPE(v);
|
|
system_cache_lookup(element_type, false, &typlen, &typbyval,
|
|
&typdelim, &typelem, &typoutput, &typalign);
|
|
fmgr_info(typoutput, &outputproc);
|
|
|
|
ndim = ARR_NDIM(v);
|
|
dim = ARR_DIMS(v);
|
|
nitems = ArrayGetNItems(ndim, dim);
|
|
|
|
if (nitems == 0)
|
|
{
|
|
retval = pstrdup("{}");
|
|
PG_RETURN_CSTRING(retval);
|
|
}
|
|
|
|
/*
|
|
* Convert all values to string form, count total space needed
|
|
* (including any overhead such as escaping backslashes), and detect
|
|
* whether each item needs double quotes.
|
|
*/
|
|
values = (char **) palloc(nitems * sizeof(char *));
|
|
needquotes = (bool *) palloc(nitems * sizeof(bool));
|
|
p = ARR_DATA_PTR(v);
|
|
overall_length = 1; /* [TRH] don't forget to count \0 at end. */
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
Datum itemvalue;
|
|
bool nq;
|
|
|
|
itemvalue = fetch_att(p, typbyval, typlen);
|
|
values[i] = DatumGetCString(FunctionCall3(&outputproc,
|
|
itemvalue,
|
|
ObjectIdGetDatum(typelem),
|
|
Int32GetDatum(-1)));
|
|
p = att_addlength(p, typlen, PointerGetDatum(p));
|
|
p = (char *) att_align(p, typalign);
|
|
|
|
/* count data plus backslashes; detect chars needing quotes */
|
|
nq = (values[i][0] == '\0'); /* force quotes for empty string */
|
|
for (tmp = values[i]; *tmp; tmp++)
|
|
{
|
|
char ch = *tmp;
|
|
|
|
overall_length += 1;
|
|
if (ch == '"' || ch == '\\')
|
|
{
|
|
nq = true;
|
|
#ifndef TCL_ARRAYS
|
|
overall_length += 1;
|
|
#endif
|
|
}
|
|
else if (ch == '{' || ch == '}' || ch == typdelim ||
|
|
isspace((unsigned char) ch))
|
|
nq = true;
|
|
}
|
|
|
|
needquotes[i] = nq;
|
|
|
|
/* Count the pair of double quotes, if needed */
|
|
if (nq)
|
|
overall_length += 2;
|
|
|
|
/* and the comma */
|
|
overall_length += 1;
|
|
}
|
|
|
|
/*
|
|
* count total number of curly braces in output string
|
|
*/
|
|
for (i = j = 0, k = 1; i < ndim; k *= dim[i++], j += k);
|
|
|
|
retval = (char *) palloc(overall_length + 2 * j);
|
|
p = retval;
|
|
|
|
#define APPENDSTR(str) (strcpy(p, (str)), p += strlen(p))
|
|
#define APPENDCHAR(ch) (*p++ = (ch), *p = '\0')
|
|
|
|
APPENDCHAR('{');
|
|
for (i = 0; i < ndim; indx[i++] = 0);
|
|
j = 0;
|
|
k = 0;
|
|
do
|
|
{
|
|
for (i = j; i < ndim - 1; i++)
|
|
APPENDCHAR('{');
|
|
|
|
if (needquotes[k])
|
|
{
|
|
APPENDCHAR('"');
|
|
#ifndef TCL_ARRAYS
|
|
for (tmp = values[k]; *tmp; tmp++)
|
|
{
|
|
char ch = *tmp;
|
|
|
|
if (ch == '"' || ch == '\\')
|
|
*p++ = '\\';
|
|
*p++ = ch;
|
|
}
|
|
*p = '\0';
|
|
#else
|
|
APPENDSTR(values[k]);
|
|
#endif
|
|
APPENDCHAR('"');
|
|
}
|
|
else
|
|
APPENDSTR(values[k]);
|
|
pfree(values[k++]);
|
|
|
|
for (i = ndim - 1; i >= 0; i--)
|
|
{
|
|
indx[i] = (indx[i] + 1) % dim[i];
|
|
if (indx[i])
|
|
{
|
|
APPENDCHAR(typdelim);
|
|
break;
|
|
}
|
|
else
|
|
APPENDCHAR('}');
|
|
}
|
|
j = i;
|
|
} while (j != -1);
|
|
|
|
#undef APPENDSTR
|
|
#undef APPENDCHAR
|
|
|
|
pfree(values);
|
|
pfree(needquotes);
|
|
|
|
PG_RETURN_CSTRING(retval);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------
|
|
* array_length_coerce :
|
|
* Apply the element type's length-coercion routine to each element
|
|
* of the given array.
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
Datum
|
|
array_length_coerce(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *v = PG_GETARG_ARRAYTYPE_P(0);
|
|
int32 len = PG_GETARG_INT32(1);
|
|
bool isExplicit = PG_GETARG_BOOL(2);
|
|
FmgrInfo *fmgr_info = fcinfo->flinfo;
|
|
typedef struct {
|
|
Oid elemtype;
|
|
FmgrInfo coerce_finfo;
|
|
} alc_extra;
|
|
alc_extra *my_extra;
|
|
FunctionCallInfoData locfcinfo;
|
|
|
|
/* If no typmod is provided, shortcircuit the whole thing */
|
|
if (len < 0)
|
|
PG_RETURN_ARRAYTYPE_P(v);
|
|
|
|
/*
|
|
* We arrange to look up the element type's coercion function only
|
|
* once per series of calls, assuming the element type doesn't change
|
|
* underneath us.
|
|
*/
|
|
my_extra = (alc_extra *) fmgr_info->fn_extra;
|
|
if (my_extra == NULL)
|
|
{
|
|
fmgr_info->fn_extra = MemoryContextAlloc(fmgr_info->fn_mcxt,
|
|
sizeof(alc_extra));
|
|
my_extra = (alc_extra *) fmgr_info->fn_extra;
|
|
my_extra->elemtype = InvalidOid;
|
|
}
|
|
|
|
if (my_extra->elemtype != ARR_ELEMTYPE(v))
|
|
{
|
|
Oid funcId;
|
|
int nargs;
|
|
|
|
funcId = find_typmod_coercion_function(ARR_ELEMTYPE(v), &nargs);
|
|
|
|
if (OidIsValid(funcId))
|
|
fmgr_info_cxt(funcId, &my_extra->coerce_finfo, fmgr_info->fn_mcxt);
|
|
else
|
|
my_extra->coerce_finfo.fn_oid = InvalidOid;
|
|
my_extra->elemtype = ARR_ELEMTYPE(v);
|
|
}
|
|
|
|
/*
|
|
* If we didn't find a coercion function, return the array unmodified
|
|
* (this should not happen in the normal course of things, but might
|
|
* happen if this function is called manually).
|
|
*/
|
|
if (my_extra->coerce_finfo.fn_oid == InvalidOid)
|
|
PG_RETURN_ARRAYTYPE_P(v);
|
|
|
|
/*
|
|
* Use array_map to apply the function to each array element.
|
|
*
|
|
* Note: we pass isExplicit whether or not the function wants it ...
|
|
*/
|
|
MemSet(&locfcinfo, 0, sizeof(locfcinfo));
|
|
locfcinfo.flinfo = &my_extra->coerce_finfo;
|
|
locfcinfo.nargs = 3;
|
|
locfcinfo.arg[0] = PointerGetDatum(v);
|
|
locfcinfo.arg[1] = Int32GetDatum(len);
|
|
locfcinfo.arg[2] = BoolGetDatum(isExplicit);
|
|
|
|
return array_map(&locfcinfo, ARR_ELEMTYPE(v), ARR_ELEMTYPE(v));
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* array_dims :
|
|
* returns the dimensions of the array pointed to by "v", as a "text"
|
|
*----------------------------------------------------------------------------
|
|
*/
|
|
Datum
|
|
array_dims(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *v = PG_GETARG_ARRAYTYPE_P(0);
|
|
text *result;
|
|
char *p;
|
|
int nbytes,
|
|
i;
|
|
int *dimv,
|
|
*lb;
|
|
|
|
/* Sanity check: does it look like an array at all? */
|
|
if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM)
|
|
PG_RETURN_NULL();
|
|
|
|
nbytes = ARR_NDIM(v) * 33 + 1;
|
|
|
|
/*
|
|
* 33 since we assume 15 digits per number + ':' +'[]'
|
|
*
|
|
* +1 allows for temp trailing null
|
|
*/
|
|
|
|
result = (text *) palloc(nbytes + VARHDRSZ);
|
|
p = VARDATA(result);
|
|
|
|
dimv = ARR_DIMS(v);
|
|
lb = ARR_LBOUND(v);
|
|
|
|
for (i = 0; i < ARR_NDIM(v); i++)
|
|
{
|
|
sprintf(p, "[%d:%d]", lb[i], dimv[i] + lb[i] - 1);
|
|
p += strlen(p);
|
|
}
|
|
VARATT_SIZEP(result) = strlen(VARDATA(result)) + VARHDRSZ;
|
|
|
|
PG_RETURN_TEXT_P(result);
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* array_lower :
|
|
* returns the lower dimension, of the DIM requested, for
|
|
* the array pointed to by "v", as an int4
|
|
*----------------------------------------------------------------------------
|
|
*/
|
|
Datum
|
|
array_lower(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *v = PG_GETARG_ARRAYTYPE_P(0);
|
|
int reqdim = PG_GETARG_INT32(1);
|
|
int *lb;
|
|
int result;
|
|
|
|
/* Sanity check: does it look like an array at all? */
|
|
if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Sanity check: was the requested dim valid */
|
|
if (reqdim <= 0 || reqdim > ARR_NDIM(v))
|
|
PG_RETURN_NULL();
|
|
|
|
lb = ARR_LBOUND(v);
|
|
result = lb[reqdim - 1];
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* array_upper :
|
|
* returns the upper dimension, of the DIM requested, for
|
|
* the array pointed to by "v", as an int4
|
|
*----------------------------------------------------------------------------
|
|
*/
|
|
Datum
|
|
array_upper(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *v = PG_GETARG_ARRAYTYPE_P(0);
|
|
int reqdim = PG_GETARG_INT32(1);
|
|
int *dimv,
|
|
*lb;
|
|
int result;
|
|
|
|
/* Sanity check: does it look like an array at all? */
|
|
if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Sanity check: was the requested dim valid */
|
|
if (reqdim <= 0 || reqdim > ARR_NDIM(v))
|
|
PG_RETURN_NULL();
|
|
|
|
lb = ARR_LBOUND(v);
|
|
dimv = ARR_DIMS(v);
|
|
|
|
result = dimv[reqdim - 1] + lb[reqdim - 1] - 1;
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------
|
|
* array_ref :
|
|
* This routine takes an array pointer and an index array and returns
|
|
* the referenced item as a Datum. Note that for a pass-by-reference
|
|
* datatype, the returned Datum is a pointer into the array object.
|
|
*---------------------------------------------------------------------------
|
|
*/
|
|
Datum
|
|
array_ref(ArrayType *array,
|
|
int nSubscripts,
|
|
int *indx,
|
|
int arraylen,
|
|
int elmlen,
|
|
bool elmbyval,
|
|
char elmalign,
|
|
bool *isNull)
|
|
{
|
|
int i,
|
|
ndim,
|
|
*dim,
|
|
*lb,
|
|
offset,
|
|
fixedDim[1],
|
|
fixedLb[1];
|
|
char *arraydataptr,
|
|
*retptr;
|
|
|
|
if (array == (ArrayType *) NULL)
|
|
RETURN_NULL(Datum);
|
|
|
|
if (arraylen > 0)
|
|
{
|
|
/*
|
|
* fixed-length arrays -- these are assumed to be 1-d, 0-based
|
|
*/
|
|
ndim = 1;
|
|
fixedDim[0] = arraylen / elmlen;
|
|
fixedLb[0] = 0;
|
|
dim = fixedDim;
|
|
lb = fixedLb;
|
|
arraydataptr = (char *) array;
|
|
}
|
|
else
|
|
{
|
|
/* detoast input array if necessary */
|
|
array = DatumGetArrayTypeP(PointerGetDatum(array));
|
|
|
|
ndim = ARR_NDIM(array);
|
|
dim = ARR_DIMS(array);
|
|
lb = ARR_LBOUND(array);
|
|
arraydataptr = ARR_DATA_PTR(array);
|
|
}
|
|
|
|
/*
|
|
* Return NULL for invalid subscript
|
|
*/
|
|
if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM)
|
|
RETURN_NULL(Datum);
|
|
for (i = 0; i < ndim; i++)
|
|
if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i]))
|
|
RETURN_NULL(Datum);
|
|
|
|
/*
|
|
* OK, get the element
|
|
*/
|
|
offset = ArrayGetOffset(nSubscripts, dim, lb, indx);
|
|
|
|
retptr = array_seek(arraydataptr, offset, elmlen, elmbyval, elmalign);
|
|
|
|
*isNull = false;
|
|
return ArrayCast(retptr, elmbyval, elmlen);
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* array_get_slice :
|
|
* This routine takes an array and a range of indices (upperIndex and
|
|
* lowerIndx), creates a new array structure for the referred elements
|
|
* and returns a pointer to it.
|
|
*
|
|
* NOTE: we assume it is OK to scribble on the provided index arrays
|
|
* lowerIndx[] and upperIndx[]. These are generally just temporaries.
|
|
*-----------------------------------------------------------------------------
|
|
*/
|
|
ArrayType *
|
|
array_get_slice(ArrayType *array,
|
|
int nSubscripts,
|
|
int *upperIndx,
|
|
int *lowerIndx,
|
|
int arraylen,
|
|
int elmlen,
|
|
bool elmbyval,
|
|
char elmalign,
|
|
bool *isNull)
|
|
{
|
|
int i,
|
|
ndim,
|
|
*dim,
|
|
*lb,
|
|
*newlb;
|
|
int fixedDim[1],
|
|
fixedLb[1];
|
|
char *arraydataptr;
|
|
ArrayType *newarray;
|
|
int bytes,
|
|
span[MAXDIM];
|
|
|
|
if (array == (ArrayType *) NULL)
|
|
RETURN_NULL(ArrayType *);
|
|
|
|
if (arraylen > 0)
|
|
{
|
|
/*
|
|
* fixed-length arrays -- currently, cannot slice these because
|
|
* parser labels output as being of the fixed-length array type!
|
|
* Code below shows how we could support it if the parser were
|
|
* changed to label output as a suitable varlena array type.
|
|
*/
|
|
elog(ERROR, "Slices of fixed-length arrays not implemented");
|
|
|
|
/*
|
|
* fixed-length arrays -- these are assumed to be 1-d, 0-based XXX
|
|
* where would we get the correct ELEMTYPE from?
|
|
*/
|
|
ndim = 1;
|
|
fixedDim[0] = arraylen / elmlen;
|
|
fixedLb[0] = 0;
|
|
dim = fixedDim;
|
|
lb = fixedLb;
|
|
arraydataptr = (char *) array;
|
|
}
|
|
else
|
|
{
|
|
/* detoast input array if necessary */
|
|
array = DatumGetArrayTypeP(PointerGetDatum(array));
|
|
|
|
ndim = ARR_NDIM(array);
|
|
dim = ARR_DIMS(array);
|
|
lb = ARR_LBOUND(array);
|
|
arraydataptr = ARR_DATA_PTR(array);
|
|
}
|
|
|
|
/*
|
|
* Check provided subscripts. A slice exceeding the current array
|
|
* limits is silently truncated to the array limits. If we end up
|
|
* with an empty slice, return NULL (should it be an empty array
|
|
* instead?)
|
|
*/
|
|
if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM)
|
|
RETURN_NULL(ArrayType *);
|
|
|
|
for (i = 0; i < nSubscripts; i++)
|
|
{
|
|
if (lowerIndx[i] < lb[i])
|
|
lowerIndx[i] = lb[i];
|
|
if (upperIndx[i] >= (dim[i] + lb[i]))
|
|
upperIndx[i] = dim[i] + lb[i] - 1;
|
|
if (lowerIndx[i] > upperIndx[i])
|
|
RETURN_NULL(ArrayType *);
|
|
}
|
|
/* fill any missing subscript positions with full array range */
|
|
for (; i < ndim; i++)
|
|
{
|
|
lowerIndx[i] = lb[i];
|
|
upperIndx[i] = dim[i] + lb[i] - 1;
|
|
if (lowerIndx[i] > upperIndx[i])
|
|
RETURN_NULL(ArrayType *);
|
|
}
|
|
|
|
mda_get_range(ndim, span, lowerIndx, upperIndx);
|
|
|
|
bytes = array_slice_size(ndim, dim, lb, arraydataptr,
|
|
lowerIndx, upperIndx,
|
|
elmlen, elmbyval, elmalign);
|
|
bytes += ARR_OVERHEAD(ndim);
|
|
|
|
newarray = (ArrayType *) palloc(bytes);
|
|
newarray->size = bytes;
|
|
newarray->ndim = ndim;
|
|
newarray->flags = 0;
|
|
newarray->elemtype = ARR_ELEMTYPE(array);
|
|
memcpy(ARR_DIMS(newarray), span, ndim * sizeof(int));
|
|
|
|
/*
|
|
* Lower bounds of the new array are set to 1. Formerly (before 7.3)
|
|
* we copied the given lowerIndx values ... but that seems confusing.
|
|
*/
|
|
newlb = ARR_LBOUND(newarray);
|
|
for (i = 0; i < ndim; i++)
|
|
newlb[i] = 1;
|
|
|
|
array_extract_slice(ndim, dim, lb, arraydataptr,
|
|
lowerIndx, upperIndx, ARR_DATA_PTR(newarray),
|
|
elmlen, elmbyval, elmalign);
|
|
|
|
return newarray;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* array_set :
|
|
* This routine sets the value of an array location (specified by
|
|
* an index array) to a new value specified by "dataValue".
|
|
* result :
|
|
* A new array is returned, just like the old except for the one
|
|
* modified entry.
|
|
*
|
|
* For one-dimensional arrays only, we allow the array to be extended
|
|
* by assigning to the position one above or one below the existing range.
|
|
* (We could be more flexible if we had a way to represent NULL elements.)
|
|
*
|
|
* NOTE: For assignments, we throw an error for invalid subscripts etc,
|
|
* rather than returning a NULL as the fetch operations do. The reasoning
|
|
* is that returning a NULL would cause the user's whole array to be replaced
|
|
* with NULL, which will probably not make him happy.
|
|
*-----------------------------------------------------------------------------
|
|
*/
|
|
ArrayType *
|
|
array_set(ArrayType *array,
|
|
int nSubscripts,
|
|
int *indx,
|
|
Datum dataValue,
|
|
int arraylen,
|
|
int elmlen,
|
|
bool elmbyval,
|
|
char elmalign,
|
|
bool *isNull)
|
|
{
|
|
int i,
|
|
ndim,
|
|
dim[MAXDIM],
|
|
lb[MAXDIM],
|
|
offset;
|
|
ArrayType *newarray;
|
|
char *elt_ptr;
|
|
bool extendbefore = false;
|
|
bool extendafter = false;
|
|
int olddatasize,
|
|
newsize,
|
|
olditemlen,
|
|
newitemlen,
|
|
overheadlen,
|
|
lenbefore,
|
|
lenafter;
|
|
|
|
if (array == (ArrayType *) NULL)
|
|
RETURN_NULL(ArrayType *);
|
|
|
|
if (arraylen > 0)
|
|
{
|
|
/*
|
|
* fixed-length arrays -- these are assumed to be 1-d, 0-based. We
|
|
* cannot extend them, either.
|
|
*/
|
|
if (nSubscripts != 1)
|
|
elog(ERROR, "Invalid array subscripts");
|
|
if (indx[0] < 0 || indx[0] * elmlen >= arraylen)
|
|
elog(ERROR, "Invalid array subscripts");
|
|
newarray = (ArrayType *) palloc(arraylen);
|
|
memcpy(newarray, array, arraylen);
|
|
elt_ptr = (char *) newarray + indx[0] * elmlen;
|
|
ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, elt_ptr);
|
|
return newarray;
|
|
}
|
|
|
|
/* make sure item to be inserted is not toasted */
|
|
if (elmlen == -1)
|
|
dataValue = PointerGetDatum(PG_DETOAST_DATUM(dataValue));
|
|
|
|
/* detoast input array if necessary */
|
|
array = DatumGetArrayTypeP(PointerGetDatum(array));
|
|
|
|
ndim = ARR_NDIM(array);
|
|
if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM)
|
|
elog(ERROR, "Invalid array subscripts");
|
|
|
|
/* copy dim/lb since we may modify them */
|
|
memcpy(dim, ARR_DIMS(array), ndim * sizeof(int));
|
|
memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int));
|
|
|
|
/*
|
|
* Check subscripts
|
|
*/
|
|
for (i = 0; i < ndim; i++)
|
|
{
|
|
if (indx[i] < lb[i])
|
|
{
|
|
if (ndim == 1 && indx[i] == lb[i] - 1)
|
|
{
|
|
dim[i]++;
|
|
lb[i]--;
|
|
extendbefore = true;
|
|
}
|
|
else
|
|
elog(ERROR, "Invalid array subscripts");
|
|
}
|
|
if (indx[i] >= (dim[i] + lb[i]))
|
|
{
|
|
if (ndim == 1 && indx[i] == (dim[i] + lb[i]))
|
|
{
|
|
dim[i]++;
|
|
extendafter = true;
|
|
}
|
|
else
|
|
elog(ERROR, "Invalid array subscripts");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute sizes of items and areas to copy
|
|
*/
|
|
overheadlen = ARR_OVERHEAD(ndim);
|
|
olddatasize = ARR_SIZE(array) - overheadlen;
|
|
if (extendbefore)
|
|
{
|
|
lenbefore = 0;
|
|
olditemlen = 0;
|
|
lenafter = olddatasize;
|
|
}
|
|
else if (extendafter)
|
|
{
|
|
lenbefore = olddatasize;
|
|
olditemlen = 0;
|
|
lenafter = 0;
|
|
}
|
|
else
|
|
{
|
|
offset = ArrayGetOffset(nSubscripts, dim, lb, indx);
|
|
elt_ptr = array_seek(ARR_DATA_PTR(array), offset,
|
|
elmlen, elmbyval, elmalign);
|
|
lenbefore = (int) (elt_ptr - ARR_DATA_PTR(array));
|
|
olditemlen = att_addlength(0, elmlen, PointerGetDatum(elt_ptr));
|
|
olditemlen = att_align(olditemlen, elmalign);
|
|
lenafter = (int) (olddatasize - lenbefore - olditemlen);
|
|
}
|
|
|
|
newitemlen = att_addlength(0, elmlen, dataValue);
|
|
newitemlen = att_align(newitemlen, elmalign);
|
|
|
|
newsize = overheadlen + lenbefore + newitemlen + lenafter;
|
|
|
|
/*
|
|
* OK, do the assignment
|
|
*/
|
|
newarray = (ArrayType *) palloc(newsize);
|
|
newarray->size = newsize;
|
|
newarray->ndim = ndim;
|
|
newarray->flags = 0;
|
|
newarray->elemtype = ARR_ELEMTYPE(array);
|
|
memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int));
|
|
memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int));
|
|
memcpy((char *) newarray + overheadlen,
|
|
(char *) array + overheadlen,
|
|
lenbefore);
|
|
memcpy((char *) newarray + overheadlen + lenbefore + newitemlen,
|
|
(char *) array + overheadlen + lenbefore + olditemlen,
|
|
lenafter);
|
|
|
|
ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign,
|
|
(char *) newarray + overheadlen + lenbefore);
|
|
|
|
return newarray;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
* array_set_slice :
|
|
* This routine sets the value of a range of array locations (specified
|
|
* by upper and lower index values ) to new values passed as
|
|
* another array
|
|
* result :
|
|
* A new array is returned, just like the old except for the
|
|
* modified range.
|
|
*
|
|
* NOTE: we assume it is OK to scribble on the provided index arrays
|
|
* lowerIndx[] and upperIndx[]. These are generally just temporaries.
|
|
*
|
|
* NOTE: For assignments, we throw an error for silly subscripts etc,
|
|
* rather than returning a NULL as the fetch operations do. The reasoning
|
|
* is that returning a NULL would cause the user's whole array to be replaced
|
|
* with NULL, which will probably not make him happy.
|
|
*----------------------------------------------------------------------------
|
|
*/
|
|
ArrayType *
|
|
array_set_slice(ArrayType *array,
|
|
int nSubscripts,
|
|
int *upperIndx,
|
|
int *lowerIndx,
|
|
ArrayType *srcArray,
|
|
int arraylen,
|
|
int elmlen,
|
|
bool elmbyval,
|
|
char elmalign,
|
|
bool *isNull)
|
|
{
|
|
int i,
|
|
ndim,
|
|
dim[MAXDIM],
|
|
lb[MAXDIM],
|
|
span[MAXDIM];
|
|
ArrayType *newarray;
|
|
int nsrcitems,
|
|
olddatasize,
|
|
newsize,
|
|
olditemsize,
|
|
newitemsize,
|
|
overheadlen,
|
|
lenbefore,
|
|
lenafter;
|
|
|
|
if (array == (ArrayType *) NULL)
|
|
RETURN_NULL(ArrayType *);
|
|
if (srcArray == (ArrayType *) NULL)
|
|
return array;
|
|
|
|
if (arraylen > 0)
|
|
{
|
|
/*
|
|
* fixed-length arrays -- not got round to doing this...
|
|
*/
|
|
elog(ERROR, "Updates on slices of fixed-length arrays not implemented");
|
|
}
|
|
|
|
/* detoast arrays if necessary */
|
|
array = DatumGetArrayTypeP(PointerGetDatum(array));
|
|
srcArray = DatumGetArrayTypeP(PointerGetDatum(srcArray));
|
|
|
|
/* note: we assume srcArray contains no toasted elements */
|
|
|
|
ndim = ARR_NDIM(array);
|
|
if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM)
|
|
elog(ERROR, "Invalid array subscripts");
|
|
|
|
/* copy dim/lb since we may modify them */
|
|
memcpy(dim, ARR_DIMS(array), ndim * sizeof(int));
|
|
memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int));
|
|
|
|
/*
|
|
* Check provided subscripts. A slice exceeding the current array
|
|
* limits throws an error, *except* in the 1-D case where we will
|
|
* extend the array as long as no hole is created. An empty slice is
|
|
* an error, too.
|
|
*/
|
|
for (i = 0; i < nSubscripts; i++)
|
|
{
|
|
if (lowerIndx[i] > upperIndx[i])
|
|
elog(ERROR, "Invalid array subscripts");
|
|
if (lowerIndx[i] < lb[i])
|
|
{
|
|
if (ndim == 1 && upperIndx[i] >= lb[i] - 1)
|
|
{
|
|
dim[i] += lb[i] - lowerIndx[i];
|
|
lb[i] = lowerIndx[i];
|
|
}
|
|
else
|
|
elog(ERROR, "Invalid array subscripts");
|
|
}
|
|
if (upperIndx[i] >= (dim[i] + lb[i]))
|
|
{
|
|
if (ndim == 1 && lowerIndx[i] <= (dim[i] + lb[i]))
|
|
dim[i] = upperIndx[i] - lb[i] + 1;
|
|
else
|
|
elog(ERROR, "Invalid array subscripts");
|
|
}
|
|
}
|
|
/* fill any missing subscript positions with full array range */
|
|
for (; i < ndim; i++)
|
|
{
|
|
lowerIndx[i] = lb[i];
|
|
upperIndx[i] = dim[i] + lb[i] - 1;
|
|
if (lowerIndx[i] > upperIndx[i])
|
|
elog(ERROR, "Invalid array subscripts");
|
|
}
|
|
|
|
/*
|
|
* Make sure source array has enough entries. Note we ignore the
|
|
* shape of the source array and just read entries serially.
|
|
*/
|
|
mda_get_range(ndim, span, lowerIndx, upperIndx);
|
|
nsrcitems = ArrayGetNItems(ndim, span);
|
|
if (nsrcitems > ArrayGetNItems(ARR_NDIM(srcArray), ARR_DIMS(srcArray)))
|
|
elog(ERROR, "Source array too small");
|
|
|
|
/*
|
|
* Compute space occupied by new entries, space occupied by replaced
|
|
* entries, and required space for new array.
|
|
*/
|
|
newitemsize = array_nelems_size(ARR_DATA_PTR(srcArray), nsrcitems,
|
|
elmlen, elmbyval, elmalign);
|
|
overheadlen = ARR_OVERHEAD(ndim);
|
|
olddatasize = ARR_SIZE(array) - overheadlen;
|
|
if (ndim > 1)
|
|
{
|
|
/*
|
|
* here we do not need to cope with extension of the array; it
|
|
* would be a lot more complicated if we had to do so...
|
|
*/
|
|
olditemsize = array_slice_size(ndim, dim, lb, ARR_DATA_PTR(array),
|
|
lowerIndx, upperIndx,
|
|
elmlen, elmbyval, elmalign);
|
|
lenbefore = lenafter = 0; /* keep compiler quiet */
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* here we must allow for possibility of slice larger than orig
|
|
* array
|
|
*/
|
|
int oldlb = ARR_LBOUND(array)[0];
|
|
int oldub = oldlb + ARR_DIMS(array)[0] - 1;
|
|
int slicelb = Max(oldlb, lowerIndx[0]);
|
|
int sliceub = Min(oldub, upperIndx[0]);
|
|
char *oldarraydata = ARR_DATA_PTR(array);
|
|
|
|
lenbefore = array_nelems_size(oldarraydata, slicelb - oldlb,
|
|
elmlen, elmbyval, elmalign);
|
|
if (slicelb > sliceub)
|
|
olditemsize = 0;
|
|
else
|
|
olditemsize = array_nelems_size(oldarraydata + lenbefore,
|
|
sliceub - slicelb + 1,
|
|
elmlen, elmbyval, elmalign);
|
|
lenafter = olddatasize - lenbefore - olditemsize;
|
|
}
|
|
|
|
newsize = overheadlen + olddatasize - olditemsize + newitemsize;
|
|
|
|
newarray = (ArrayType *) palloc(newsize);
|
|
newarray->size = newsize;
|
|
newarray->ndim = ndim;
|
|
newarray->flags = 0;
|
|
newarray->elemtype = ARR_ELEMTYPE(array);
|
|
memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int));
|
|
memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int));
|
|
|
|
if (ndim > 1)
|
|
{
|
|
/*
|
|
* here we do not need to cope with extension of the array; it
|
|
* would be a lot more complicated if we had to do so...
|
|
*/
|
|
array_insert_slice(ndim, dim, lb, ARR_DATA_PTR(array), olddatasize,
|
|
ARR_DATA_PTR(newarray),
|
|
lowerIndx, upperIndx, ARR_DATA_PTR(srcArray),
|
|
elmlen, elmbyval, elmalign);
|
|
}
|
|
else
|
|
{
|
|
memcpy((char *) newarray + overheadlen,
|
|
(char *) array + overheadlen,
|
|
lenbefore);
|
|
memcpy((char *) newarray + overheadlen + lenbefore,
|
|
ARR_DATA_PTR(srcArray),
|
|
newitemsize);
|
|
memcpy((char *) newarray + overheadlen + lenbefore + newitemsize,
|
|
(char *) array + overheadlen + lenbefore + olditemsize,
|
|
lenafter);
|
|
}
|
|
|
|
return newarray;
|
|
}
|
|
|
|
/*
|
|
* array_map()
|
|
*
|
|
* Map an array through an arbitrary function. Return a new array with
|
|
* same dimensions and each source element transformed by fn(). Each
|
|
* source element is passed as the first argument to fn(); additional
|
|
* arguments to be passed to fn() can be specified by the caller.
|
|
* The output array can have a different element type than the input.
|
|
*
|
|
* Parameters are:
|
|
* * fcinfo: a function-call data structure pre-constructed by the caller
|
|
* to be ready to call the desired function, with everything except the
|
|
* first argument position filled in. In particular, flinfo identifies
|
|
* the function fn(), and if nargs > 1 then argument positions after the
|
|
* first must be preset to the additional values to be passed. The
|
|
* first argument position initially holds the input array value.
|
|
* * inpType: OID of element type of input array. This must be the same as,
|
|
* or binary-compatible with, the first argument type of fn().
|
|
* * retType: OID of element type of output array. This must be the same as,
|
|
* or binary-compatible with, the result type of fn().
|
|
*
|
|
* NB: caller must assure that input array is not NULL. Currently,
|
|
* any additional parameters passed to fn() may not be specified as NULL
|
|
* either.
|
|
*/
|
|
Datum
|
|
array_map(FunctionCallInfo fcinfo, Oid inpType, Oid retType)
|
|
{
|
|
ArrayType *v;
|
|
ArrayType *result;
|
|
Datum *values;
|
|
Datum elt;
|
|
int *dim;
|
|
int ndim;
|
|
int nitems;
|
|
int i;
|
|
int nbytes = 0;
|
|
int inp_typlen;
|
|
bool inp_typbyval;
|
|
char inp_typalign;
|
|
int typlen;
|
|
bool typbyval;
|
|
char typalign;
|
|
char typdelim;
|
|
Oid typelem;
|
|
Oid proc;
|
|
char *s;
|
|
|
|
/* Get input array */
|
|
if (fcinfo->nargs < 1)
|
|
elog(ERROR, "array_map: invalid nargs: %d", fcinfo->nargs);
|
|
if (PG_ARGISNULL(0))
|
|
elog(ERROR, "array_map: null input array");
|
|
v = PG_GETARG_ARRAYTYPE_P(0);
|
|
|
|
Assert(ARR_ELEMTYPE(v) == inpType);
|
|
|
|
ndim = ARR_NDIM(v);
|
|
dim = ARR_DIMS(v);
|
|
nitems = ArrayGetNItems(ndim, dim);
|
|
|
|
/* Check for empty array */
|
|
if (nitems <= 0)
|
|
PG_RETURN_ARRAYTYPE_P(v);
|
|
|
|
/* Lookup source and result types. Unneeded variables are reused. */
|
|
system_cache_lookup(inpType, false, &inp_typlen, &inp_typbyval,
|
|
&typdelim, &typelem, &proc, &inp_typalign);
|
|
system_cache_lookup(retType, false, &typlen, &typbyval,
|
|
&typdelim, &typelem, &proc, &typalign);
|
|
|
|
/* Allocate temporary array for new values */
|
|
values = (Datum *) palloc(nitems * sizeof(Datum));
|
|
|
|
/* Loop over source data */
|
|
s = (char *) ARR_DATA_PTR(v);
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
/* Get source element */
|
|
elt = fetch_att(s, inp_typbyval, inp_typlen);
|
|
|
|
s = att_addlength(s, inp_typlen, PointerGetDatum(s));
|
|
s = (char *) att_align(s, inp_typalign);
|
|
|
|
/*
|
|
* Apply the given function to source elt and extra args.
|
|
*
|
|
* We assume the extra args are non-NULL, so need not check whether
|
|
* fn() is strict. Would need to do more work here to support
|
|
* arrays containing nulls, too.
|
|
*/
|
|
fcinfo->arg[0] = elt;
|
|
fcinfo->argnull[0] = false;
|
|
fcinfo->isnull = false;
|
|
values[i] = FunctionCallInvoke(fcinfo);
|
|
if (fcinfo->isnull)
|
|
elog(ERROR, "array_map: cannot handle NULL in array");
|
|
|
|
/* Ensure data is not toasted */
|
|
if (typlen == -1)
|
|
values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i]));
|
|
|
|
/* Update total result size */
|
|
nbytes = att_addlength(nbytes, typlen, values[i]);
|
|
nbytes = att_align(nbytes, typalign);
|
|
}
|
|
|
|
/* Allocate and initialize the result array */
|
|
nbytes += ARR_OVERHEAD(ndim);
|
|
result = (ArrayType *) palloc0(nbytes);
|
|
|
|
result->size = nbytes;
|
|
result->ndim = ndim;
|
|
result->elemtype = retType;
|
|
memcpy(ARR_DIMS(result), ARR_DIMS(v), 2 * ndim * sizeof(int));
|
|
|
|
/*
|
|
* Note: do not risk trying to pfree the results of the called
|
|
* function
|
|
*/
|
|
CopyArrayEls(ARR_DATA_PTR(result), values, nitems,
|
|
typlen, typbyval, typalign, false);
|
|
pfree(values);
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
|
|
/*----------
|
|
* construct_array --- simple method for constructing an array object
|
|
*
|
|
* elems: array of Datum items to become the array contents
|
|
* nelems: number of items
|
|
* elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items
|
|
*
|
|
* A palloc'd 1-D array object is constructed and returned. Note that
|
|
* elem values will be copied into the object even if pass-by-ref type.
|
|
* NULL element values are not supported.
|
|
*
|
|
* NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info
|
|
* from the system catalogs, given the elmtype. However, the caller is
|
|
* in a better position to cache this info across multiple uses, or even
|
|
* to hard-wire values if the element type is hard-wired.
|
|
*----------
|
|
*/
|
|
ArrayType *
|
|
construct_array(Datum *elems, int nelems,
|
|
Oid elmtype,
|
|
int elmlen, bool elmbyval, char elmalign)
|
|
{
|
|
int dims[1];
|
|
int lbs[1];
|
|
|
|
dims[0] = nelems;
|
|
lbs[0] = 1;
|
|
|
|
return construct_md_array(elems, 1, dims, lbs,
|
|
elmtype, elmlen, elmbyval, elmalign);
|
|
}
|
|
|
|
/*----------
|
|
* construct_md_array --- simple method for constructing an array object
|
|
* with arbitrary dimensions
|
|
*
|
|
* elems: array of Datum items to become the array contents
|
|
* ndims: number of dimensions
|
|
* dims: integer array with size of each dimension
|
|
* lbs: integer array with lower bound of each dimension
|
|
* elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items
|
|
*
|
|
* A palloc'd ndims-D array object is constructed and returned. Note that
|
|
* elem values will be copied into the object even if pass-by-ref type.
|
|
* NULL element values are not supported.
|
|
*
|
|
* NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info
|
|
* from the system catalogs, given the elmtype. However, the caller is
|
|
* in a better position to cache this info across multiple uses, or even
|
|
* to hard-wire values if the element type is hard-wired.
|
|
*----------
|
|
*/
|
|
ArrayType *
|
|
construct_md_array(Datum *elems,
|
|
int ndims,
|
|
int *dims,
|
|
int *lbs,
|
|
Oid elmtype, int elmlen, bool elmbyval, char elmalign)
|
|
{
|
|
ArrayType *result;
|
|
int nbytes;
|
|
int i;
|
|
int nelems;
|
|
|
|
if (ndims < 1 || ndims > MAXDIM)
|
|
elog(ERROR, "Number of array dimensions, %d, exceeds the maximum allowed (%d)",
|
|
ndims, MAXDIM);
|
|
|
|
nelems = ArrayGetNItems(ndims, dims);
|
|
|
|
/* compute required space */
|
|
if (elmlen > 0)
|
|
nbytes = nelems * att_align(elmlen, elmalign);
|
|
else
|
|
{
|
|
Assert(!elmbyval);
|
|
nbytes = 0;
|
|
for (i = 0; i < nelems; i++)
|
|
{
|
|
/* make sure data is not toasted */
|
|
if (elmlen == -1)
|
|
elems[i] = PointerGetDatum(PG_DETOAST_DATUM(elems[i]));
|
|
nbytes = att_addlength(nbytes, elmlen, elems[i]);
|
|
nbytes = att_align(nbytes, elmalign);
|
|
}
|
|
}
|
|
|
|
/* Allocate and initialize ndims-D result array */
|
|
nbytes += ARR_OVERHEAD(ndims);
|
|
result = (ArrayType *) palloc(nbytes);
|
|
|
|
result->size = nbytes;
|
|
result->ndim = ndims;
|
|
result->flags = 0;
|
|
result->elemtype = elmtype;
|
|
memcpy((char *) ARR_DIMS(result), (char *) dims, ndims * sizeof(int));
|
|
memcpy((char *) ARR_LBOUND(result), (char *) lbs, ndims * sizeof(int));
|
|
CopyArrayEls(ARR_DATA_PTR(result), elems, nelems,
|
|
elmlen, elmbyval, elmalign, false);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*----------
|
|
* deconstruct_array --- simple method for extracting data from an array
|
|
*
|
|
* array: array object to examine (must not be NULL)
|
|
* elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items
|
|
* elemsp: return value, set to point to palloc'd array of Datum values
|
|
* nelemsp: return value, set to number of extracted values
|
|
*
|
|
* If array elements are pass-by-ref data type, the returned Datums will
|
|
* be pointers into the array object.
|
|
*
|
|
* NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info
|
|
* from the system catalogs, given the elmtype. However, in most current
|
|
* uses the type is hard-wired into the caller and so we can save a lookup
|
|
* cycle by hard-wiring the type info as well.
|
|
*----------
|
|
*/
|
|
void
|
|
deconstruct_array(ArrayType *array,
|
|
Oid elmtype,
|
|
int elmlen, bool elmbyval, char elmalign,
|
|
Datum **elemsp, int *nelemsp)
|
|
{
|
|
Datum *elems;
|
|
int nelems;
|
|
char *p;
|
|
int i;
|
|
|
|
Assert(ARR_ELEMTYPE(array) == elmtype);
|
|
|
|
nelems = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array));
|
|
if (nelems <= 0)
|
|
{
|
|
*elemsp = NULL;
|
|
*nelemsp = 0;
|
|
return;
|
|
}
|
|
*elemsp = elems = (Datum *) palloc(nelems * sizeof(Datum));
|
|
*nelemsp = nelems;
|
|
|
|
p = ARR_DATA_PTR(array);
|
|
for (i = 0; i < nelems; i++)
|
|
{
|
|
elems[i] = fetch_att(p, elmbyval, elmlen);
|
|
p = att_addlength(p, elmlen, PointerGetDatum(p));
|
|
p = (char *) att_align(p, elmalign);
|
|
}
|
|
}
|
|
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* array_eq :
|
|
* compares two arrays for equality
|
|
* result :
|
|
* returns true if the arrays are equal, false otherwise.
|
|
*
|
|
* XXX bitwise equality is pretty bogus ...
|
|
*-----------------------------------------------------------------------------
|
|
*/
|
|
Datum
|
|
array_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *array1 = PG_GETARG_ARRAYTYPE_P(0);
|
|
ArrayType *array2 = PG_GETARG_ARRAYTYPE_P(1);
|
|
bool result = true;
|
|
|
|
if (ARR_SIZE(array1) != ARR_SIZE(array2))
|
|
result = false;
|
|
else if (memcmp(array1, array2, ARR_SIZE(array1)) != 0)
|
|
result = false;
|
|
|
|
/* Avoid leaking memory when handed toasted input. */
|
|
PG_FREE_IF_COPY(array1, 0);
|
|
PG_FREE_IF_COPY(array2, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
|
|
/***************************************************************************/
|
|
/******************| Support Routines |*****************/
|
|
/***************************************************************************/
|
|
|
|
static void
|
|
system_cache_lookup(Oid element_type,
|
|
bool input,
|
|
int *typlen,
|
|
bool *typbyval,
|
|
char *typdelim,
|
|
Oid *typelem,
|
|
Oid *proc,
|
|
char *typalign)
|
|
{
|
|
HeapTuple typeTuple;
|
|
Form_pg_type typeStruct;
|
|
|
|
typeTuple = SearchSysCache(TYPEOID,
|
|
ObjectIdGetDatum(element_type),
|
|
0, 0, 0);
|
|
if (!HeapTupleIsValid(typeTuple))
|
|
elog(ERROR, "cache lookup failed for type %u", element_type);
|
|
typeStruct = (Form_pg_type) GETSTRUCT(typeTuple);
|
|
|
|
*typlen = typeStruct->typlen;
|
|
*typbyval = typeStruct->typbyval;
|
|
*typdelim = typeStruct->typdelim;
|
|
*typelem = typeStruct->typelem;
|
|
*typalign = typeStruct->typalign;
|
|
if (input)
|
|
*proc = typeStruct->typinput;
|
|
else
|
|
*proc = typeStruct->typoutput;
|
|
ReleaseSysCache(typeTuple);
|
|
}
|
|
|
|
/*
|
|
* Fetch array element at pointer, converted correctly to a Datum
|
|
*/
|
|
static Datum
|
|
ArrayCast(char *value, bool byval, int len)
|
|
{
|
|
return fetch_att(value, byval, len);
|
|
}
|
|
|
|
/*
|
|
* Copy datum to *dest and return total space used (including align padding)
|
|
*/
|
|
static int
|
|
ArrayCastAndSet(Datum src,
|
|
int typlen,
|
|
bool typbyval,
|
|
char typalign,
|
|
char *dest)
|
|
{
|
|
int inc;
|
|
|
|
if (typlen > 0)
|
|
{
|
|
if (typbyval)
|
|
store_att_byval(dest, src, typlen);
|
|
else
|
|
memmove(dest, DatumGetPointer(src), typlen);
|
|
inc = att_align(typlen, typalign);
|
|
}
|
|
else
|
|
{
|
|
Assert(!typbyval);
|
|
inc = att_addlength(0, typlen, src);
|
|
memmove(dest, DatumGetPointer(src), inc);
|
|
inc = att_align(inc, typalign);
|
|
}
|
|
|
|
return inc;
|
|
}
|
|
|
|
/*
|
|
* Compute total size of the nitems array elements starting at *ptr
|
|
*/
|
|
static int
|
|
array_nelems_size(char *ptr, int nitems,
|
|
int typlen, bool typbyval, char typalign)
|
|
{
|
|
char *origptr;
|
|
int i;
|
|
|
|
/* fixed-size elements? */
|
|
if (typlen > 0)
|
|
return nitems * att_align(typlen, typalign);
|
|
|
|
Assert(!typbyval);
|
|
origptr = ptr;
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
ptr = att_addlength(ptr, typlen, PointerGetDatum(ptr));
|
|
ptr = (char *) att_align(ptr, typalign);
|
|
}
|
|
return ptr - origptr;
|
|
}
|
|
|
|
/*
|
|
* Advance ptr over nitems array elements
|
|
*/
|
|
static char *
|
|
array_seek(char *ptr, int nitems,
|
|
int typlen, bool typbyval, char typalign)
|
|
{
|
|
return ptr + array_nelems_size(ptr, nitems,
|
|
typlen, typbyval, typalign);
|
|
}
|
|
|
|
/*
|
|
* Copy nitems array elements from srcptr to destptr
|
|
*
|
|
* Returns number of bytes copied
|
|
*/
|
|
static int
|
|
array_copy(char *destptr, int nitems, char *srcptr,
|
|
int typlen, bool typbyval, char typalign)
|
|
{
|
|
int numbytes = array_nelems_size(srcptr, nitems,
|
|
typlen, typbyval, typalign);
|
|
|
|
memmove(destptr, srcptr, numbytes);
|
|
return numbytes;
|
|
}
|
|
|
|
/*
|
|
* Compute space needed for a slice of an array
|
|
*
|
|
* We assume the caller has verified that the slice coordinates are valid.
|
|
*/
|
|
static int
|
|
array_slice_size(int ndim, int *dim, int *lb, char *arraydataptr,
|
|
int *st, int *endp,
|
|
int typlen, bool typbyval, char typalign)
|
|
{
|
|
int st_pos,
|
|
span[MAXDIM],
|
|
prod[MAXDIM],
|
|
dist[MAXDIM],
|
|
indx[MAXDIM];
|
|
char *ptr;
|
|
int i,
|
|
j,
|
|
inc;
|
|
int count = 0;
|
|
|
|
mda_get_range(ndim, span, st, endp);
|
|
|
|
/* Pretty easy for fixed element length ... */
|
|
if (typlen > 0)
|
|
return ArrayGetNItems(ndim, span) * att_align(typlen, typalign);
|
|
|
|
/* Else gotta do it the hard way */
|
|
st_pos = ArrayGetOffset(ndim, dim, lb, st);
|
|
ptr = array_seek(arraydataptr, st_pos,
|
|
typlen, typbyval, typalign);
|
|
mda_get_prod(ndim, dim, prod);
|
|
mda_get_offset_values(ndim, dist, prod, span);
|
|
for (i = 0; i < ndim; i++)
|
|
indx[i] = 0;
|
|
j = ndim - 1;
|
|
do
|
|
{
|
|
ptr = array_seek(ptr, dist[j],
|
|
typlen, typbyval, typalign);
|
|
inc = att_addlength(0, typlen, PointerGetDatum(ptr));
|
|
inc = att_align(inc, typalign);
|
|
ptr += inc;
|
|
count += inc;
|
|
} while ((j = mda_next_tuple(ndim, indx, span)) != -1);
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Extract a slice of an array into consecutive elements at *destPtr.
|
|
*
|
|
* We assume the caller has verified that the slice coordinates are valid
|
|
* and allocated enough storage at *destPtr.
|
|
*/
|
|
static void
|
|
array_extract_slice(int ndim,
|
|
int *dim,
|
|
int *lb,
|
|
char *arraydataptr,
|
|
int *st,
|
|
int *endp,
|
|
char *destPtr,
|
|
int typlen,
|
|
bool typbyval,
|
|
char typalign)
|
|
{
|
|
int st_pos,
|
|
prod[MAXDIM],
|
|
span[MAXDIM],
|
|
dist[MAXDIM],
|
|
indx[MAXDIM];
|
|
char *srcPtr;
|
|
int i,
|
|
j,
|
|
inc;
|
|
|
|
st_pos = ArrayGetOffset(ndim, dim, lb, st);
|
|
srcPtr = array_seek(arraydataptr, st_pos,
|
|
typlen, typbyval, typalign);
|
|
mda_get_prod(ndim, dim, prod);
|
|
mda_get_range(ndim, span, st, endp);
|
|
mda_get_offset_values(ndim, dist, prod, span);
|
|
for (i = 0; i < ndim; i++)
|
|
indx[i] = 0;
|
|
j = ndim - 1;
|
|
do
|
|
{
|
|
srcPtr = array_seek(srcPtr, dist[j],
|
|
typlen, typbyval, typalign);
|
|
inc = array_copy(destPtr, 1, srcPtr,
|
|
typlen, typbyval, typalign);
|
|
destPtr += inc;
|
|
srcPtr += inc;
|
|
} while ((j = mda_next_tuple(ndim, indx, span)) != -1);
|
|
}
|
|
|
|
/*
|
|
* Insert a slice into an array.
|
|
*
|
|
* ndim/dim/lb are dimensions of the dest array, which has data area
|
|
* starting at origPtr. A new array with those same dimensions is to
|
|
* be constructed; its data area starts at destPtr.
|
|
*
|
|
* Elements within the slice volume are taken from consecutive locations
|
|
* at srcPtr; elements outside it are copied from origPtr.
|
|
*
|
|
* We assume the caller has verified that the slice coordinates are valid
|
|
* and allocated enough storage at *destPtr.
|
|
*/
|
|
static void
|
|
array_insert_slice(int ndim,
|
|
int *dim,
|
|
int *lb,
|
|
char *origPtr,
|
|
int origdatasize,
|
|
char *destPtr,
|
|
int *st,
|
|
int *endp,
|
|
char *srcPtr,
|
|
int typlen,
|
|
bool typbyval,
|
|
char typalign)
|
|
{
|
|
int st_pos,
|
|
prod[MAXDIM],
|
|
span[MAXDIM],
|
|
dist[MAXDIM],
|
|
indx[MAXDIM];
|
|
char *origEndpoint = origPtr + origdatasize;
|
|
int i,
|
|
j,
|
|
inc;
|
|
|
|
st_pos = ArrayGetOffset(ndim, dim, lb, st);
|
|
inc = array_copy(destPtr, st_pos, origPtr,
|
|
typlen, typbyval, typalign);
|
|
destPtr += inc;
|
|
origPtr += inc;
|
|
mda_get_prod(ndim, dim, prod);
|
|
mda_get_range(ndim, span, st, endp);
|
|
mda_get_offset_values(ndim, dist, prod, span);
|
|
for (i = 0; i < ndim; i++)
|
|
indx[i] = 0;
|
|
j = ndim - 1;
|
|
do
|
|
{
|
|
/* Copy/advance over elements between here and next part of slice */
|
|
inc = array_copy(destPtr, dist[j], origPtr,
|
|
typlen, typbyval, typalign);
|
|
destPtr += inc;
|
|
origPtr += inc;
|
|
/* Copy new element at this slice position */
|
|
inc = array_copy(destPtr, 1, srcPtr,
|
|
typlen, typbyval, typalign);
|
|
destPtr += inc;
|
|
srcPtr += inc;
|
|
/* Advance over old element at this slice position */
|
|
origPtr = array_seek(origPtr, 1,
|
|
typlen, typbyval, typalign);
|
|
} while ((j = mda_next_tuple(ndim, indx, span)) != -1);
|
|
|
|
/* don't miss any data at the end */
|
|
memcpy(destPtr, origPtr, origEndpoint - origPtr);
|
|
}
|
|
|
|
/*
|
|
* array_type_coerce -- allow explicit or assignment coercion from
|
|
* one array type to another.
|
|
*
|
|
* Caller should have already verified that the source element type can be
|
|
* coerced into the target element type.
|
|
*/
|
|
Datum
|
|
array_type_coerce(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *src = PG_GETARG_ARRAYTYPE_P(0);
|
|
Oid src_elem_type = ARR_ELEMTYPE(src);
|
|
FmgrInfo *fmgr_info = fcinfo->flinfo;
|
|
typedef struct {
|
|
Oid srctype;
|
|
Oid desttype;
|
|
FmgrInfo coerce_finfo;
|
|
} atc_extra;
|
|
atc_extra *my_extra;
|
|
FunctionCallInfoData locfcinfo;
|
|
|
|
/*
|
|
* We arrange to look up the coercion function only once per series of
|
|
* calls, assuming the input data type doesn't change underneath us.
|
|
* (Output type can't change.)
|
|
*/
|
|
my_extra = (atc_extra *) fmgr_info->fn_extra;
|
|
if (my_extra == NULL)
|
|
{
|
|
fmgr_info->fn_extra = MemoryContextAlloc(fmgr_info->fn_mcxt,
|
|
sizeof(atc_extra));
|
|
my_extra = (atc_extra *) fmgr_info->fn_extra;
|
|
my_extra->srctype = InvalidOid;
|
|
}
|
|
|
|
if (my_extra->srctype != src_elem_type)
|
|
{
|
|
Oid tgt_type = get_fn_expr_rettype(fcinfo);
|
|
Oid tgt_elem_type;
|
|
Oid funcId;
|
|
|
|
if (tgt_type == InvalidOid)
|
|
elog(ERROR, "Cannot determine target array type");
|
|
tgt_elem_type = get_element_type(tgt_type);
|
|
if (tgt_elem_type == InvalidOid)
|
|
elog(ERROR, "Target type is not an array");
|
|
|
|
if (!find_coercion_pathway(tgt_elem_type, src_elem_type,
|
|
COERCION_EXPLICIT, &funcId))
|
|
{
|
|
/* should never happen, but check anyway */
|
|
elog(ERROR, "no conversion function from %s to %s",
|
|
format_type_be(src_elem_type), format_type_be(tgt_elem_type));
|
|
}
|
|
if (OidIsValid(funcId))
|
|
fmgr_info_cxt(funcId, &my_extra->coerce_finfo, fmgr_info->fn_mcxt);
|
|
else
|
|
my_extra->coerce_finfo.fn_oid = InvalidOid;
|
|
my_extra->srctype = src_elem_type;
|
|
my_extra->desttype = tgt_elem_type;
|
|
}
|
|
|
|
/*
|
|
* If it's binary-compatible, return the array unmodified.
|
|
*/
|
|
if (my_extra->coerce_finfo.fn_oid == InvalidOid)
|
|
PG_RETURN_ARRAYTYPE_P(src);
|
|
|
|
/*
|
|
* Use array_map to apply the function to each array element.
|
|
*/
|
|
MemSet(&locfcinfo, 0, sizeof(locfcinfo));
|
|
locfcinfo.flinfo = &my_extra->coerce_finfo;
|
|
locfcinfo.nargs = 1;
|
|
locfcinfo.arg[0] = PointerGetDatum(src);
|
|
|
|
return array_map(&locfcinfo, my_extra->srctype, my_extra->desttype);
|
|
}
|