mirror of
				https://github.com/postgres/postgres.git
				synced 2025-10-29 22:49:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			3589 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3589 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*-------------------------------------------------------------------------
 | |
|  *
 | |
|  * imath.c
 | |
|  *
 | |
|  * Last synchronized from https://github.com/creachadair/imath/tree/v1.29,
 | |
|  * using the following procedure:
 | |
|  *
 | |
|  * 1. Download imath.c and imath.h of the last synchronized version.  Remove
 | |
|  *    "#ifdef __cplusplus" blocks, which upset pgindent.  Run pgindent on the
 | |
|  *    two files.  Filter the two files through "unexpand -t4 --first-only".
 | |
|  *    Diff the result against the PostgreSQL versions.  As of the last
 | |
|  *    synchronization, changes were as follows:
 | |
|  *
 | |
|  *    - replace malloc(), realloc() and free() with px_ versions
 | |
|  *    - redirect assert() to Assert()
 | |
|  *    - #undef MIN, #undef MAX before defining them
 | |
|  *    - remove includes covered by c.h
 | |
|  *    - rename DEBUG to IMATH_DEBUG
 | |
|  *    - replace stdint.h usage with c.h equivalents
 | |
|  *    - suppress MSVC warning 4146
 | |
|  *    - add required PG_USED_FOR_ASSERTS_ONLY
 | |
|  *
 | |
|  * 2. Download a newer imath.c and imath.h.  Transform them like in step 1.
 | |
|  *    Apply to these files the diff you saved in step 1.  Look for new lines
 | |
|  *    requiring the same kind of change, such as new malloc() calls.
 | |
|  *
 | |
|  * 3. Configure PostgreSQL using --without-openssl.  Run "make -C
 | |
|  *    contrib/pgcrypto check".
 | |
|  *
 | |
|  * 4. Update this header comment.
 | |
|  *
 | |
|  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 | |
|  *
 | |
|  * IDENTIFICATION
 | |
|  *	  contrib/pgcrypto/imath.c
 | |
|  *
 | |
|  * Upstream copyright terms follow.
 | |
|  *-------------------------------------------------------------------------
 | |
|  */
 | |
| 
 | |
| /*
 | |
|   Name:		imath.c
 | |
|   Purpose:	Arbitrary precision integer arithmetic routines.
 | |
|   Author:   M. J. Fromberger
 | |
| 
 | |
|   Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
 | |
| 
 | |
|   Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|   of this software and associated documentation files (the "Software"), to deal
 | |
|   in the Software without restriction, including without limitation the rights
 | |
|   to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|   copies of the Software, and to permit persons to whom the Software is
 | |
|   furnished to do so, subject to the following conditions:
 | |
| 
 | |
|   The above copyright notice and this permission notice shall be included in
 | |
|   all copies or substantial portions of the Software.
 | |
| 
 | |
|   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 | |
|   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|   SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include "postgres.h"
 | |
| 
 | |
| #include "imath.h"
 | |
| #include "px.h"
 | |
| 
 | |
| #undef assert
 | |
| #define assert(TEST) Assert(TEST)
 | |
| 
 | |
| const mp_result MP_OK = 0;		/* no error, all is well  */
 | |
| const mp_result MP_FALSE = 0;	/* boolean false          */
 | |
| const mp_result MP_TRUE = -1;	/* boolean true           */
 | |
| const mp_result MP_MEMORY = -2; /* out of memory          */
 | |
| const mp_result MP_RANGE = -3;	/* argument out of range  */
 | |
| const mp_result MP_UNDEF = -4;	/* result undefined       */
 | |
| const mp_result MP_TRUNC = -5;	/* output truncated       */
 | |
| const mp_result MP_BADARG = -6; /* invalid null argument  */
 | |
| const mp_result MP_MINERR = -6;
 | |
| 
 | |
| const mp_sign MP_NEG = 1;		/* value is strictly negative */
 | |
| const mp_sign MP_ZPOS = 0;		/* value is non-negative      */
 | |
| 
 | |
| static const char *s_unknown_err = "unknown result code";
 | |
| static const char *s_error_msg[] = {"error code 0", "boolean true",
 | |
| 	"out of memory", "argument out of range",
 | |
| 	"result undefined", "output truncated",
 | |
| "invalid argument", NULL};
 | |
| 
 | |
| /* The ith entry of this table gives the value of log_i(2).
 | |
| 
 | |
|    An integer value n requires ceil(log_i(n)) digits to be represented
 | |
|    in base i.  Since it is easy to compute lg(n), by counting bits, we
 | |
|    can compute log_i(n) = lg(n) * log_i(2).
 | |
| 
 | |
|    The use of this table eliminates a dependency upon linkage against
 | |
|    the standard math libraries.
 | |
| 
 | |
|    If MP_MAX_RADIX is increased, this table should be expanded too.
 | |
|  */
 | |
| static const double s_log2[] = {
 | |
| 	0.000000000, 0.000000000, 1.000000000, 0.630929754, /* (D)(D) 2  3 */
 | |
| 	0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4  5  6  7 */
 | |
| 	0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8  9 10 11 */
 | |
| 	0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
 | |
| 	0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
 | |
| 	0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
 | |
| 	0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
 | |
| 	0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
 | |
| 	0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
 | |
| 	0.193426404,				/* 36          */
 | |
| };
 | |
| 
 | |
| /* Return the number of digits needed to represent a static value */
 | |
| #define MP_VALUE_DIGITS(V) \
 | |
|   ((sizeof(V) + (sizeof(mp_digit) - 1)) / sizeof(mp_digit))
 | |
| 
 | |
| /* Round precision P to nearest word boundary */
 | |
| static inline mp_size
 | |
| s_round_prec(mp_size P)
 | |
| {
 | |
| 	return 2 * ((P + 1) / 2);
 | |
| }
 | |
| 
 | |
| /* Set array P of S digits to zero */
 | |
| static inline void
 | |
| ZERO(mp_digit *P, mp_size S)
 | |
| {
 | |
| 	mp_size		i__ = S * sizeof(mp_digit);
 | |
| 	mp_digit   *p__ = P;
 | |
| 
 | |
| 	memset(p__, 0, i__);
 | |
| }
 | |
| 
 | |
| /* Copy S digits from array P to array Q */
 | |
| static inline void
 | |
| COPY(mp_digit *P, mp_digit *Q, mp_size S)
 | |
| {
 | |
| 	mp_size		i__ = S * sizeof(mp_digit);
 | |
| 	mp_digit   *p__ = P;
 | |
| 	mp_digit   *q__ = Q;
 | |
| 
 | |
| 	memcpy(q__, p__, i__);
 | |
| }
 | |
| 
 | |
| /* Reverse N elements of unsigned char in A. */
 | |
| static inline void
 | |
| REV(unsigned char *A, int N)
 | |
| {
 | |
| 	unsigned char *u_ = A;
 | |
| 	unsigned char *v_ = u_ + N - 1;
 | |
| 
 | |
| 	while (u_ < v_)
 | |
| 	{
 | |
| 		unsigned char xch = *u_;
 | |
| 
 | |
| 		*u_++ = *v_;
 | |
| 		*v_-- = xch;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Strip leading zeroes from z_ in-place. */
 | |
| static inline void
 | |
| CLAMP(mp_int z_)
 | |
| {
 | |
| 	mp_size		uz_ = MP_USED(z_);
 | |
| 	mp_digit   *dz_ = MP_DIGITS(z_) + uz_ - 1;
 | |
| 
 | |
| 	while (uz_ > 1 && (*dz_-- == 0))
 | |
| 		--uz_;
 | |
| 	z_->used = uz_;
 | |
| }
 | |
| 
 | |
| /* Select min/max. */
 | |
| #undef MIN
 | |
| #undef MAX
 | |
| static inline int
 | |
| MIN(int A, int B)
 | |
| {
 | |
| 	return (B < A ? B : A);
 | |
| }
 | |
| static inline mp_size
 | |
| MAX(mp_size A, mp_size B)
 | |
| {
 | |
| 	return (B > A ? B : A);
 | |
| }
 | |
| 
 | |
| /* Exchange lvalues A and B of type T, e.g.
 | |
|    SWAP(int, x, y) where x and y are variables of type int. */
 | |
| #define SWAP(T, A, B) \
 | |
|   do {                \
 | |
| 	T t_ = (A);       \
 | |
| 	A = (B);          \
 | |
| 	B = t_;           \
 | |
|   } while (0)
 | |
| 
 | |
| /* Declare a block of N temporary mpz_t values.
 | |
|    These values are initialized to zero.
 | |
|    You must add CLEANUP_TEMP() at the end of the function.
 | |
|    Use TEMP(i) to access a pointer to the ith value.
 | |
|  */
 | |
| #define DECLARE_TEMP(N)                   \
 | |
|   struct {                                \
 | |
| 	mpz_t value[(N)];                     \
 | |
| 	int len;                              \
 | |
| 	mp_result err;                        \
 | |
|   } temp_ = {                             \
 | |
| 	  .len = (N),                         \
 | |
| 	  .err = MP_OK,                       \
 | |
|   };                                      \
 | |
|   do {                                    \
 | |
| 	for (int i = 0; i < temp_.len; i++) { \
 | |
| 	  mp_int_init(TEMP(i));               \
 | |
| 	}                                     \
 | |
|   } while (0)
 | |
| 
 | |
| /* Clear all allocated temp values. */
 | |
| #define CLEANUP_TEMP()                    \
 | |
|   CLEANUP:                                \
 | |
|   do {                                    \
 | |
| 	for (int i = 0; i < temp_.len; i++) { \
 | |
| 	  mp_int_clear(TEMP(i));              \
 | |
| 	}                                     \
 | |
| 	if (temp_.err != MP_OK) {             \
 | |
| 	  return temp_.err;                   \
 | |
| 	}                                     \
 | |
|   } while (0)
 | |
| 
 | |
| /* A pointer to the kth temp value. */
 | |
| #define TEMP(K) (temp_.value + (K))
 | |
| 
 | |
| /* Evaluate E, an expression of type mp_result expected to return MP_OK.  If
 | |
|    the value is not MP_OK, the error is cached and control resumes at the
 | |
|    cleanup handler, which returns it.
 | |
| */
 | |
| #define REQUIRE(E)                        \
 | |
|   do {                                    \
 | |
| 	temp_.err = (E);                      \
 | |
| 	if (temp_.err != MP_OK) goto CLEANUP; \
 | |
|   } while (0)
 | |
| 
 | |
| /* Compare value to zero. */
 | |
| static inline int
 | |
| CMPZ(mp_int Z)
 | |
| {
 | |
| 	if (Z->used == 1 && Z->digits[0] == 0)
 | |
| 		return 0;
 | |
| 	return (Z->sign == MP_NEG) ? -1 : 1;
 | |
| }
 | |
| 
 | |
| static inline mp_word
 | |
| UPPER_HALF(mp_word W)
 | |
| {
 | |
| 	return (W >> MP_DIGIT_BIT);
 | |
| }
 | |
| static inline mp_digit
 | |
| LOWER_HALF(mp_word W)
 | |
| {
 | |
| 	return (mp_digit) (W);
 | |
| }
 | |
| 
 | |
| /* Report whether the highest-order bit of W is 1. */
 | |
| static inline bool
 | |
| HIGH_BIT_SET(mp_word W)
 | |
| {
 | |
| 	return (W >> (MP_WORD_BIT - 1)) != 0;
 | |
| }
 | |
| 
 | |
| /* Report whether adding W + V will carry out. */
 | |
| static inline bool
 | |
| ADD_WILL_OVERFLOW(mp_word W, mp_word V)
 | |
| {
 | |
| 	return ((MP_WORD_MAX - V) < W);
 | |
| }
 | |
| 
 | |
| /* Default number of digits allocated to a new mp_int */
 | |
| static mp_size default_precision = 8;
 | |
| 
 | |
| void
 | |
| mp_int_default_precision(mp_size size)
 | |
| {
 | |
| 	assert(size > 0);
 | |
| 	default_precision = size;
 | |
| }
 | |
| 
 | |
| /* Minimum number of digits to invoke recursive multiply */
 | |
| static mp_size multiply_threshold = 32;
 | |
| 
 | |
| void
 | |
| mp_int_multiply_threshold(mp_size thresh)
 | |
| {
 | |
| 	assert(thresh >= sizeof(mp_word));
 | |
| 	multiply_threshold = thresh;
 | |
| }
 | |
| 
 | |
| /* Allocate a buffer of (at least) num digits, or return
 | |
|    NULL if that couldn't be done.  */
 | |
| static mp_digit *s_alloc(mp_size num);
 | |
| 
 | |
| /* Release a buffer of digits allocated by s_alloc(). */
 | |
| static void s_free(void *ptr);
 | |
| 
 | |
| /* Insure that z has at least min digits allocated, resizing if
 | |
|    necessary.  Returns true if successful, false if out of memory. */
 | |
| static bool s_pad(mp_int z, mp_size min);
 | |
| 
 | |
| /* Ensure Z has at least N digits allocated. */
 | |
| static inline mp_result
 | |
| GROW(mp_int Z, mp_size N)
 | |
| {
 | |
| 	return s_pad(Z, N) ? MP_OK : MP_MEMORY;
 | |
| }
 | |
| 
 | |
| /* Fill in a "fake" mp_int on the stack with a given value */
 | |
| static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]);
 | |
| static void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]);
 | |
| 
 | |
| /* Compare two runs of digits of given length, returns <0, 0, >0 */
 | |
| static int	s_cdig(mp_digit *da, mp_digit *db, mp_size len);
 | |
| 
 | |
| /* Pack the unsigned digits of v into array t */
 | |
| static int	s_uvpack(mp_usmall v, mp_digit t[]);
 | |
| 
 | |
| /* Compare magnitudes of a and b, returns <0, 0, >0 */
 | |
| static int	s_ucmp(mp_int a, mp_int b);
 | |
| 
 | |
| /* Compare magnitudes of a and v, returns <0, 0, >0 */
 | |
| static int	s_vcmp(mp_int a, mp_small v);
 | |
| static int	s_uvcmp(mp_int a, mp_usmall uv);
 | |
| 
 | |
| /* Unsigned magnitude addition; assumes dc is big enough.
 | |
|    Carry out is returned (no memory allocated). */
 | |
| static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
 | |
| 					   mp_size size_b);
 | |
| 
 | |
| /* Unsigned magnitude subtraction.  Assumes dc is big enough. */
 | |
| static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
 | |
| 				   mp_size size_b);
 | |
| 
 | |
| /* Unsigned recursive multiplication.  Assumes dc is big enough. */
 | |
| static int	s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
 | |
| 				   mp_size size_b);
 | |
| 
 | |
| /* Unsigned magnitude multiplication.  Assumes dc is big enough. */
 | |
| static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
 | |
| 				   mp_size size_b);
 | |
| 
 | |
| /* Unsigned recursive squaring.  Assumes dc is big enough. */
 | |
| static int	s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
 | |
| 
 | |
| /* Unsigned magnitude squaring.  Assumes dc is big enough. */
 | |
| static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
 | |
| 
 | |
| /* Single digit addition.  Assumes a is big enough. */
 | |
| static void s_dadd(mp_int a, mp_digit b);
 | |
| 
 | |
| /* Single digit multiplication.  Assumes a is big enough. */
 | |
| static void s_dmul(mp_int a, mp_digit b);
 | |
| 
 | |
| /* Single digit multiplication on buffers; assumes dc is big enough. */
 | |
| static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a);
 | |
| 
 | |
| /* Single digit division.  Replaces a with the quotient,
 | |
|    returns the remainder.  */
 | |
| static mp_digit s_ddiv(mp_int a, mp_digit b);
 | |
| 
 | |
| /* Quick division by a power of 2, replaces z (no allocation) */
 | |
| static void s_qdiv(mp_int z, mp_size p2);
 | |
| 
 | |
| /* Quick remainder by a power of 2, replaces z (no allocation) */
 | |
| static void s_qmod(mp_int z, mp_size p2);
 | |
| 
 | |
| /* Quick multiplication by a power of 2, replaces z.
 | |
|    Allocates if necessary; returns false in case this fails. */
 | |
| static int	s_qmul(mp_int z, mp_size p2);
 | |
| 
 | |
| /* Quick subtraction from a power of 2, replaces z.
 | |
|    Allocates if necessary; returns false in case this fails. */
 | |
| static int	s_qsub(mp_int z, mp_size p2);
 | |
| 
 | |
| /* Return maximum k such that 2^k divides z. */
 | |
| static int	s_dp2k(mp_int z);
 | |
| 
 | |
| /* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
 | |
| static int	s_isp2(mp_int z);
 | |
| 
 | |
| /* Set z to 2^k.  May allocate; returns false in case this fails. */
 | |
| static int	s_2expt(mp_int z, mp_small k);
 | |
| 
 | |
| /* Normalize a and b for division, returns normalization constant */
 | |
| static int	s_norm(mp_int a, mp_int b);
 | |
| 
 | |
| /* Compute constant mu for Barrett reduction, given modulus m, result
 | |
|    replaces z, m is untouched. */
 | |
| static mp_result s_brmu(mp_int z, mp_int m);
 | |
| 
 | |
| /* Reduce a modulo m, using Barrett's algorithm. */
 | |
| static int	s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
 | |
| 
 | |
| /* Modular exponentiation, using Barrett reduction */
 | |
| static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
 | |
| 
 | |
| /* Unsigned magnitude division.  Assumes |a| > |b|.  Allocates temporaries;
 | |
|    overwrites a with quotient, b with remainder. */
 | |
| static mp_result s_udiv_knuth(mp_int a, mp_int b);
 | |
| 
 | |
| /* Compute the number of digits in radix r required to represent the given
 | |
|    value.  Does not account for sign flags, terminators, etc. */
 | |
| static int	s_outlen(mp_int z, mp_size r);
 | |
| 
 | |
| /* Guess how many digits of precision will be needed to represent a radix r
 | |
|    value of the specified number of digits.  Returns a value guaranteed to be
 | |
|    no smaller than the actual number required. */
 | |
| static mp_size s_inlen(int len, mp_size r);
 | |
| 
 | |
| /* Convert a character to a digit value in radix r, or
 | |
|    -1 if out of range */
 | |
| static int	s_ch2val(char c, int r);
 | |
| 
 | |
| /* Convert a digit value to a character */
 | |
| static char s_val2ch(int v, int caps);
 | |
| 
 | |
| /* Take 2's complement of a buffer in place */
 | |
| static void s_2comp(unsigned char *buf, int len);
 | |
| 
 | |
| /* Convert a value to binary, ignoring sign.  On input, *limpos is the bound on
 | |
|    how many bytes should be written to buf; on output, *limpos is set to the
 | |
|    number of bytes actually written. */
 | |
| static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
 | |
| 
 | |
| /* Multiply X by Y into Z, ignoring signs.  Requires that Z have enough storage
 | |
|    preallocated to hold the result. */
 | |
| static inline void
 | |
| UMUL(mp_int X, mp_int Y, mp_int Z)
 | |
| {
 | |
| 	mp_size		ua_ = MP_USED(X);
 | |
| 	mp_size		ub_ = MP_USED(Y);
 | |
| 	mp_size		o_ = ua_ + ub_;
 | |
| 
 | |
| 	ZERO(MP_DIGITS(Z), o_);
 | |
| 	(void) s_kmul(MP_DIGITS(X), MP_DIGITS(Y), MP_DIGITS(Z), ua_, ub_);
 | |
| 	Z->used = o_;
 | |
| 	CLAMP(Z);
 | |
| }
 | |
| 
 | |
| /* Square X into Z.  Requires that Z have enough storage to hold the result. */
 | |
| static inline void
 | |
| USQR(mp_int X, mp_int Z)
 | |
| {
 | |
| 	mp_size		ua_ = MP_USED(X);
 | |
| 	mp_size		o_ = ua_ + ua_;
 | |
| 
 | |
| 	ZERO(MP_DIGITS(Z), o_);
 | |
| 	(void) s_ksqr(MP_DIGITS(X), MP_DIGITS(Z), ua_);
 | |
| 	Z->used = o_;
 | |
| 	CLAMP(Z);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_init(mp_int z)
 | |
| {
 | |
| 	if (z == NULL)
 | |
| 		return MP_BADARG;
 | |
| 
 | |
| 	z->single = 0;
 | |
| 	z->digits = &(z->single);
 | |
| 	z->alloc = 1;
 | |
| 	z->used = 1;
 | |
| 	z->sign = MP_ZPOS;
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_int
 | |
| mp_int_alloc(void)
 | |
| {
 | |
| 	mp_int		out = palloc(sizeof(mpz_t));
 | |
| 
 | |
| 	if (out != NULL)
 | |
| 		mp_int_init(out);
 | |
| 
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_init_size(mp_int z, mp_size prec)
 | |
| {
 | |
| 	assert(z != NULL);
 | |
| 
 | |
| 	if (prec == 0)
 | |
| 	{
 | |
| 		prec = default_precision;
 | |
| 	}
 | |
| 	else if (prec == 1)
 | |
| 	{
 | |
| 		return mp_int_init(z);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		prec = s_round_prec(prec);
 | |
| 	}
 | |
| 
 | |
| 	z->digits = s_alloc(prec);
 | |
| 	if (MP_DIGITS(z) == NULL)
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	z->digits[0] = 0;
 | |
| 	z->used = 1;
 | |
| 	z->alloc = prec;
 | |
| 	z->sign = MP_ZPOS;
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_init_copy(mp_int z, mp_int old)
 | |
| {
 | |
| 	assert(z != NULL && old != NULL);
 | |
| 
 | |
| 	mp_size		uold = MP_USED(old);
 | |
| 
 | |
| 	if (uold == 1)
 | |
| 	{
 | |
| 		mp_int_init(z);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		mp_size		target = MAX(uold, default_precision);
 | |
| 		mp_result	res = mp_int_init_size(z, target);
 | |
| 
 | |
| 		if (res != MP_OK)
 | |
| 			return res;
 | |
| 	}
 | |
| 
 | |
| 	z->used = uold;
 | |
| 	z->sign = old->sign;
 | |
| 	COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_init_value(mp_int z, mp_small value)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 	return mp_int_init_copy(z, &vtmp);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_init_uvalue(mp_int z, mp_usmall uvalue)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(uvalue)];
 | |
| 
 | |
| 	s_ufake(&vtmp, uvalue, vbuf);
 | |
| 	return mp_int_init_copy(z, &vtmp);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_set_value(mp_int z, mp_small value)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 	return mp_int_copy(&vtmp, z);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_set_uvalue(mp_int z, mp_usmall uvalue)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(uvalue)];
 | |
| 
 | |
| 	s_ufake(&vtmp, uvalue, vbuf);
 | |
| 	return mp_int_copy(&vtmp, z);
 | |
| }
 | |
| 
 | |
| void
 | |
| mp_int_clear(mp_int z)
 | |
| {
 | |
| 	if (z == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	if (MP_DIGITS(z) != NULL)
 | |
| 	{
 | |
| 		if (MP_DIGITS(z) != &(z->single))
 | |
| 			s_free(MP_DIGITS(z));
 | |
| 
 | |
| 		z->digits = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| mp_int_free(mp_int z)
 | |
| {
 | |
| 	assert(z != NULL);
 | |
| 
 | |
| 	mp_int_clear(z);
 | |
| 	pfree(z);					/* note: NOT s_free() */
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_copy(mp_int a, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && c != NULL);
 | |
| 
 | |
| 	if (a != c)
 | |
| 	{
 | |
| 		mp_size		ua = MP_USED(a);
 | |
| 		mp_digit   *da,
 | |
| 				   *dc;
 | |
| 
 | |
| 		if (!s_pad(c, ua))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		da = MP_DIGITS(a);
 | |
| 		dc = MP_DIGITS(c);
 | |
| 		COPY(da, dc, ua);
 | |
| 
 | |
| 		c->used = ua;
 | |
| 		c->sign = a->sign;
 | |
| 	}
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| void
 | |
| mp_int_swap(mp_int a, mp_int c)
 | |
| {
 | |
| 	if (a != c)
 | |
| 	{
 | |
| 		mpz_t		tmp = *a;
 | |
| 
 | |
| 		*a = *c;
 | |
| 		*c = tmp;
 | |
| 
 | |
| 		if (MP_DIGITS(a) == &(c->single))
 | |
| 			a->digits = &(a->single);
 | |
| 		if (MP_DIGITS(c) == &(a->single))
 | |
| 			c->digits = &(c->single);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| mp_int_zero(mp_int z)
 | |
| {
 | |
| 	assert(z != NULL);
 | |
| 
 | |
| 	z->digits[0] = 0;
 | |
| 	z->used = 1;
 | |
| 	z->sign = MP_ZPOS;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_abs(mp_int a, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && c != NULL);
 | |
| 
 | |
| 	mp_result	res;
 | |
| 
 | |
| 	if ((res = mp_int_copy(a, c)) != MP_OK)
 | |
| 		return res;
 | |
| 
 | |
| 	c->sign = MP_ZPOS;
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_neg(mp_int a, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && c != NULL);
 | |
| 
 | |
| 	mp_result	res;
 | |
| 
 | |
| 	if ((res = mp_int_copy(a, c)) != MP_OK)
 | |
| 		return res;
 | |
| 
 | |
| 	if (CMPZ(c) != 0)
 | |
| 		c->sign = 1 - MP_SIGN(a);
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_add(mp_int a, mp_int b, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && b != NULL && c != NULL);
 | |
| 
 | |
| 	mp_size		ua = MP_USED(a);
 | |
| 	mp_size		ub = MP_USED(b);
 | |
| 	mp_size		max = MAX(ua, ub);
 | |
| 
 | |
| 	if (MP_SIGN(a) == MP_SIGN(b))
 | |
| 	{
 | |
| 		/* Same sign -- add magnitudes, preserve sign of addends */
 | |
| 		if (!s_pad(c, max))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		mp_digit	carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
 | |
| 		mp_size		uc = max;
 | |
| 
 | |
| 		if (carry)
 | |
| 		{
 | |
| 			if (!s_pad(c, max + 1))
 | |
| 				return MP_MEMORY;
 | |
| 
 | |
| 			c->digits[max] = carry;
 | |
| 			++uc;
 | |
| 		}
 | |
| 
 | |
| 		c->used = uc;
 | |
| 		c->sign = a->sign;
 | |
| 
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		/* Different signs -- subtract magnitudes, preserve sign of greater */
 | |
| 		int			cmp = s_ucmp(a, b); /* magnitude comparision, sign ignored */
 | |
| 
 | |
| 		/*
 | |
| 		 * Set x to max(a, b), y to min(a, b) to simplify later code. A
 | |
| 		 * special case yields zero for equal magnitudes.
 | |
| 		 */
 | |
| 		mp_int		x,
 | |
| 					y;
 | |
| 
 | |
| 		if (cmp == 0)
 | |
| 		{
 | |
| 			mp_int_zero(c);
 | |
| 			return MP_OK;
 | |
| 		}
 | |
| 		else if (cmp < 0)
 | |
| 		{
 | |
| 			x = b;
 | |
| 			y = a;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			x = a;
 | |
| 			y = b;
 | |
| 		}
 | |
| 
 | |
| 		if (!s_pad(c, MP_USED(x)))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		/* Subtract smaller from larger */
 | |
| 		s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
 | |
| 		c->used = x->used;
 | |
| 		CLAMP(c);
 | |
| 
 | |
| 		/* Give result the sign of the larger */
 | |
| 		c->sign = x->sign;
 | |
| 	}
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_add_value(mp_int a, mp_small value, mp_int c)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	return mp_int_add(a, &vtmp, c);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_sub(mp_int a, mp_int b, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && b != NULL && c != NULL);
 | |
| 
 | |
| 	mp_size		ua = MP_USED(a);
 | |
| 	mp_size		ub = MP_USED(b);
 | |
| 	mp_size		max = MAX(ua, ub);
 | |
| 
 | |
| 	if (MP_SIGN(a) != MP_SIGN(b))
 | |
| 	{
 | |
| 		/* Different signs -- add magnitudes and keep sign of a */
 | |
| 		if (!s_pad(c, max))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		mp_digit	carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
 | |
| 		mp_size		uc = max;
 | |
| 
 | |
| 		if (carry)
 | |
| 		{
 | |
| 			if (!s_pad(c, max + 1))
 | |
| 				return MP_MEMORY;
 | |
| 
 | |
| 			c->digits[max] = carry;
 | |
| 			++uc;
 | |
| 		}
 | |
| 
 | |
| 		c->used = uc;
 | |
| 		c->sign = a->sign;
 | |
| 
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		/* Same signs -- subtract magnitudes */
 | |
| 		if (!s_pad(c, max))
 | |
| 			return MP_MEMORY;
 | |
| 		mp_int		x,
 | |
| 					y;
 | |
| 		mp_sign		osign;
 | |
| 
 | |
| 		int			cmp = s_ucmp(a, b);
 | |
| 
 | |
| 		if (cmp >= 0)
 | |
| 		{
 | |
| 			x = a;
 | |
| 			y = b;
 | |
| 			osign = MP_ZPOS;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			x = b;
 | |
| 			y = a;
 | |
| 			osign = MP_NEG;
 | |
| 		}
 | |
| 
 | |
| 		if (MP_SIGN(a) == MP_NEG && cmp != 0)
 | |
| 			osign = 1 - osign;
 | |
| 
 | |
| 		s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
 | |
| 		c->used = x->used;
 | |
| 		CLAMP(c);
 | |
| 
 | |
| 		c->sign = osign;
 | |
| 	}
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_sub_value(mp_int a, mp_small value, mp_int c)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	return mp_int_sub(a, &vtmp, c);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_mul(mp_int a, mp_int b, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && b != NULL && c != NULL);
 | |
| 
 | |
| 	/* If either input is zero, we can shortcut multiplication */
 | |
| 	if (mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0)
 | |
| 	{
 | |
| 		mp_int_zero(c);
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 
 | |
| 	/* Output is positive if inputs have same sign, otherwise negative */
 | |
| 	mp_sign		osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the output is not identical to any of the inputs, we'll write the
 | |
| 	 * results directly; otherwise, allocate a temporary space.
 | |
| 	 */
 | |
| 	mp_size		ua = MP_USED(a);
 | |
| 	mp_size		ub = MP_USED(b);
 | |
| 	mp_size		osize = MAX(ua, ub);
 | |
| 
 | |
| 	osize = 4 * ((osize + 1) / 2);
 | |
| 
 | |
| 	mp_digit   *out;
 | |
| 	mp_size		p = 0;
 | |
| 
 | |
| 	if (c == a || c == b)
 | |
| 	{
 | |
| 		p = MAX(s_round_prec(osize), default_precision);
 | |
| 
 | |
| 		if ((out = s_alloc(p)) == NULL)
 | |
| 			return MP_MEMORY;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (!s_pad(c, osize))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		out = MP_DIGITS(c);
 | |
| 	}
 | |
| 	ZERO(out, osize);
 | |
| 
 | |
| 	if (!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub))
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we allocated a new buffer, get rid of whatever memory c was already
 | |
| 	 * using, and fix up its fields to reflect that.
 | |
| 	 */
 | |
| 	if (out != MP_DIGITS(c))
 | |
| 	{
 | |
| 		if ((void *) MP_DIGITS(c) != (void *) c)
 | |
| 			s_free(MP_DIGITS(c));
 | |
| 		c->digits = out;
 | |
| 		c->alloc = p;
 | |
| 	}
 | |
| 
 | |
| 	c->used = osize;			/* might not be true, but we'll fix it ... */
 | |
| 	CLAMP(c);					/* ... right here */
 | |
| 	c->sign = osign;
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_mul_value(mp_int a, mp_small value, mp_int c)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	return mp_int_mul(a, &vtmp, c);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && c != NULL && p2 >= 0);
 | |
| 
 | |
| 	mp_result	res = mp_int_copy(a, c);
 | |
| 
 | |
| 	if (res != MP_OK)
 | |
| 		return res;
 | |
| 
 | |
| 	if (s_qmul(c, (mp_size) p2))
 | |
| 	{
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		return MP_MEMORY;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_sqr(mp_int a, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && c != NULL);
 | |
| 
 | |
| 	/* Get a temporary buffer big enough to hold the result */
 | |
| 	mp_size		osize = (mp_size) 4 * ((MP_USED(a) + 1) / 2);
 | |
| 	mp_size		p = 0;
 | |
| 	mp_digit   *out;
 | |
| 
 | |
| 	if (a == c)
 | |
| 	{
 | |
| 		p = s_round_prec(osize);
 | |
| 		p = MAX(p, default_precision);
 | |
| 
 | |
| 		if ((out = s_alloc(p)) == NULL)
 | |
| 			return MP_MEMORY;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (!s_pad(c, osize))
 | |
| 			return MP_MEMORY;
 | |
| 
 | |
| 		out = MP_DIGITS(c);
 | |
| 	}
 | |
| 	ZERO(out, osize);
 | |
| 
 | |
| 	s_ksqr(MP_DIGITS(a), out, MP_USED(a));
 | |
| 
 | |
| 	/*
 | |
| 	 * Get rid of whatever memory c was already using, and fix up its fields
 | |
| 	 * to reflect the new digit array it's using
 | |
| 	 */
 | |
| 	if (out != MP_DIGITS(c))
 | |
| 	{
 | |
| 		if ((void *) MP_DIGITS(c) != (void *) c)
 | |
| 			s_free(MP_DIGITS(c));
 | |
| 		c->digits = out;
 | |
| 		c->alloc = p;
 | |
| 	}
 | |
| 
 | |
| 	c->used = osize;			/* might not be true, but we'll fix it ... */
 | |
| 	CLAMP(c);					/* ... right here */
 | |
| 	c->sign = MP_ZPOS;
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
 | |
| {
 | |
| 	assert(a != NULL && b != NULL && q != r);
 | |
| 
 | |
| 	int			cmp;
 | |
| 	mp_result	res = MP_OK;
 | |
| 	mp_int		qout,
 | |
| 				rout;
 | |
| 	mp_sign		sa = MP_SIGN(a);
 | |
| 	mp_sign		sb = MP_SIGN(b);
 | |
| 
 | |
| 	if (CMPZ(b) == 0)
 | |
| 	{
 | |
| 		return MP_UNDEF;
 | |
| 	}
 | |
| 	else if ((cmp = s_ucmp(a, b)) < 0)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * If |a| < |b|, no division is required: q = 0, r = a
 | |
| 		 */
 | |
| 		if (r && (res = mp_int_copy(a, r)) != MP_OK)
 | |
| 			return res;
 | |
| 
 | |
| 		if (q)
 | |
| 			mp_int_zero(q);
 | |
| 
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 	else if (cmp == 0)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * If |a| = |b|, no division is required: q = 1 or -1, r = 0
 | |
| 		 */
 | |
| 		if (r)
 | |
| 			mp_int_zero(r);
 | |
| 
 | |
| 		if (q)
 | |
| 		{
 | |
| 			mp_int_zero(q);
 | |
| 			q->digits[0] = 1;
 | |
| 
 | |
| 			if (sa != sb)
 | |
| 				q->sign = MP_NEG;
 | |
| 		}
 | |
| 
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When |a| > |b|, real division is required.  We need someplace to store
 | |
| 	 * quotient and remainder, but q and r are allowed to be NULL or to
 | |
| 	 * overlap with the inputs.
 | |
| 	 */
 | |
| 	DECLARE_TEMP(2);
 | |
| 	int			lg;
 | |
| 
 | |
| 	if ((lg = s_isp2(b)) < 0)
 | |
| 	{
 | |
| 		if (q && b != q)
 | |
| 		{
 | |
| 			REQUIRE(mp_int_copy(a, q));
 | |
| 			qout = q;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			REQUIRE(mp_int_copy(a, TEMP(0)));
 | |
| 			qout = TEMP(0);
 | |
| 		}
 | |
| 
 | |
| 		if (r && a != r)
 | |
| 		{
 | |
| 			REQUIRE(mp_int_copy(b, r));
 | |
| 			rout = r;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			REQUIRE(mp_int_copy(b, TEMP(1)));
 | |
| 			rout = TEMP(1);
 | |
| 		}
 | |
| 
 | |
| 		REQUIRE(s_udiv_knuth(qout, rout));
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (q)
 | |
| 			REQUIRE(mp_int_copy(a, q));
 | |
| 		if (r)
 | |
| 			REQUIRE(mp_int_copy(a, r));
 | |
| 
 | |
| 		if (q)
 | |
| 			s_qdiv(q, (mp_size) lg);
 | |
| 		qout = q;
 | |
| 		if (r)
 | |
| 			s_qmod(r, (mp_size) lg);
 | |
| 		rout = r;
 | |
| 	}
 | |
| 
 | |
| 	/* Recompute signs for output */
 | |
| 	if (rout)
 | |
| 	{
 | |
| 		rout->sign = sa;
 | |
| 		if (CMPZ(rout) == 0)
 | |
| 			rout->sign = MP_ZPOS;
 | |
| 	}
 | |
| 	if (qout)
 | |
| 	{
 | |
| 		qout->sign = (sa == sb) ? MP_ZPOS : MP_NEG;
 | |
| 		if (CMPZ(qout) == 0)
 | |
| 			qout->sign = MP_ZPOS;
 | |
| 	}
 | |
| 
 | |
| 	if (q)
 | |
| 		REQUIRE(mp_int_copy(qout, q));
 | |
| 	if (r)
 | |
| 		REQUIRE(mp_int_copy(rout, r));
 | |
| 	CLEANUP_TEMP();
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_mod(mp_int a, mp_int m, mp_int c)
 | |
| {
 | |
| 	DECLARE_TEMP(1);
 | |
| 	mp_int		out = (m == c) ? TEMP(0) : c;
 | |
| 
 | |
| 	REQUIRE(mp_int_div(a, m, NULL, out));
 | |
| 	if (CMPZ(out) < 0)
 | |
| 	{
 | |
| 		REQUIRE(mp_int_add(out, m, c));
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		REQUIRE(mp_int_copy(out, c));
 | |
| 	}
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	DECLARE_TEMP(1);
 | |
| 	REQUIRE(mp_int_div(a, &vtmp, q, TEMP(0)));
 | |
| 
 | |
| 	if (r)
 | |
| 		(void) mp_int_to_int(TEMP(0), r);	/* can't fail */
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r)
 | |
| {
 | |
| 	assert(a != NULL && p2 >= 0 && q != r);
 | |
| 
 | |
| 	mp_result	res = MP_OK;
 | |
| 
 | |
| 	if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
 | |
| 	{
 | |
| 		s_qdiv(q, (mp_size) p2);
 | |
| 	}
 | |
| 
 | |
| 	if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
 | |
| 	{
 | |
| 		s_qmod(r, (mp_size) p2);
 | |
| 	}
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_expt(mp_int a, mp_small b, mp_int c)
 | |
| {
 | |
| 	assert(c != NULL);
 | |
| 	if (b < 0)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	DECLARE_TEMP(1);
 | |
| 	REQUIRE(mp_int_copy(a, TEMP(0)));
 | |
| 
 | |
| 	(void) mp_int_set_value(c, 1);
 | |
| 	unsigned int v = labs(b);
 | |
| 
 | |
| 	while (v != 0)
 | |
| 	{
 | |
| 		if (v & 1)
 | |
| 		{
 | |
| 			REQUIRE(mp_int_mul(c, TEMP(0), c));
 | |
| 		}
 | |
| 
 | |
| 		v >>= 1;
 | |
| 		if (v == 0)
 | |
| 			break;
 | |
| 
 | |
| 		REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
 | |
| 	}
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_expt_value(mp_small a, mp_small b, mp_int c)
 | |
| {
 | |
| 	assert(c != NULL);
 | |
| 	if (b < 0)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	DECLARE_TEMP(1);
 | |
| 	REQUIRE(mp_int_set_value(TEMP(0), a));
 | |
| 
 | |
| 	(void) mp_int_set_value(c, 1);
 | |
| 	unsigned int v = labs(b);
 | |
| 
 | |
| 	while (v != 0)
 | |
| 	{
 | |
| 		if (v & 1)
 | |
| 		{
 | |
| 			REQUIRE(mp_int_mul(c, TEMP(0), c));
 | |
| 		}
 | |
| 
 | |
| 		v >>= 1;
 | |
| 		if (v == 0)
 | |
| 			break;
 | |
| 
 | |
| 		REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
 | |
| 	}
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_expt_full(mp_int a, mp_int b, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && b != NULL && c != NULL);
 | |
| 	if (MP_SIGN(b) == MP_NEG)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	DECLARE_TEMP(1);
 | |
| 	REQUIRE(mp_int_copy(a, TEMP(0)));
 | |
| 
 | |
| 	(void) mp_int_set_value(c, 1);
 | |
| 	for (unsigned ix = 0; ix < MP_USED(b); ++ix)
 | |
| 	{
 | |
| 		mp_digit	d = b->digits[ix];
 | |
| 
 | |
| 		for (unsigned jx = 0; jx < MP_DIGIT_BIT; ++jx)
 | |
| 		{
 | |
| 			if (d & 1)
 | |
| 			{
 | |
| 				REQUIRE(mp_int_mul(c, TEMP(0), c));
 | |
| 			}
 | |
| 
 | |
| 			d >>= 1;
 | |
| 			if (d == 0 && ix + 1 == MP_USED(b))
 | |
| 				break;
 | |
| 			REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| int
 | |
| mp_int_compare(mp_int a, mp_int b)
 | |
| {
 | |
| 	assert(a != NULL && b != NULL);
 | |
| 
 | |
| 	mp_sign		sa = MP_SIGN(a);
 | |
| 
 | |
| 	if (sa == MP_SIGN(b))
 | |
| 	{
 | |
| 		int			cmp = s_ucmp(a, b);
 | |
| 
 | |
| 		/*
 | |
| 		 * If they're both zero or positive, the normal comparison applies; if
 | |
| 		 * both negative, the sense is reversed.
 | |
| 		 */
 | |
| 		if (sa == MP_ZPOS)
 | |
| 		{
 | |
| 			return cmp;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			return -cmp;
 | |
| 		}
 | |
| 	}
 | |
| 	else if (sa == MP_ZPOS)
 | |
| 	{
 | |
| 		return 1;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| mp_int_compare_unsigned(mp_int a, mp_int b)
 | |
| {
 | |
| 	assert(a != NULL && b != NULL);
 | |
| 
 | |
| 	return s_ucmp(a, b);
 | |
| }
 | |
| 
 | |
| int
 | |
| mp_int_compare_zero(mp_int z)
 | |
| {
 | |
| 	assert(z != NULL);
 | |
| 
 | |
| 	if (MP_USED(z) == 1 && z->digits[0] == 0)
 | |
| 	{
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else if (MP_SIGN(z) == MP_ZPOS)
 | |
| 	{
 | |
| 		return 1;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| mp_int_compare_value(mp_int z, mp_small value)
 | |
| {
 | |
| 	assert(z != NULL);
 | |
| 
 | |
| 	mp_sign		vsign = (value < 0) ? MP_NEG : MP_ZPOS;
 | |
| 
 | |
| 	if (vsign == MP_SIGN(z))
 | |
| 	{
 | |
| 		int			cmp = s_vcmp(z, value);
 | |
| 
 | |
| 		return (vsign == MP_ZPOS) ? cmp : -cmp;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		return (value < 0) ? 1 : -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| mp_int_compare_uvalue(mp_int z, mp_usmall uv)
 | |
| {
 | |
| 	assert(z != NULL);
 | |
| 
 | |
| 	if (MP_SIGN(z) == MP_NEG)
 | |
| 	{
 | |
| 		return -1;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		return s_uvcmp(z, uv);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && b != NULL && c != NULL && m != NULL);
 | |
| 
 | |
| 	/* Zero moduli and negative exponents are not considered. */
 | |
| 	if (CMPZ(m) == 0)
 | |
| 		return MP_UNDEF;
 | |
| 	if (CMPZ(b) < 0)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	mp_size		um = MP_USED(m);
 | |
| 
 | |
| 	DECLARE_TEMP(3);
 | |
| 	REQUIRE(GROW(TEMP(0), 2 * um));
 | |
| 	REQUIRE(GROW(TEMP(1), 2 * um));
 | |
| 
 | |
| 	mp_int		s;
 | |
| 
 | |
| 	if (c == b || c == m)
 | |
| 	{
 | |
| 		REQUIRE(GROW(TEMP(2), 2 * um));
 | |
| 		s = TEMP(2);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		s = c;
 | |
| 	}
 | |
| 
 | |
| 	REQUIRE(mp_int_mod(a, m, TEMP(0)));
 | |
| 	REQUIRE(s_brmu(TEMP(1), m));
 | |
| 	REQUIRE(s_embar(TEMP(0), b, m, TEMP(1), s));
 | |
| 	REQUIRE(mp_int_copy(s, c));
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	return mp_int_exptmod(a, &vtmp, m, c);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
 | |
| 
 | |
| 	s_fake(&vtmp, value, vbuf);
 | |
| 
 | |
| 	return mp_int_exptmod(&vtmp, b, m, c);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu,
 | |
| 					 mp_int c)
 | |
| {
 | |
| 	assert(a && b && m && c);
 | |
| 
 | |
| 	/* Zero moduli and negative exponents are not considered. */
 | |
| 	if (CMPZ(m) == 0)
 | |
| 		return MP_UNDEF;
 | |
| 	if (CMPZ(b) < 0)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	DECLARE_TEMP(2);
 | |
| 	mp_size		um = MP_USED(m);
 | |
| 
 | |
| 	REQUIRE(GROW(TEMP(0), 2 * um));
 | |
| 
 | |
| 	mp_int		s;
 | |
| 
 | |
| 	if (c == b || c == m)
 | |
| 	{
 | |
| 		REQUIRE(GROW(TEMP(1), 2 * um));
 | |
| 		s = TEMP(1);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		s = c;
 | |
| 	}
 | |
| 
 | |
| 	REQUIRE(mp_int_mod(a, m, TEMP(0)));
 | |
| 	REQUIRE(s_embar(TEMP(0), b, m, mu, s));
 | |
| 	REQUIRE(mp_int_copy(s, c));
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_redux_const(mp_int m, mp_int c)
 | |
| {
 | |
| 	assert(m != NULL && c != NULL && m != c);
 | |
| 
 | |
| 	return s_brmu(c, m);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_invmod(mp_int a, mp_int m, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && m != NULL && c != NULL);
 | |
| 
 | |
| 	if (CMPZ(a) == 0 || CMPZ(m) <= 0)
 | |
| 		return MP_RANGE;
 | |
| 
 | |
| 	DECLARE_TEMP(2);
 | |
| 
 | |
| 	REQUIRE(mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL));
 | |
| 
 | |
| 	if (mp_int_compare_value(TEMP(0), 1) != 0)
 | |
| 	{
 | |
| 		REQUIRE(MP_UNDEF);
 | |
| 	}
 | |
| 
 | |
| 	/* It is first necessary to constrain the value to the proper range */
 | |
| 	REQUIRE(mp_int_mod(TEMP(1), m, TEMP(1)));
 | |
| 
 | |
| 	/*
 | |
| 	 * Now, if 'a' was originally negative, the value we have is actually the
 | |
| 	 * magnitude of the negative representative; to get the positive value we
 | |
| 	 * have to subtract from the modulus.  Otherwise, the value is okay as it
 | |
| 	 * stands.
 | |
| 	 */
 | |
| 	if (MP_SIGN(a) == MP_NEG)
 | |
| 	{
 | |
| 		REQUIRE(mp_int_sub(m, TEMP(1), c));
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		REQUIRE(mp_int_copy(TEMP(1), c));
 | |
| 	}
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* Binary GCD algorithm due to Josef Stein, 1961 */
 | |
| mp_result
 | |
| mp_int_gcd(mp_int a, mp_int b, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && b != NULL && c != NULL);
 | |
| 
 | |
| 	int			ca = CMPZ(a);
 | |
| 	int			cb = CMPZ(b);
 | |
| 
 | |
| 	if (ca == 0 && cb == 0)
 | |
| 	{
 | |
| 		return MP_UNDEF;
 | |
| 	}
 | |
| 	else if (ca == 0)
 | |
| 	{
 | |
| 		return mp_int_abs(b, c);
 | |
| 	}
 | |
| 	else if (cb == 0)
 | |
| 	{
 | |
| 		return mp_int_abs(a, c);
 | |
| 	}
 | |
| 
 | |
| 	DECLARE_TEMP(3);
 | |
| 	REQUIRE(mp_int_copy(a, TEMP(0)));
 | |
| 	REQUIRE(mp_int_copy(b, TEMP(1)));
 | |
| 
 | |
| 	TEMP(0)->sign = MP_ZPOS;
 | |
| 	TEMP(1)->sign = MP_ZPOS;
 | |
| 
 | |
| 	int			k = 0;
 | |
| 
 | |
| 	{							/* Divide out common factors of 2 from u and v */
 | |
| 		int			div2_u = s_dp2k(TEMP(0));
 | |
| 		int			div2_v = s_dp2k(TEMP(1));
 | |
| 
 | |
| 		k = MIN(div2_u, div2_v);
 | |
| 		s_qdiv(TEMP(0), (mp_size) k);
 | |
| 		s_qdiv(TEMP(1), (mp_size) k);
 | |
| 	}
 | |
| 
 | |
| 	if (mp_int_is_odd(TEMP(0)))
 | |
| 	{
 | |
| 		REQUIRE(mp_int_neg(TEMP(1), TEMP(2)));
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		REQUIRE(mp_int_copy(TEMP(0), TEMP(2)));
 | |
| 	}
 | |
| 
 | |
| 	for (;;)
 | |
| 	{
 | |
| 		s_qdiv(TEMP(2), s_dp2k(TEMP(2)));
 | |
| 
 | |
| 		if (CMPZ(TEMP(2)) > 0)
 | |
| 		{
 | |
| 			REQUIRE(mp_int_copy(TEMP(2), TEMP(0)));
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			REQUIRE(mp_int_neg(TEMP(2), TEMP(1)));
 | |
| 		}
 | |
| 
 | |
| 		REQUIRE(mp_int_sub(TEMP(0), TEMP(1), TEMP(2)));
 | |
| 
 | |
| 		if (CMPZ(TEMP(2)) == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	REQUIRE(mp_int_abs(TEMP(0), c));
 | |
| 	if (!s_qmul(c, (mp_size) k))
 | |
| 		REQUIRE(MP_MEMORY);
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* This is the binary GCD algorithm again, but this time we keep track of the
 | |
|    elementary matrix operations as we go, so we can get values x and y
 | |
|    satisfying c = ax + by.
 | |
|  */
 | |
| mp_result
 | |
| mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y)
 | |
| {
 | |
| 	assert(a != NULL && b != NULL && c != NULL && (x != NULL || y != NULL));
 | |
| 
 | |
| 	mp_result	res = MP_OK;
 | |
| 	int			ca = CMPZ(a);
 | |
| 	int			cb = CMPZ(b);
 | |
| 
 | |
| 	if (ca == 0 && cb == 0)
 | |
| 	{
 | |
| 		return MP_UNDEF;
 | |
| 	}
 | |
| 	else if (ca == 0)
 | |
| 	{
 | |
| 		if ((res = mp_int_abs(b, c)) != MP_OK)
 | |
| 			return res;
 | |
| 		mp_int_zero(x);
 | |
| 		(void) mp_int_set_value(y, 1);
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 	else if (cb == 0)
 | |
| 	{
 | |
| 		if ((res = mp_int_abs(a, c)) != MP_OK)
 | |
| 			return res;
 | |
| 		(void) mp_int_set_value(x, 1);
 | |
| 		mp_int_zero(y);
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize temporaries: A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7
 | |
| 	 */
 | |
| 	DECLARE_TEMP(8);
 | |
| 	REQUIRE(mp_int_set_value(TEMP(0), 1));
 | |
| 	REQUIRE(mp_int_set_value(TEMP(3), 1));
 | |
| 	REQUIRE(mp_int_copy(a, TEMP(4)));
 | |
| 	REQUIRE(mp_int_copy(b, TEMP(5)));
 | |
| 
 | |
| 	/* We will work with absolute values here */
 | |
| 	TEMP(4)->sign = MP_ZPOS;
 | |
| 	TEMP(5)->sign = MP_ZPOS;
 | |
| 
 | |
| 	int			k = 0;
 | |
| 
 | |
| 	{							/* Divide out common factors of 2 from u and v */
 | |
| 		int			div2_u = s_dp2k(TEMP(4)),
 | |
| 					div2_v = s_dp2k(TEMP(5));
 | |
| 
 | |
| 		k = MIN(div2_u, div2_v);
 | |
| 		s_qdiv(TEMP(4), k);
 | |
| 		s_qdiv(TEMP(5), k);
 | |
| 	}
 | |
| 
 | |
| 	REQUIRE(mp_int_copy(TEMP(4), TEMP(6)));
 | |
| 	REQUIRE(mp_int_copy(TEMP(5), TEMP(7)));
 | |
| 
 | |
| 	for (;;)
 | |
| 	{
 | |
| 		while (mp_int_is_even(TEMP(4)))
 | |
| 		{
 | |
| 			s_qdiv(TEMP(4), 1);
 | |
| 
 | |
| 			if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1)))
 | |
| 			{
 | |
| 				REQUIRE(mp_int_add(TEMP(0), TEMP(7), TEMP(0)));
 | |
| 				REQUIRE(mp_int_sub(TEMP(1), TEMP(6), TEMP(1)));
 | |
| 			}
 | |
| 
 | |
| 			s_qdiv(TEMP(0), 1);
 | |
| 			s_qdiv(TEMP(1), 1);
 | |
| 		}
 | |
| 
 | |
| 		while (mp_int_is_even(TEMP(5)))
 | |
| 		{
 | |
| 			s_qdiv(TEMP(5), 1);
 | |
| 
 | |
| 			if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3)))
 | |
| 			{
 | |
| 				REQUIRE(mp_int_add(TEMP(2), TEMP(7), TEMP(2)));
 | |
| 				REQUIRE(mp_int_sub(TEMP(3), TEMP(6), TEMP(3)));
 | |
| 			}
 | |
| 
 | |
| 			s_qdiv(TEMP(2), 1);
 | |
| 			s_qdiv(TEMP(3), 1);
 | |
| 		}
 | |
| 
 | |
| 		if (mp_int_compare(TEMP(4), TEMP(5)) >= 0)
 | |
| 		{
 | |
| 			REQUIRE(mp_int_sub(TEMP(4), TEMP(5), TEMP(4)));
 | |
| 			REQUIRE(mp_int_sub(TEMP(0), TEMP(2), TEMP(0)));
 | |
| 			REQUIRE(mp_int_sub(TEMP(1), TEMP(3), TEMP(1)));
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			REQUIRE(mp_int_sub(TEMP(5), TEMP(4), TEMP(5)));
 | |
| 			REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2)));
 | |
| 			REQUIRE(mp_int_sub(TEMP(3), TEMP(1), TEMP(3)));
 | |
| 		}
 | |
| 
 | |
| 		if (CMPZ(TEMP(4)) == 0)
 | |
| 		{
 | |
| 			if (x)
 | |
| 				REQUIRE(mp_int_copy(TEMP(2), x));
 | |
| 			if (y)
 | |
| 				REQUIRE(mp_int_copy(TEMP(3), y));
 | |
| 			if (c)
 | |
| 			{
 | |
| 				if (!s_qmul(TEMP(5), k))
 | |
| 				{
 | |
| 					REQUIRE(MP_MEMORY);
 | |
| 				}
 | |
| 				REQUIRE(mp_int_copy(TEMP(5), c));
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_lcm(mp_int a, mp_int b, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && b != NULL && c != NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since a * b = gcd(a, b) * lcm(a, b), we can compute lcm(a, b) = (a /
 | |
| 	 * gcd(a, b)) * b.
 | |
| 	 *
 | |
| 	 * This formulation insures everything works even if the input variables
 | |
| 	 * share space.
 | |
| 	 */
 | |
| 	DECLARE_TEMP(1);
 | |
| 	REQUIRE(mp_int_gcd(a, b, TEMP(0)));
 | |
| 	REQUIRE(mp_int_div(a, TEMP(0), TEMP(0), NULL));
 | |
| 	REQUIRE(mp_int_mul(TEMP(0), b, TEMP(0)));
 | |
| 	REQUIRE(mp_int_copy(TEMP(0), c));
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| bool
 | |
| mp_int_divisible_value(mp_int a, mp_small v)
 | |
| {
 | |
| 	mp_small	rem = 0;
 | |
| 
 | |
| 	if (mp_int_div_value(a, v, NULL, &rem) != MP_OK)
 | |
| 	{
 | |
| 		return false;
 | |
| 	}
 | |
| 	return rem == 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| mp_int_is_pow2(mp_int z)
 | |
| {
 | |
| 	assert(z != NULL);
 | |
| 
 | |
| 	return s_isp2(z);
 | |
| }
 | |
| 
 | |
| /* Implementation of Newton's root finding method, based loosely on a patch
 | |
|    contributed by Hal Finkel <half@halssoftware.com>
 | |
|    modified by M. J. Fromberger.
 | |
|  */
 | |
| mp_result
 | |
| mp_int_root(mp_int a, mp_small b, mp_int c)
 | |
| {
 | |
| 	assert(a != NULL && c != NULL && b > 0);
 | |
| 
 | |
| 	if (b == 1)
 | |
| 	{
 | |
| 		return mp_int_copy(a, c);
 | |
| 	}
 | |
| 	bool		flips = false;
 | |
| 
 | |
| 	if (MP_SIGN(a) == MP_NEG)
 | |
| 	{
 | |
| 		if (b % 2 == 0)
 | |
| 		{
 | |
| 			return MP_UNDEF;	/* root does not exist for negative a with
 | |
| 								 * even b */
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			flips = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	DECLARE_TEMP(5);
 | |
| 	REQUIRE(mp_int_copy(a, TEMP(0)));
 | |
| 	REQUIRE(mp_int_copy(a, TEMP(1)));
 | |
| 	TEMP(0)->sign = MP_ZPOS;
 | |
| 	TEMP(1)->sign = MP_ZPOS;
 | |
| 
 | |
| 	for (;;)
 | |
| 	{
 | |
| 		REQUIRE(mp_int_expt(TEMP(1), b, TEMP(2)));
 | |
| 
 | |
| 		if (mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2)));
 | |
| 		REQUIRE(mp_int_expt(TEMP(1), b - 1, TEMP(3)));
 | |
| 		REQUIRE(mp_int_mul_value(TEMP(3), b, TEMP(3)));
 | |
| 		REQUIRE(mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL));
 | |
| 		REQUIRE(mp_int_sub(TEMP(1), TEMP(4), TEMP(4)));
 | |
| 
 | |
| 		if (mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0)
 | |
| 		{
 | |
| 			REQUIRE(mp_int_sub_value(TEMP(4), 1, TEMP(4)));
 | |
| 		}
 | |
| 		REQUIRE(mp_int_copy(TEMP(4), TEMP(1)));
 | |
| 	}
 | |
| 
 | |
| 	REQUIRE(mp_int_copy(TEMP(1), c));
 | |
| 
 | |
| 	/* If the original value of a was negative, flip the output sign. */
 | |
| 	if (flips)
 | |
| 		(void) mp_int_neg(c, c);	/* cannot fail */
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_to_int(mp_int z, mp_small *out)
 | |
| {
 | |
| 	assert(z != NULL);
 | |
| 
 | |
| 	/* Make sure the value is representable as a small integer */
 | |
| 	mp_sign		sz = MP_SIGN(z);
 | |
| 
 | |
| 	if ((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) ||
 | |
| 		mp_int_compare_value(z, MP_SMALL_MIN) < 0)
 | |
| 	{
 | |
| 		return MP_RANGE;
 | |
| 	}
 | |
| 
 | |
| 	mp_usmall	uz = MP_USED(z);
 | |
| 	mp_digit   *dz = MP_DIGITS(z) + uz - 1;
 | |
| 	mp_small	uv = 0;
 | |
| 
 | |
| 	while (uz > 0)
 | |
| 	{
 | |
| 		uv <<= MP_DIGIT_BIT / 2;
 | |
| 		uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
 | |
| 		--uz;
 | |
| 	}
 | |
| 
 | |
| 	if (out)
 | |
| 		*out = (mp_small) ((sz == MP_NEG) ? -uv : uv);
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_to_uint(mp_int z, mp_usmall *out)
 | |
| {
 | |
| 	assert(z != NULL);
 | |
| 
 | |
| 	/* Make sure the value is representable as an unsigned small integer */
 | |
| 	mp_size		sz = MP_SIGN(z);
 | |
| 
 | |
| 	if (sz == MP_NEG || mp_int_compare_uvalue(z, MP_USMALL_MAX) > 0)
 | |
| 	{
 | |
| 		return MP_RANGE;
 | |
| 	}
 | |
| 
 | |
| 	mp_size		uz = MP_USED(z);
 | |
| 	mp_digit   *dz = MP_DIGITS(z) + uz - 1;
 | |
| 	mp_usmall	uv = 0;
 | |
| 
 | |
| 	while (uz > 0)
 | |
| 	{
 | |
| 		uv <<= MP_DIGIT_BIT / 2;
 | |
| 		uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
 | |
| 		--uz;
 | |
| 	}
 | |
| 
 | |
| 	if (out)
 | |
| 		*out = uv;
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_to_string(mp_int z, mp_size radix, char *str, int limit)
 | |
| {
 | |
| 	assert(z != NULL && str != NULL && limit >= 2);
 | |
| 	assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
 | |
| 
 | |
| 	int			cmp = 0;
 | |
| 
 | |
| 	if (CMPZ(z) == 0)
 | |
| 	{
 | |
| 		*str++ = s_val2ch(0, 1);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		mp_result	res;
 | |
| 		mpz_t		tmp;
 | |
| 		char	   *h,
 | |
| 				   *t;
 | |
| 
 | |
| 		if ((res = mp_int_init_copy(&tmp, z)) != MP_OK)
 | |
| 			return res;
 | |
| 
 | |
| 		if (MP_SIGN(z) == MP_NEG)
 | |
| 		{
 | |
| 			*str++ = '-';
 | |
| 			--limit;
 | |
| 		}
 | |
| 		h = str;
 | |
| 
 | |
| 		/* Generate digits in reverse order until finished or limit reached */
 | |
| 		for ( /* */ ; limit > 0; --limit)
 | |
| 		{
 | |
| 			mp_digit	d;
 | |
| 
 | |
| 			if ((cmp = CMPZ(&tmp)) == 0)
 | |
| 				break;
 | |
| 
 | |
| 			d = s_ddiv(&tmp, (mp_digit) radix);
 | |
| 			*str++ = s_val2ch(d, 1);
 | |
| 		}
 | |
| 		t = str - 1;
 | |
| 
 | |
| 		/* Put digits back in correct output order */
 | |
| 		while (h < t)
 | |
| 		{
 | |
| 			char		tc = *h;
 | |
| 
 | |
| 			*h++ = *t;
 | |
| 			*t-- = tc;
 | |
| 		}
 | |
| 
 | |
| 		mp_int_clear(&tmp);
 | |
| 	}
 | |
| 
 | |
| 	*str = '\0';
 | |
| 	if (cmp == 0)
 | |
| 	{
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		return MP_TRUNC;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_string_len(mp_int z, mp_size radix)
 | |
| {
 | |
| 	assert(z != NULL);
 | |
| 	assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
 | |
| 
 | |
| 	int			len = s_outlen(z, radix) + 1;	/* for terminator */
 | |
| 
 | |
| 	/* Allow for sign marker on negatives */
 | |
| 	if (MP_SIGN(z) == MP_NEG)
 | |
| 		len += 1;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /* Read zero-terminated string into z */
 | |
| mp_result
 | |
| mp_int_read_string(mp_int z, mp_size radix, const char *str)
 | |
| {
 | |
| 	return mp_int_read_cstring(z, radix, str, NULL);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
 | |
| 					char **end)
 | |
| {
 | |
| 	assert(z != NULL && str != NULL);
 | |
| 	assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
 | |
| 
 | |
| 	/* Skip leading whitespace */
 | |
| 	while (isspace((unsigned char) *str))
 | |
| 		++str;
 | |
| 
 | |
| 	/* Handle leading sign tag (+/-, positive default) */
 | |
| 	switch (*str)
 | |
| 	{
 | |
| 		case '-':
 | |
| 			z->sign = MP_NEG;
 | |
| 			++str;
 | |
| 			break;
 | |
| 		case '+':
 | |
| 			++str;				/* fallthrough */
 | |
| 		default:
 | |
| 			z->sign = MP_ZPOS;
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Skip leading zeroes */
 | |
| 	int			ch;
 | |
| 
 | |
| 	while ((ch = s_ch2val(*str, radix)) == 0)
 | |
| 		++str;
 | |
| 
 | |
| 	/* Make sure there is enough space for the value */
 | |
| 	if (!s_pad(z, s_inlen(strlen(str), radix)))
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	z->used = 1;
 | |
| 	z->digits[0] = 0;
 | |
| 
 | |
| 	while (*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0))
 | |
| 	{
 | |
| 		s_dmul(z, (mp_digit) radix);
 | |
| 		s_dadd(z, (mp_digit) ch);
 | |
| 		++str;
 | |
| 	}
 | |
| 
 | |
| 	CLAMP(z);
 | |
| 
 | |
| 	/* Override sign for zero, even if negative specified. */
 | |
| 	if (CMPZ(z) == 0)
 | |
| 		z->sign = MP_ZPOS;
 | |
| 
 | |
| 	if (end != NULL)
 | |
| 		*end = unconstify(char *, str);
 | |
| 
 | |
| 	/*
 | |
| 	 * Return a truncation error if the string has unprocessed characters
 | |
| 	 * remaining, so the caller can tell if the whole string was done
 | |
| 	 */
 | |
| 	if (*str != '\0')
 | |
| 	{
 | |
| 		return MP_TRUNC;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_count_bits(mp_int z)
 | |
| {
 | |
| 	assert(z != NULL);
 | |
| 
 | |
| 	mp_size		uz = MP_USED(z);
 | |
| 
 | |
| 	if (uz == 1 && z->digits[0] == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	--uz;
 | |
| 	mp_size		nbits = uz * MP_DIGIT_BIT;
 | |
| 	mp_digit	d = z->digits[uz];
 | |
| 
 | |
| 	while (d != 0)
 | |
| 	{
 | |
| 		d >>= 1;
 | |
| 		++nbits;
 | |
| 	}
 | |
| 
 | |
| 	return nbits;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
 | |
| {
 | |
| 	static const int PAD_FOR_2C = 1;
 | |
| 
 | |
| 	assert(z != NULL && buf != NULL);
 | |
| 
 | |
| 	int			limpos = limit;
 | |
| 	mp_result	res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
 | |
| 
 | |
| 	if (MP_SIGN(z) == MP_NEG)
 | |
| 		s_2comp(buf, limpos);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_read_binary(mp_int z, unsigned char *buf, int len)
 | |
| {
 | |
| 	assert(z != NULL && buf != NULL && len > 0);
 | |
| 
 | |
| 	/* Figure out how many digits are needed to represent this value */
 | |
| 	mp_size		need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
 | |
| 
 | |
| 	if (!s_pad(z, need))
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	mp_int_zero(z);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the high-order bit is set, take the 2's complement before reading
 | |
| 	 * the value (it will be restored afterward)
 | |
| 	 */
 | |
| 	if (buf[0] >> (CHAR_BIT - 1))
 | |
| 	{
 | |
| 		z->sign = MP_NEG;
 | |
| 		s_2comp(buf, len);
 | |
| 	}
 | |
| 
 | |
| 	mp_digit   *dz = MP_DIGITS(z);
 | |
| 	unsigned char *tmp = buf;
 | |
| 
 | |
| 	for (int i = len; i > 0; --i, ++tmp)
 | |
| 	{
 | |
| 		s_qmul(z, (mp_size) CHAR_BIT);
 | |
| 		*dz |= *tmp;
 | |
| 	}
 | |
| 
 | |
| 	/* Restore 2's complement if we took it before */
 | |
| 	if (MP_SIGN(z) == MP_NEG)
 | |
| 		s_2comp(buf, len);
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_binary_len(mp_int z)
 | |
| {
 | |
| 	mp_result	res = mp_int_count_bits(z);
 | |
| 
 | |
| 	if (res <= 0)
 | |
| 		return res;
 | |
| 
 | |
| 	int			bytes = mp_int_unsigned_len(z);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the highest-order bit falls exactly on a byte boundary, we need to
 | |
| 	 * pad with an extra byte so that the sign will be read correctly when
 | |
| 	 * reading it back in.
 | |
| 	 */
 | |
| 	if (bytes * CHAR_BIT == res)
 | |
| 		++bytes;
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit)
 | |
| {
 | |
| 	static const int NO_PADDING = 0;
 | |
| 
 | |
| 	assert(z != NULL && buf != NULL);
 | |
| 
 | |
| 	return s_tobin(z, buf, &limit, NO_PADDING);
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_read_unsigned(mp_int z, unsigned char *buf, int len)
 | |
| {
 | |
| 	assert(z != NULL && buf != NULL && len > 0);
 | |
| 
 | |
| 	/* Figure out how many digits are needed to represent this value */
 | |
| 	mp_size		need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
 | |
| 
 | |
| 	if (!s_pad(z, need))
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	mp_int_zero(z);
 | |
| 
 | |
| 	unsigned char *tmp = buf;
 | |
| 
 | |
| 	for (int i = len; i > 0; --i, ++tmp)
 | |
| 	{
 | |
| 		(void) s_qmul(z, CHAR_BIT);
 | |
| 		*MP_DIGITS(z) |= *tmp;
 | |
| 	}
 | |
| 
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| mp_result
 | |
| mp_int_unsigned_len(mp_int z)
 | |
| {
 | |
| 	mp_result	res = mp_int_count_bits(z);
 | |
| 
 | |
| 	if (res <= 0)
 | |
| 		return res;
 | |
| 
 | |
| 	int			bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| const char *
 | |
| mp_error_string(mp_result res)
 | |
| {
 | |
| 	if (res > 0)
 | |
| 		return s_unknown_err;
 | |
| 
 | |
| 	res = -res;
 | |
| 	int			ix;
 | |
| 
 | |
| 	for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
 | |
| 		;
 | |
| 
 | |
| 	if (s_error_msg[ix] != NULL)
 | |
| 	{
 | |
| 		return s_error_msg[ix];
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		return s_unknown_err;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* Private functions for internal use.  These make assumptions.           */
 | |
| 
 | |
| #if IMATH_DEBUG
 | |
| static const mp_digit fill = (mp_digit) 0xdeadbeefabad1dea;
 | |
| #endif
 | |
| 
 | |
| static mp_digit *
 | |
| s_alloc(mp_size num)
 | |
| {
 | |
| 	mp_digit   *out = palloc(num * sizeof(mp_digit));
 | |
| 
 | |
| 	assert(out != NULL);
 | |
| 
 | |
| #if IMATH_DEBUG
 | |
| 	for (mp_size ix = 0; ix < num; ++ix)
 | |
| 		out[ix] = fill;
 | |
| #endif
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| static mp_digit *
 | |
| s_realloc(mp_digit *old, mp_size osize, mp_size nsize)
 | |
| {
 | |
| #if IMATH_DEBUG
 | |
| 	mp_digit   *new = s_alloc(nsize);
 | |
| 
 | |
| 	assert(new != NULL);
 | |
| 
 | |
| 	for (mp_size ix = 0; ix < nsize; ++ix)
 | |
| 		new[ix] = fill;
 | |
| 	memcpy(new, old, osize * sizeof(mp_digit));
 | |
| #else
 | |
| 	mp_digit   *new = repalloc(old, nsize * sizeof(mp_digit));
 | |
| 
 | |
| 	assert(new != NULL);
 | |
| #endif
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| static void
 | |
| s_free(void *ptr)
 | |
| {
 | |
| 	pfree(ptr);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| s_pad(mp_int z, mp_size min)
 | |
| {
 | |
| 	if (MP_ALLOC(z) < min)
 | |
| 	{
 | |
| 		mp_size		nsize = s_round_prec(min);
 | |
| 		mp_digit   *tmp;
 | |
| 
 | |
| 		if (z->digits == &(z->single))
 | |
| 		{
 | |
| 			if ((tmp = s_alloc(nsize)) == NULL)
 | |
| 				return false;
 | |
| 			tmp[0] = z->single;
 | |
| 		}
 | |
| 		else if ((tmp = s_realloc(MP_DIGITS(z), MP_ALLOC(z), nsize)) == NULL)
 | |
| 		{
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		z->digits = tmp;
 | |
| 		z->alloc = nsize;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Note: This will not work correctly when value == MP_SMALL_MIN */
 | |
| static void
 | |
| s_fake(mp_int z, mp_small value, mp_digit vbuf[])
 | |
| {
 | |
| 	mp_usmall	uv = (mp_usmall) (value < 0) ? -value : value;
 | |
| 
 | |
| 	s_ufake(z, uv, vbuf);
 | |
| 	if (value < 0)
 | |
| 		z->sign = MP_NEG;
 | |
| }
 | |
| 
 | |
| static void
 | |
| s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[])
 | |
| {
 | |
| 	mp_size		ndig = (mp_size) s_uvpack(value, vbuf);
 | |
| 
 | |
| 	z->used = ndig;
 | |
| 	z->alloc = MP_VALUE_DIGITS(value);
 | |
| 	z->sign = MP_ZPOS;
 | |
| 	z->digits = vbuf;
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_cdig(mp_digit *da, mp_digit *db, mp_size len)
 | |
| {
 | |
| 	mp_digit   *dat = da + len - 1,
 | |
| 			   *dbt = db + len - 1;
 | |
| 
 | |
| 	for ( /* */ ; len != 0; --len, --dat, --dbt)
 | |
| 	{
 | |
| 		if (*dat > *dbt)
 | |
| 		{
 | |
| 			return 1;
 | |
| 		}
 | |
| 		else if (*dat < *dbt)
 | |
| 		{
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_uvpack(mp_usmall uv, mp_digit t[])
 | |
| {
 | |
| 	int			ndig = 0;
 | |
| 
 | |
| 	if (uv == 0)
 | |
| 		t[ndig++] = 0;
 | |
| 	else
 | |
| 	{
 | |
| 		while (uv != 0)
 | |
| 		{
 | |
| 			t[ndig++] = (mp_digit) uv;
 | |
| 			uv >>= MP_DIGIT_BIT / 2;
 | |
| 			uv >>= MP_DIGIT_BIT / 2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ndig;
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_ucmp(mp_int a, mp_int b)
 | |
| {
 | |
| 	mp_size		ua = MP_USED(a),
 | |
| 				ub = MP_USED(b);
 | |
| 
 | |
| 	if (ua > ub)
 | |
| 	{
 | |
| 		return 1;
 | |
| 	}
 | |
| 	else if (ub > ua)
 | |
| 	{
 | |
| 		return -1;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_vcmp(mp_int a, mp_small v)
 | |
| {
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable: 4146)
 | |
| #endif
 | |
| 	mp_usmall	uv = (v < 0) ? -(mp_usmall) v : (mp_usmall) v;
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
| 	return s_uvcmp(a, uv);
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_uvcmp(mp_int a, mp_usmall uv)
 | |
| {
 | |
| 	mpz_t		vtmp;
 | |
| 	mp_digit	vdig[MP_VALUE_DIGITS(uv)];
 | |
| 
 | |
| 	s_ufake(&vtmp, uv, vdig);
 | |
| 	return s_ucmp(a, &vtmp);
 | |
| }
 | |
| 
 | |
| static mp_digit
 | |
| s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
 | |
| 	   mp_size size_b)
 | |
| {
 | |
| 	mp_size		pos;
 | |
| 	mp_word		w = 0;
 | |
| 
 | |
| 	/* Insure that da is the longer of the two to simplify later code */
 | |
| 	if (size_b > size_a)
 | |
| 	{
 | |
| 		SWAP(mp_digit *, da, db);
 | |
| 		SWAP(mp_size, size_a, size_b);
 | |
| 	}
 | |
| 
 | |
| 	/* Add corresponding digits until the shorter number runs out */
 | |
| 	for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc)
 | |
| 	{
 | |
| 		w = w + (mp_word) *da + (mp_word) *db;
 | |
| 		*dc = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 	}
 | |
| 
 | |
| 	/* Propagate carries as far as necessary */
 | |
| 	for ( /* */ ; pos < size_a; ++pos, ++da, ++dc)
 | |
| 	{
 | |
| 		w = w + *da;
 | |
| 
 | |
| 		*dc = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 	}
 | |
| 
 | |
| 	/* Return carry out */
 | |
| 	return (mp_digit) w;
 | |
| }
 | |
| 
 | |
| static void
 | |
| s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
 | |
| 	   mp_size size_b)
 | |
| {
 | |
| 	mp_size		pos;
 | |
| 	mp_word		w = 0;
 | |
| 
 | |
| 	/* We assume that |a| >= |b| so this should definitely hold */
 | |
| 	assert(size_a >= size_b);
 | |
| 
 | |
| 	/* Subtract corresponding digits and propagate borrow */
 | |
| 	for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc)
 | |
| 	{
 | |
| 		w = ((mp_word) MP_DIGIT_MAX + 1 +	/* MP_RADIX */
 | |
| 			 (mp_word) *da) -
 | |
| 			w - (mp_word) *db;
 | |
| 
 | |
| 		*dc = LOWER_HALF(w);
 | |
| 		w = (UPPER_HALF(w) == 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Finish the subtraction for remaining upper digits of da */
 | |
| 	for ( /* */ ; pos < size_a; ++pos, ++da, ++dc)
 | |
| 	{
 | |
| 		w = ((mp_word) MP_DIGIT_MAX + 1 +	/* MP_RADIX */
 | |
| 			 (mp_word) *da) -
 | |
| 			w;
 | |
| 
 | |
| 		*dc = LOWER_HALF(w);
 | |
| 		w = (UPPER_HALF(w) == 0);
 | |
| 	}
 | |
| 
 | |
| 	/* If there is a borrow out at the end, it violates the precondition */
 | |
| 	assert(w == 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
 | |
| 	   mp_size size_b)
 | |
| {
 | |
| 	mp_size		bot_size;
 | |
| 
 | |
| 	/* Make sure b is the smaller of the two input values */
 | |
| 	if (size_b > size_a)
 | |
| 	{
 | |
| 		SWAP(mp_digit *, da, db);
 | |
| 		SWAP(mp_size, size_a, size_b);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Insure that the bottom is the larger half in an odd-length split; the
 | |
| 	 * code below relies on this being true.
 | |
| 	 */
 | |
| 	bot_size = (size_a + 1) / 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the values are big enough to bother with recursion, use the
 | |
| 	 * Karatsuba algorithm to compute the product; otherwise use the normal
 | |
| 	 * multiplication algorithm
 | |
| 	 */
 | |
| 	if (multiply_threshold && size_a >= multiply_threshold && size_b > bot_size)
 | |
| 	{
 | |
| 		mp_digit   *t1,
 | |
| 				   *t2,
 | |
| 				   *t3,
 | |
| 					carry;
 | |
| 
 | |
| 		mp_digit   *a_top = da + bot_size;
 | |
| 		mp_digit   *b_top = db + bot_size;
 | |
| 
 | |
| 		mp_size		at_size = size_a - bot_size;
 | |
| 		mp_size		bt_size = size_b - bot_size;
 | |
| 		mp_size		buf_size = 2 * bot_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do a single allocation for all three temporary buffers needed; each
 | |
| 		 * buffer must be big enough to hold the product of two bottom halves,
 | |
| 		 * and one buffer needs space for the completed product; twice the
 | |
| 		 * space is plenty.
 | |
| 		 */
 | |
| 		if ((t1 = s_alloc(4 * buf_size)) == NULL)
 | |
| 			return 0;
 | |
| 		t2 = t1 + buf_size;
 | |
| 		t3 = t2 + buf_size;
 | |
| 		ZERO(t1, 4 * buf_size);
 | |
| 
 | |
| 		/*
 | |
| 		 * t1 and t2 are initially used as temporaries to compute the inner
 | |
| 		 * product (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
 | |
| 		 */
 | |
| 		carry = s_uadd(da, a_top, t1, bot_size, at_size);	/* t1 = a1 + a0 */
 | |
| 		t1[bot_size] = carry;
 | |
| 
 | |
| 		carry = s_uadd(db, b_top, t2, bot_size, bt_size);	/* t2 = b1 + b0 */
 | |
| 		t2[bot_size] = carry;
 | |
| 
 | |
| 		(void) s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1);	/* t3 = t1 * t2 */
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so
 | |
| 		 * that we're left with only the pieces we want:  t3 = a1b0 + a0b1
 | |
| 		 */
 | |
| 		ZERO(t1, buf_size);
 | |
| 		ZERO(t2, buf_size);
 | |
| 		(void) s_kmul(da, db, t1, bot_size, bot_size);	/* t1 = a0 * b0 */
 | |
| 		(void) s_kmul(a_top, b_top, t2, at_size, bt_size);	/* t2 = a1 * b1 */
 | |
| 
 | |
| 		/* Subtract out t1 and t2 to get the inner product */
 | |
| 		s_usub(t3, t1, t3, buf_size + 2, buf_size);
 | |
| 		s_usub(t3, t2, t3, buf_size + 2, buf_size);
 | |
| 
 | |
| 		/* Assemble the output value */
 | |
| 		COPY(t1, dc, buf_size);
 | |
| 		carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size);
 | |
| 		assert(carry == 0);
 | |
| 
 | |
| 		carry =
 | |
| 			s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size, buf_size, buf_size);
 | |
| 		assert(carry == 0);
 | |
| 
 | |
| 		s_free(t1);				/* note t2 and t3 are just internal pointers
 | |
| 								 * to t1 */
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		s_umul(da, db, dc, size_a, size_b);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
 | |
| 	   mp_size size_b)
 | |
| {
 | |
| 	mp_size		a,
 | |
| 				b;
 | |
| 	mp_word		w;
 | |
| 
 | |
| 	for (a = 0; a < size_a; ++a, ++dc, ++da)
 | |
| 	{
 | |
| 		mp_digit   *dct = dc;
 | |
| 		mp_digit   *dbt = db;
 | |
| 
 | |
| 		if (*da == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		w = 0;
 | |
| 		for (b = 0; b < size_b; ++b, ++dbt, ++dct)
 | |
| 		{
 | |
| 			w = (mp_word) *da * (mp_word) *dbt + w + (mp_word) *dct;
 | |
| 
 | |
| 			*dct = LOWER_HALF(w);
 | |
| 			w = UPPER_HALF(w);
 | |
| 		}
 | |
| 
 | |
| 		*dct = (mp_digit) w;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
 | |
| {
 | |
| 	if (multiply_threshold && size_a > multiply_threshold)
 | |
| 	{
 | |
| 		mp_size		bot_size = (size_a + 1) / 2;
 | |
| 		mp_digit   *a_top = da + bot_size;
 | |
| 		mp_digit   *t1,
 | |
| 				   *t2,
 | |
| 				   *t3,
 | |
| 					carry PG_USED_FOR_ASSERTS_ONLY;
 | |
| 		mp_size		at_size = size_a - bot_size;
 | |
| 		mp_size		buf_size = 2 * bot_size;
 | |
| 
 | |
| 		if ((t1 = s_alloc(4 * buf_size)) == NULL)
 | |
| 			return 0;
 | |
| 		t2 = t1 + buf_size;
 | |
| 		t3 = t2 + buf_size;
 | |
| 		ZERO(t1, 4 * buf_size);
 | |
| 
 | |
| 		(void) s_ksqr(da, t1, bot_size);	/* t1 = a0 ^ 2 */
 | |
| 		(void) s_ksqr(a_top, t2, at_size);	/* t2 = a1 ^ 2 */
 | |
| 
 | |
| 		(void) s_kmul(da, a_top, t3, bot_size, at_size);	/* t3 = a0 * a1 */
 | |
| 
 | |
| 		/* Quick multiply t3 by 2, shifting left (can't overflow) */
 | |
| 		{
 | |
| 			int			i,
 | |
| 						top = bot_size + at_size;
 | |
| 			mp_word		w,
 | |
| 						save = 0;
 | |
| 
 | |
| 			for (i = 0; i < top; ++i)
 | |
| 			{
 | |
| 				w = t3[i];
 | |
| 				w = (w << 1) | save;
 | |
| 				t3[i] = LOWER_HALF(w);
 | |
| 				save = UPPER_HALF(w);
 | |
| 			}
 | |
| 			t3[i] = LOWER_HALF(save);
 | |
| 		}
 | |
| 
 | |
| 		/* Assemble the output value */
 | |
| 		COPY(t1, dc, 2 * bot_size);
 | |
| 		carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size);
 | |
| 		assert(carry == 0);
 | |
| 
 | |
| 		carry =
 | |
| 			s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size, buf_size, buf_size);
 | |
| 		assert(carry == 0);
 | |
| 
 | |
| 		s_free(t1);				/* note that t2 and t2 are internal pointers
 | |
| 								 * only */
 | |
| 
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		s_usqr(da, dc, size_a);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
 | |
| {
 | |
| 	mp_size		i,
 | |
| 				j;
 | |
| 	mp_word		w;
 | |
| 
 | |
| 	for (i = 0; i < size_a; ++i, dc += 2, ++da)
 | |
| 	{
 | |
| 		mp_digit   *dct = dc,
 | |
| 				   *dat = da;
 | |
| 
 | |
| 		if (*da == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Take care of the first digit, no rollover */
 | |
| 		w = (mp_word) *dat * (mp_word) *dat + (mp_word) *dct;
 | |
| 		*dct = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 		++dat;
 | |
| 		++dct;
 | |
| 
 | |
| 		for (j = i + 1; j < size_a; ++j, ++dat, ++dct)
 | |
| 		{
 | |
| 			mp_word		t = (mp_word) *da * (mp_word) *dat;
 | |
| 			mp_word		u = w + (mp_word) *dct,
 | |
| 						ov = 0;
 | |
| 
 | |
| 			/* Check if doubling t will overflow a word */
 | |
| 			if (HIGH_BIT_SET(t))
 | |
| 				ov = 1;
 | |
| 
 | |
| 			w = t + t;
 | |
| 
 | |
| 			/* Check if adding u to w will overflow a word */
 | |
| 			if (ADD_WILL_OVERFLOW(w, u))
 | |
| 				ov = 1;
 | |
| 
 | |
| 			w += u;
 | |
| 
 | |
| 			*dct = LOWER_HALF(w);
 | |
| 			w = UPPER_HALF(w);
 | |
| 			if (ov)
 | |
| 			{
 | |
| 				w += MP_DIGIT_MAX;	/* MP_RADIX */
 | |
| 				++w;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		w = w + *dct;
 | |
| 		*dct = (mp_digit) w;
 | |
| 		while ((w = UPPER_HALF(w)) != 0)
 | |
| 		{
 | |
| 			++dct;
 | |
| 			w = w + *dct;
 | |
| 			*dct = LOWER_HALF(w);
 | |
| 		}
 | |
| 
 | |
| 		assert(w == 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| s_dadd(mp_int a, mp_digit b)
 | |
| {
 | |
| 	mp_word		w = 0;
 | |
| 	mp_digit   *da = MP_DIGITS(a);
 | |
| 	mp_size		ua = MP_USED(a);
 | |
| 
 | |
| 	w = (mp_word) *da + b;
 | |
| 	*da++ = LOWER_HALF(w);
 | |
| 	w = UPPER_HALF(w);
 | |
| 
 | |
| 	for (ua -= 1; ua > 0; --ua, ++da)
 | |
| 	{
 | |
| 		w = (mp_word) *da + w;
 | |
| 
 | |
| 		*da = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 	}
 | |
| 
 | |
| 	if (w)
 | |
| 	{
 | |
| 		*da = (mp_digit) w;
 | |
| 		a->used += 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| s_dmul(mp_int a, mp_digit b)
 | |
| {
 | |
| 	mp_word		w = 0;
 | |
| 	mp_digit   *da = MP_DIGITS(a);
 | |
| 	mp_size		ua = MP_USED(a);
 | |
| 
 | |
| 	while (ua > 0)
 | |
| 	{
 | |
| 		w = (mp_word) *da * b + w;
 | |
| 		*da++ = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 		--ua;
 | |
| 	}
 | |
| 
 | |
| 	if (w)
 | |
| 	{
 | |
| 		*da = (mp_digit) w;
 | |
| 		a->used += 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
 | |
| {
 | |
| 	mp_word		w = 0;
 | |
| 
 | |
| 	while (size_a > 0)
 | |
| 	{
 | |
| 		w = (mp_word) *da++ * (mp_word) b + w;
 | |
| 
 | |
| 		*dc++ = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w);
 | |
| 		--size_a;
 | |
| 	}
 | |
| 
 | |
| 	if (w)
 | |
| 		*dc = LOWER_HALF(w);
 | |
| }
 | |
| 
 | |
| static mp_digit
 | |
| s_ddiv(mp_int a, mp_digit b)
 | |
| {
 | |
| 	mp_word		w = 0,
 | |
| 				qdigit;
 | |
| 	mp_size		ua = MP_USED(a);
 | |
| 	mp_digit   *da = MP_DIGITS(a) + ua - 1;
 | |
| 
 | |
| 	for ( /* */ ; ua > 0; --ua, --da)
 | |
| 	{
 | |
| 		w = (w << MP_DIGIT_BIT) | *da;
 | |
| 
 | |
| 		if (w >= b)
 | |
| 		{
 | |
| 			qdigit = w / b;
 | |
| 			w = w % b;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			qdigit = 0;
 | |
| 		}
 | |
| 
 | |
| 		*da = (mp_digit) qdigit;
 | |
| 	}
 | |
| 
 | |
| 	CLAMP(a);
 | |
| 	return (mp_digit) w;
 | |
| }
 | |
| 
 | |
| static void
 | |
| s_qdiv(mp_int z, mp_size p2)
 | |
| {
 | |
| 	mp_size		ndig = p2 / MP_DIGIT_BIT,
 | |
| 				nbits = p2 % MP_DIGIT_BIT;
 | |
| 	mp_size		uz = MP_USED(z);
 | |
| 
 | |
| 	if (ndig)
 | |
| 	{
 | |
| 		mp_size		mark;
 | |
| 		mp_digit   *to,
 | |
| 				   *from;
 | |
| 
 | |
| 		if (ndig >= uz)
 | |
| 		{
 | |
| 			mp_int_zero(z);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		to = MP_DIGITS(z);
 | |
| 		from = to + ndig;
 | |
| 
 | |
| 		for (mark = ndig; mark < uz; ++mark)
 | |
| 		{
 | |
| 			*to++ = *from++;
 | |
| 		}
 | |
| 
 | |
| 		z->used = uz - ndig;
 | |
| 	}
 | |
| 
 | |
| 	if (nbits)
 | |
| 	{
 | |
| 		mp_digit	d = 0,
 | |
| 				   *dz,
 | |
| 					save;
 | |
| 		mp_size		up = MP_DIGIT_BIT - nbits;
 | |
| 
 | |
| 		uz = MP_USED(z);
 | |
| 		dz = MP_DIGITS(z) + uz - 1;
 | |
| 
 | |
| 		for ( /* */ ; uz > 0; --uz, --dz)
 | |
| 		{
 | |
| 			save = *dz;
 | |
| 
 | |
| 			*dz = (*dz >> nbits) | (d << up);
 | |
| 			d = save;
 | |
| 		}
 | |
| 
 | |
| 		CLAMP(z);
 | |
| 	}
 | |
| 
 | |
| 	if (MP_USED(z) == 1 && z->digits[0] == 0)
 | |
| 		z->sign = MP_ZPOS;
 | |
| }
 | |
| 
 | |
| static void
 | |
| s_qmod(mp_int z, mp_size p2)
 | |
| {
 | |
| 	mp_size		start = p2 / MP_DIGIT_BIT + 1,
 | |
| 				rest = p2 % MP_DIGIT_BIT;
 | |
| 	mp_size		uz = MP_USED(z);
 | |
| 	mp_digit	mask = (1u << rest) - 1;
 | |
| 
 | |
| 	if (start <= uz)
 | |
| 	{
 | |
| 		z->used = start;
 | |
| 		z->digits[start - 1] &= mask;
 | |
| 		CLAMP(z);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_qmul(mp_int z, mp_size p2)
 | |
| {
 | |
| 	mp_size		uz,
 | |
| 				need,
 | |
| 				rest,
 | |
| 				extra,
 | |
| 				i;
 | |
| 	mp_digit   *from,
 | |
| 			   *to,
 | |
| 				d;
 | |
| 
 | |
| 	if (p2 == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	uz = MP_USED(z);
 | |
| 	need = p2 / MP_DIGIT_BIT;
 | |
| 	rest = p2 % MP_DIGIT_BIT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out if we need an extra digit at the top end; this occurs if the
 | |
| 	 * topmost `rest' bits of the high-order digit of z are not zero, meaning
 | |
| 	 * they will be shifted off the end if not preserved
 | |
| 	 */
 | |
| 	extra = 0;
 | |
| 	if (rest != 0)
 | |
| 	{
 | |
| 		mp_digit   *dz = MP_DIGITS(z) + uz - 1;
 | |
| 
 | |
| 		if ((*dz >> (MP_DIGIT_BIT - rest)) != 0)
 | |
| 			extra = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!s_pad(z, uz + need + extra))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we need to shift by whole digits, do that in one pass, then to back
 | |
| 	 * and shift by partial digits.
 | |
| 	 */
 | |
| 	if (need > 0)
 | |
| 	{
 | |
| 		from = MP_DIGITS(z) + uz - 1;
 | |
| 		to = from + need;
 | |
| 
 | |
| 		for (i = 0; i < uz; ++i)
 | |
| 			*to-- = *from--;
 | |
| 
 | |
| 		ZERO(MP_DIGITS(z), need);
 | |
| 		uz += need;
 | |
| 	}
 | |
| 
 | |
| 	if (rest)
 | |
| 	{
 | |
| 		d = 0;
 | |
| 		for (i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from)
 | |
| 		{
 | |
| 			mp_digit	save = *from;
 | |
| 
 | |
| 			*from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
 | |
| 			d = save;
 | |
| 		}
 | |
| 
 | |
| 		d >>= (MP_DIGIT_BIT - rest);
 | |
| 		if (d != 0)
 | |
| 		{
 | |
| 			*from = d;
 | |
| 			uz += extra;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	z->used = uz;
 | |
| 	CLAMP(z);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z|
 | |
|    The sign of the result is always zero/positive.
 | |
|  */
 | |
| static int
 | |
| s_qsub(mp_int z, mp_size p2)
 | |
| {
 | |
| 	mp_digit	hi = (1u << (p2 % MP_DIGIT_BIT)),
 | |
| 			   *zp;
 | |
| 	mp_size		tdig = (p2 / MP_DIGIT_BIT),
 | |
| 				pos;
 | |
| 	mp_word		w = 0;
 | |
| 
 | |
| 	if (!s_pad(z, tdig + 1))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp)
 | |
| 	{
 | |
| 		w = ((mp_word) MP_DIGIT_MAX + 1) - w - (mp_word) *zp;
 | |
| 
 | |
| 		*zp = LOWER_HALF(w);
 | |
| 		w = UPPER_HALF(w) ? 0 : 1;
 | |
| 	}
 | |
| 
 | |
| 	w = ((mp_word) MP_DIGIT_MAX + 1 + hi) - w - (mp_word) *zp;
 | |
| 	*zp = LOWER_HALF(w);
 | |
| 
 | |
| 	assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
 | |
| 
 | |
| 	z->sign = MP_ZPOS;
 | |
| 	CLAMP(z);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_dp2k(mp_int z)
 | |
| {
 | |
| 	int			k = 0;
 | |
| 	mp_digit   *dp = MP_DIGITS(z),
 | |
| 				d;
 | |
| 
 | |
| 	if (MP_USED(z) == 1 && *dp == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	while (*dp == 0)
 | |
| 	{
 | |
| 		k += MP_DIGIT_BIT;
 | |
| 		++dp;
 | |
| 	}
 | |
| 
 | |
| 	d = *dp;
 | |
| 	while ((d & 1) == 0)
 | |
| 	{
 | |
| 		d >>= 1;
 | |
| 		++k;
 | |
| 	}
 | |
| 
 | |
| 	return k;
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_isp2(mp_int z)
 | |
| {
 | |
| 	mp_size		uz = MP_USED(z),
 | |
| 				k = 0;
 | |
| 	mp_digit   *dz = MP_DIGITS(z),
 | |
| 				d;
 | |
| 
 | |
| 	while (uz > 1)
 | |
| 	{
 | |
| 		if (*dz++ != 0)
 | |
| 			return -1;
 | |
| 		k += MP_DIGIT_BIT;
 | |
| 		--uz;
 | |
| 	}
 | |
| 
 | |
| 	d = *dz;
 | |
| 	while (d > 1)
 | |
| 	{
 | |
| 		if (d & 1)
 | |
| 			return -1;
 | |
| 		++k;
 | |
| 		d >>= 1;
 | |
| 	}
 | |
| 
 | |
| 	return (int) k;
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_2expt(mp_int z, mp_small k)
 | |
| {
 | |
| 	mp_size		ndig,
 | |
| 				rest;
 | |
| 	mp_digit   *dz;
 | |
| 
 | |
| 	ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
 | |
| 	rest = k % MP_DIGIT_BIT;
 | |
| 
 | |
| 	if (!s_pad(z, ndig))
 | |
| 		return 0;
 | |
| 
 | |
| 	dz = MP_DIGITS(z);
 | |
| 	ZERO(dz, ndig);
 | |
| 	*(dz + ndig - 1) = (1u << rest);
 | |
| 	z->used = ndig;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_norm(mp_int a, mp_int b)
 | |
| {
 | |
| 	mp_digit	d = b->digits[MP_USED(b) - 1];
 | |
| 	int			k = 0;
 | |
| 
 | |
| 	while (d < (1u << (mp_digit) (MP_DIGIT_BIT - 1)))
 | |
| 	{							/* d < (MP_RADIX / 2) */
 | |
| 		d <<= 1;
 | |
| 		++k;
 | |
| 	}
 | |
| 
 | |
| 	/* These multiplications can't fail */
 | |
| 	if (k != 0)
 | |
| 	{
 | |
| 		(void) s_qmul(a, (mp_size) k);
 | |
| 		(void) s_qmul(b, (mp_size) k);
 | |
| 	}
 | |
| 
 | |
| 	return k;
 | |
| }
 | |
| 
 | |
| static mp_result
 | |
| s_brmu(mp_int z, mp_int m)
 | |
| {
 | |
| 	mp_size		um = MP_USED(m) * 2;
 | |
| 
 | |
| 	if (!s_pad(z, um))
 | |
| 		return MP_MEMORY;
 | |
| 
 | |
| 	s_2expt(z, MP_DIGIT_BIT * um);
 | |
| 	return mp_int_div(z, m, z, NULL);
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
 | |
| {
 | |
| 	mp_size		um = MP_USED(m),
 | |
| 				umb_p1,
 | |
| 				umb_m1;
 | |
| 
 | |
| 	umb_p1 = (um + 1) * MP_DIGIT_BIT;
 | |
| 	umb_m1 = (um - 1) * MP_DIGIT_BIT;
 | |
| 
 | |
| 	if (mp_int_copy(x, q1) != MP_OK)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
 | |
| 	s_qdiv(q1, umb_m1);
 | |
| 	UMUL(q1, mu, q2);
 | |
| 	s_qdiv(q2, umb_p1);
 | |
| 
 | |
| 	/* Set x = x mod b^(k+1) */
 | |
| 	s_qmod(x, umb_p1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now, q is a guess for the quotient a / m. Compute x - q * m mod
 | |
| 	 * b^(k+1), replacing x.  This may be off by a factor of 2m, but no more
 | |
| 	 * than that.
 | |
| 	 */
 | |
| 	UMUL(q2, m, q1);
 | |
| 	s_qmod(q1, umb_p1);
 | |
| 	(void) mp_int_sub(x, q1, x);	/* can't fail */
 | |
| 
 | |
| 	/*
 | |
| 	 * The result may be < 0; if it is, add b^(k+1) to pin it in the proper
 | |
| 	 * range.
 | |
| 	 */
 | |
| 	if ((CMPZ(x) < 0) && !s_qsub(x, umb_p1))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If x > m, we need to back it off until it is in range.  This will be
 | |
| 	 * required at most twice.
 | |
| 	 */
 | |
| 	if (mp_int_compare(x, m) >= 0)
 | |
| 	{
 | |
| 		(void) mp_int_sub(x, m, x);
 | |
| 		if (mp_int_compare(x, m) >= 0)
 | |
| 		{
 | |
| 			(void) mp_int_sub(x, m, x);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* At this point, x has been properly reduced. */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Perform modular exponentiation using Barrett's method, where mu is the
 | |
|    reduction constant for m.  Assumes a < m, b > 0. */
 | |
| static mp_result
 | |
| s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
 | |
| {
 | |
| 	mp_digit	umu = MP_USED(mu);
 | |
| 	mp_digit   *db = MP_DIGITS(b);
 | |
| 	mp_digit   *dbt = db + MP_USED(b) - 1;
 | |
| 
 | |
| 	DECLARE_TEMP(3);
 | |
| 	REQUIRE(GROW(TEMP(0), 4 * umu));
 | |
| 	REQUIRE(GROW(TEMP(1), 4 * umu));
 | |
| 	REQUIRE(GROW(TEMP(2), 4 * umu));
 | |
| 	ZERO(TEMP(0)->digits, TEMP(0)->alloc);
 | |
| 	ZERO(TEMP(1)->digits, TEMP(1)->alloc);
 | |
| 	ZERO(TEMP(2)->digits, TEMP(2)->alloc);
 | |
| 
 | |
| 	(void) mp_int_set_value(c, 1);
 | |
| 
 | |
| 	/* Take care of low-order digits */
 | |
| 	while (db < dbt)
 | |
| 	{
 | |
| 		mp_digit	d = *db;
 | |
| 
 | |
| 		for (int i = MP_DIGIT_BIT; i > 0; --i, d >>= 1)
 | |
| 		{
 | |
| 			if (d & 1)
 | |
| 			{
 | |
| 				/* The use of a second temporary avoids allocation */
 | |
| 				UMUL(c, a, TEMP(0));
 | |
| 				if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
 | |
| 				{
 | |
| 					REQUIRE(MP_MEMORY);
 | |
| 				}
 | |
| 				mp_int_copy(TEMP(0), c);
 | |
| 			}
 | |
| 
 | |
| 			USQR(a, TEMP(0));
 | |
| 			assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
 | |
| 			if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
 | |
| 			{
 | |
| 				REQUIRE(MP_MEMORY);
 | |
| 			}
 | |
| 			assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
 | |
| 			mp_int_copy(TEMP(0), a);
 | |
| 		}
 | |
| 
 | |
| 		++db;
 | |
| 	}
 | |
| 
 | |
| 	/* Take care of highest-order digit */
 | |
| 	mp_digit	d = *dbt;
 | |
| 
 | |
| 	for (;;)
 | |
| 	{
 | |
| 		if (d & 1)
 | |
| 		{
 | |
| 			UMUL(c, a, TEMP(0));
 | |
| 			if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
 | |
| 			{
 | |
| 				REQUIRE(MP_MEMORY);
 | |
| 			}
 | |
| 			mp_int_copy(TEMP(0), c);
 | |
| 		}
 | |
| 
 | |
| 		d >>= 1;
 | |
| 		if (!d)
 | |
| 			break;
 | |
| 
 | |
| 		USQR(a, TEMP(0));
 | |
| 		if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
 | |
| 		{
 | |
| 			REQUIRE(MP_MEMORY);
 | |
| 		}
 | |
| 		(void) mp_int_copy(TEMP(0), a);
 | |
| 	}
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| /* Division of nonnegative integers
 | |
| 
 | |
|    This function implements division algorithm for unsigned multi-precision
 | |
|    integers. The algorithm is based on Algorithm D from Knuth's "The Art of
 | |
|    Computer Programming", 3rd ed. 1998, pg 272-273.
 | |
| 
 | |
|    We diverge from Knuth's algorithm in that we do not perform the subtraction
 | |
|    from the remainder until we have determined that we have the correct
 | |
|    quotient digit. This makes our algorithm less efficient that Knuth because
 | |
|    we might have to perform multiple multiplication and comparison steps before
 | |
|    the subtraction. The advantage is that it is easy to implement and ensure
 | |
|    correctness without worrying about underflow from the subtraction.
 | |
| 
 | |
|    inputs: u   a n+m digit integer in base b (b is 2^MP_DIGIT_BIT)
 | |
| 		   v   a n   digit integer in base b (b is 2^MP_DIGIT_BIT)
 | |
| 		   n >= 1
 | |
| 		   m >= 0
 | |
|   outputs: u / v stored in u
 | |
| 		   u % v stored in v
 | |
|  */
 | |
| static mp_result
 | |
| s_udiv_knuth(mp_int u, mp_int v)
 | |
| {
 | |
| 	/* Force signs to positive */
 | |
| 	u->sign = MP_ZPOS;
 | |
| 	v->sign = MP_ZPOS;
 | |
| 
 | |
| 	/* Use simple division algorithm when v is only one digit long */
 | |
| 	if (MP_USED(v) == 1)
 | |
| 	{
 | |
| 		mp_digit	d,
 | |
| 					rem;
 | |
| 
 | |
| 		d = v->digits[0];
 | |
| 		rem = s_ddiv(u, d);
 | |
| 		mp_int_set_value(v, rem);
 | |
| 		return MP_OK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Algorithm D
 | |
| 	 *
 | |
| 	 * The n and m variables are defined as used by Knuth. u is an n digit
 | |
| 	 * number with digits u_{n-1}..u_0. v is an n+m digit number with digits
 | |
| 	 * from v_{m+n-1}..v_0. We require that n > 1 and m >= 0
 | |
| 	 */
 | |
| 	mp_size		n = MP_USED(v);
 | |
| 	mp_size		m = MP_USED(u) - n;
 | |
| 
 | |
| 	assert(n > 1);
 | |
| 	/* assert(m >= 0) follows because m is unsigned. */
 | |
| 
 | |
| 	/*
 | |
| 	 * D1: Normalize. The normalization step provides the necessary condition
 | |
| 	 * for Theorem B, which states that the quotient estimate for q_j, call it
 | |
| 	 * qhat
 | |
| 	 *
 | |
| 	 * qhat = u_{j+n}u_{j+n-1} / v_{n-1}
 | |
| 	 *
 | |
| 	 * is bounded by
 | |
| 	 *
 | |
| 	 * qhat - 2 <= q_j <= qhat.
 | |
| 	 *
 | |
| 	 * That is, qhat is always greater than the actual quotient digit q, and
 | |
| 	 * it is never more than two larger than the actual quotient digit.
 | |
| 	 */
 | |
| 	int			k = s_norm(u, v);
 | |
| 
 | |
| 	/*
 | |
| 	 * Extend size of u by one if needed.
 | |
| 	 *
 | |
| 	 * The algorithm begins with a value of u that has one more digit of
 | |
| 	 * input. The normalization step sets u_{m+n}..u_0 = 2^k * u_{m+n-1}..u_0.
 | |
| 	 * If the multiplication did not increase the number of digits of u, we
 | |
| 	 * need to add a leading zero here.
 | |
| 	 */
 | |
| 	if (k == 0 || MP_USED(u) != m + n + 1)
 | |
| 	{
 | |
| 		if (!s_pad(u, m + n + 1))
 | |
| 			return MP_MEMORY;
 | |
| 		u->digits[m + n] = 0;
 | |
| 		u->used = m + n + 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Add a leading 0 to v.
 | |
| 	 *
 | |
| 	 * The multiplication in step D4 multiplies qhat * 0v_{n-1}..v_0.  We need
 | |
| 	 * to add the leading zero to v here to ensure that the multiplication
 | |
| 	 * will produce the full n+1 digit result.
 | |
| 	 */
 | |
| 	if (!s_pad(v, n + 1))
 | |
| 		return MP_MEMORY;
 | |
| 	v->digits[n] = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize temporary variables q and t. q allocates space for m+1
 | |
| 	 * digits to store the quotient digits t allocates space for n+1 digits to
 | |
| 	 * hold the result of q_j*v
 | |
| 	 */
 | |
| 	DECLARE_TEMP(2);
 | |
| 	REQUIRE(GROW(TEMP(0), m + 1));
 | |
| 	REQUIRE(GROW(TEMP(1), n + 1));
 | |
| 
 | |
| 	/* D2: Initialize j */
 | |
| 	int			j = m;
 | |
| 	mpz_t		r;
 | |
| 
 | |
| 	r.digits = MP_DIGITS(u) + j;	/* The contents of r are shared with u */
 | |
| 	r.used = n + 1;
 | |
| 	r.sign = MP_ZPOS;
 | |
| 	r.alloc = MP_ALLOC(u);
 | |
| 	ZERO(TEMP(1)->digits, TEMP(1)->alloc);
 | |
| 
 | |
| 	/* Calculate the m+1 digits of the quotient result */
 | |
| 	for (; j >= 0; j--)
 | |
| 	{
 | |
| 		/* D3: Calculate q' */
 | |
| 		/* r->digits is aligned to position j of the number u */
 | |
| 		mp_word		pfx,
 | |
| 					qhat;
 | |
| 
 | |
| 		pfx = r.digits[n];
 | |
| 		pfx <<= MP_DIGIT_BIT / 2;
 | |
| 		pfx <<= MP_DIGIT_BIT / 2;
 | |
| 		pfx |= r.digits[n - 1]; /* pfx = u_{j+n}{j+n-1} */
 | |
| 
 | |
| 		qhat = pfx / v->digits[n - 1];
 | |
| 
 | |
| 		/*
 | |
| 		 * Check to see if qhat > b, and decrease qhat if so. Theorem B
 | |
| 		 * guarantess that qhat is at most 2 larger than the actual value, so
 | |
| 		 * it is possible that qhat is greater than the maximum value that
 | |
| 		 * will fit in a digit
 | |
| 		 */
 | |
| 		if (qhat > MP_DIGIT_MAX)
 | |
| 			qhat = MP_DIGIT_MAX;
 | |
| 
 | |
| 		/*
 | |
| 		 * D4,D5,D6: Multiply qhat * v and test for a correct value of q
 | |
| 		 *
 | |
| 		 * We proceed a bit different than the way described by Knuth. This
 | |
| 		 * way is simpler but less efficent. Instead of doing the multiply and
 | |
| 		 * subtract then checking for underflow, we first do the multiply of
 | |
| 		 * qhat * v and see if it is larger than the current remainder r. If
 | |
| 		 * it is larger, we decrease qhat by one and try again. We may need to
 | |
| 		 * decrease qhat one more time before we get a value that is smaller
 | |
| 		 * than r.
 | |
| 		 *
 | |
| 		 * This way is less efficent than Knuth becuase we do more multiplies,
 | |
| 		 * but we do not need to worry about underflow this way.
 | |
| 		 */
 | |
| 		/* t = qhat * v */
 | |
| 		s_dbmul(MP_DIGITS(v), (mp_digit) qhat, TEMP(1)->digits, n + 1);
 | |
| 		TEMP(1)->used = n + 1;
 | |
| 		CLAMP(TEMP(1));
 | |
| 
 | |
| 		/* Clamp r for the comparison. Comparisons do not like leading zeros. */
 | |
| 		CLAMP(&r);
 | |
| 		if (s_ucmp(TEMP(1), &r) > 0)
 | |
| 		{						/* would the remainder be negative? */
 | |
| 			qhat -= 1;			/* try a smaller q */
 | |
| 			s_dbmul(MP_DIGITS(v), (mp_digit) qhat, TEMP(1)->digits, n + 1);
 | |
| 			TEMP(1)->used = n + 1;
 | |
| 			CLAMP(TEMP(1));
 | |
| 			if (s_ucmp(TEMP(1), &r) > 0)
 | |
| 			{					/* would the remainder be negative? */
 | |
| 				assert(qhat > 0);
 | |
| 				qhat -= 1;		/* try a smaller q */
 | |
| 				s_dbmul(MP_DIGITS(v), (mp_digit) qhat, TEMP(1)->digits, n + 1);
 | |
| 				TEMP(1)->used = n + 1;
 | |
| 				CLAMP(TEMP(1));
 | |
| 			}
 | |
| 			assert(s_ucmp(TEMP(1), &r) <= 0 && "The mathematics failed us.");
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Unclamp r. The D algorithm expects r = u_{j+n}..u_j to always be
 | |
| 		 * n+1 digits long.
 | |
| 		 */
 | |
| 		r.used = n + 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * D4: Multiply and subtract
 | |
| 		 *
 | |
| 		 * Note: The multiply was completed above so we only need to subtract
 | |
| 		 * here.
 | |
| 		 */
 | |
| 		s_usub(r.digits, TEMP(1)->digits, r.digits, r.used, TEMP(1)->used);
 | |
| 
 | |
| 		/*
 | |
| 		 * D5: Test remainder
 | |
| 		 *
 | |
| 		 * Note: Not needed because we always check that qhat is the correct
 | |
| 		 * value before performing the subtract.  Value cast to mp_digit to
 | |
| 		 * prevent warning, qhat has been clamped to MP_DIGIT_MAX
 | |
| 		 */
 | |
| 		TEMP(0)->digits[j] = (mp_digit) qhat;
 | |
| 
 | |
| 		/*
 | |
| 		 * D6: Add back Note: Not needed because we always check that qhat is
 | |
| 		 * the correct value before performing the subtract.
 | |
| 		 */
 | |
| 
 | |
| 		/* D7: Loop on j */
 | |
| 		r.digits--;
 | |
| 		ZERO(TEMP(1)->digits, TEMP(1)->alloc);
 | |
| 	}
 | |
| 
 | |
| 	/* Get rid of leading zeros in q */
 | |
| 	TEMP(0)->used = m + 1;
 | |
| 	CLAMP(TEMP(0));
 | |
| 
 | |
| 	/* Denormalize the remainder */
 | |
| 	CLAMP(u);					/* use u here because the r.digits pointer is
 | |
| 								 * off-by-one */
 | |
| 	if (k != 0)
 | |
| 		s_qdiv(u, k);
 | |
| 
 | |
| 	mp_int_copy(u, v);			/* ok:  0 <= r < v */
 | |
| 	mp_int_copy(TEMP(0), u);	/* ok:  q <= u     */
 | |
| 
 | |
| 	CLEANUP_TEMP();
 | |
| 	return MP_OK;
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_outlen(mp_int z, mp_size r)
 | |
| {
 | |
| 	assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX);
 | |
| 
 | |
| 	mp_result	bits = mp_int_count_bits(z);
 | |
| 	double		raw = (double) bits * s_log2[r];
 | |
| 
 | |
| 	return (int) (raw + 0.999999);
 | |
| }
 | |
| 
 | |
| static mp_size
 | |
| s_inlen(int len, mp_size r)
 | |
| {
 | |
| 	double		raw = (double) len / s_log2[r];
 | |
| 	mp_size		bits = (mp_size) (raw + 0.5);
 | |
| 
 | |
| 	return (mp_size) ((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT) + 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| s_ch2val(char c, int r)
 | |
| {
 | |
| 	int			out;
 | |
| 
 | |
| 	/*
 | |
| 	 * In some locales, isalpha() accepts characters outside the range A-Z,
 | |
| 	 * producing out<0 or out>=36.  The "out >= r" check will always catch
 | |
| 	 * out>=36.  Though nothing explicitly catches out<0, our caller reacts
 | |
| 	 * the same way to every negative return value.
 | |
| 	 */
 | |
| 	if (isdigit((unsigned char) c))
 | |
| 		out = c - '0';
 | |
| 	else if (r > 10 && isalpha((unsigned char) c))
 | |
| 		out = toupper((unsigned char) c) - 'A' + 10;
 | |
| 	else
 | |
| 		return -1;
 | |
| 
 | |
| 	return (out >= r) ? -1 : out;
 | |
| }
 | |
| 
 | |
| static char
 | |
| s_val2ch(int v, int caps)
 | |
| {
 | |
| 	assert(v >= 0);
 | |
| 
 | |
| 	if (v < 10)
 | |
| 	{
 | |
| 		return v + '0';
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		char		out = (v - 10) + 'a';
 | |
| 
 | |
| 		if (caps)
 | |
| 		{
 | |
| 			return toupper((unsigned char) out);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			return out;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| s_2comp(unsigned char *buf, int len)
 | |
| {
 | |
| 	unsigned short s = 1;
 | |
| 
 | |
| 	for (int i = len - 1; i >= 0; --i)
 | |
| 	{
 | |
| 		unsigned char c = ~buf[i];
 | |
| 
 | |
| 		s = c + s;
 | |
| 		c = s & UCHAR_MAX;
 | |
| 		s >>= CHAR_BIT;
 | |
| 
 | |
| 		buf[i] = c;
 | |
| 	}
 | |
| 
 | |
| 	/* last carry out is ignored */
 | |
| }
 | |
| 
 | |
| static mp_result
 | |
| s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
 | |
| {
 | |
| 	int			pos = 0,
 | |
| 				limit = *limpos;
 | |
| 	mp_size		uz = MP_USED(z);
 | |
| 	mp_digit   *dz = MP_DIGITS(z);
 | |
| 
 | |
| 	while (uz > 0 && pos < limit)
 | |
| 	{
 | |
| 		mp_digit	d = *dz++;
 | |
| 		int			i;
 | |
| 
 | |
| 		for (i = sizeof(mp_digit); i > 0 && pos < limit; --i)
 | |
| 		{
 | |
| 			buf[pos++] = (unsigned char) d;
 | |
| 			d >>= CHAR_BIT;
 | |
| 
 | |
| 			/* Don't write leading zeroes */
 | |
| 			if (d == 0 && uz == 1)
 | |
| 				i = 0;			/* exit loop without signaling truncation */
 | |
| 		}
 | |
| 
 | |
| 		/* Detect truncation (loop exited with pos >= limit) */
 | |
| 		if (i > 0)
 | |
| 			break;
 | |
| 
 | |
| 		--uz;
 | |
| 	}
 | |
| 
 | |
| 	if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1)))
 | |
| 	{
 | |
| 		if (pos < limit)
 | |
| 		{
 | |
| 			buf[pos++] = 0;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			uz = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Digits are in reverse order, fix that */
 | |
| 	REV(buf, pos);
 | |
| 
 | |
| 	/* Return the number of bytes actually written */
 | |
| 	*limpos = pos;
 | |
| 
 | |
| 	return (uz == 0) ? MP_OK : MP_TRUNC;
 | |
| }
 | |
| 
 | |
| /* Here there be dragons */
 |