1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-21 15:54:08 +03:00
Alvaro Herrera 71f4c8c6f7
ALTER TABLE ... DETACH PARTITION ... CONCURRENTLY
Allow a partition be detached from its partitioned table without
blocking concurrent queries, by running in two transactions and only
requiring ShareUpdateExclusive in the partitioned table.

Because it runs in two transactions, it cannot be used in a transaction
block.  This is the main reason to use dedicated syntax: so that users
can choose to use the original mode if they need it.  But also, it
doesn't work when a default partition exists (because an exclusive lock
would still need to be obtained on it, in order to change its partition
constraint.)

In case the second transaction is cancelled or a crash occurs, there's
ALTER TABLE .. DETACH PARTITION .. FINALIZE, which executes the final
steps.

The main trick to make this work is the addition of column
pg_inherits.inhdetachpending, initially false; can only be set true in
the first part of this command.  Once that is committed, concurrent
transactions that use a PartitionDirectory will include or ignore
partitions so marked: in optimizer they are ignored if the row is marked
committed for the snapshot; in executor they are always included.  As a
result, and because of the way PartitionDirectory caches partition
descriptors, queries that were planned before the detach will see the
rows in the detached partition and queries that are planned after the
detach, won't.

A CHECK constraint is created that duplicates the partition constraint.
This is probably not strictly necessary, and some users will prefer to
remove it afterwards, but if the partition is re-attached to a
partitioned table, the constraint needn't be rechecked.

Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Amit Langote <amitlangote09@gmail.com>
Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>
Discussion: https://postgr.es/m/20200803234854.GA24158@alvherre.pgsql
2021-03-25 18:00:28 -03:00

431 lines
13 KiB
C

/*-------------------------------------------------------------------------
*
* partcache.c
* Support routines for manipulating partition information cached in
* relcache
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/utils/cache/partcache.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/hash.h"
#include "access/htup_details.h"
#include "access/nbtree.h"
#include "access/relation.h"
#include "catalog/partition.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_partitioned_table.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/optimizer.h"
#include "partitioning/partbounds.h"
#include "rewrite/rewriteHandler.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/partcache.h"
#include "utils/rel.h"
#include "utils/syscache.h"
static void RelationBuildPartitionKey(Relation relation);
static List *generate_partition_qual(Relation rel);
/*
* RelationGetPartitionKey -- get partition key, if relation is partitioned
*
* Note: partition keys are not allowed to change after the partitioned rel
* is created. RelationClearRelation knows this and preserves rd_partkey
* across relcache rebuilds, as long as the relation is open. Therefore,
* even though we hand back a direct pointer into the relcache entry, it's
* safe for callers to continue to use that pointer as long as they hold
* the relation open.
*/
PartitionKey
RelationGetPartitionKey(Relation rel)
{
if (rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
return NULL;
if (unlikely(rel->rd_partkey == NULL))
RelationBuildPartitionKey(rel);
return rel->rd_partkey;
}
/*
* RelationBuildPartitionKey
* Build partition key data of relation, and attach to relcache
*
* Partitioning key data is a complex structure; to avoid complicated logic to
* free individual elements whenever the relcache entry is flushed, we give it
* its own memory context, a child of CacheMemoryContext, which can easily be
* deleted on its own. To avoid leaking memory in that context in case of an
* error partway through this function, the context is initially created as a
* child of CurTransactionContext and only re-parented to CacheMemoryContext
* at the end, when no further errors are possible. Also, we don't make this
* context the current context except in very brief code sections, out of fear
* that some of our callees allocate memory on their own which would be leaked
* permanently.
*/
static void
RelationBuildPartitionKey(Relation relation)
{
Form_pg_partitioned_table form;
HeapTuple tuple;
bool isnull;
int i;
PartitionKey key;
AttrNumber *attrs;
oidvector *opclass;
oidvector *collation;
ListCell *partexprs_item;
Datum datum;
MemoryContext partkeycxt,
oldcxt;
int16 procnum;
tuple = SearchSysCache1(PARTRELID,
ObjectIdGetDatum(RelationGetRelid(relation)));
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for partition key of relation %u",
RelationGetRelid(relation));
partkeycxt = AllocSetContextCreate(CurTransactionContext,
"partition key",
ALLOCSET_SMALL_SIZES);
MemoryContextCopyAndSetIdentifier(partkeycxt,
RelationGetRelationName(relation));
key = (PartitionKey) MemoryContextAllocZero(partkeycxt,
sizeof(PartitionKeyData));
/* Fixed-length attributes */
form = (Form_pg_partitioned_table) GETSTRUCT(tuple);
key->strategy = form->partstrat;
key->partnatts = form->partnatts;
/*
* We can rely on the first variable-length attribute being mapped to the
* relevant field of the catalog's C struct, because all previous
* attributes are non-nullable and fixed-length.
*/
attrs = form->partattrs.values;
/* But use the hard way to retrieve further variable-length attributes */
/* Operator class */
datum = SysCacheGetAttr(PARTRELID, tuple,
Anum_pg_partitioned_table_partclass, &isnull);
Assert(!isnull);
opclass = (oidvector *) DatumGetPointer(datum);
/* Collation */
datum = SysCacheGetAttr(PARTRELID, tuple,
Anum_pg_partitioned_table_partcollation, &isnull);
Assert(!isnull);
collation = (oidvector *) DatumGetPointer(datum);
/* Expressions */
datum = SysCacheGetAttr(PARTRELID, tuple,
Anum_pg_partitioned_table_partexprs, &isnull);
if (!isnull)
{
char *exprString;
Node *expr;
exprString = TextDatumGetCString(datum);
expr = stringToNode(exprString);
pfree(exprString);
/*
* Run the expressions through const-simplification since the planner
* will be comparing them to similarly-processed qual clause operands,
* and may fail to detect valid matches without this step; fix
* opfuncids while at it. We don't need to bother with
* canonicalize_qual() though, because partition expressions should be
* in canonical form already (ie, no need for OR-merging or constant
* elimination).
*/
expr = eval_const_expressions(NULL, expr);
fix_opfuncids(expr);
oldcxt = MemoryContextSwitchTo(partkeycxt);
key->partexprs = (List *) copyObject(expr);
MemoryContextSwitchTo(oldcxt);
}
/* Allocate assorted arrays in the partkeycxt, which we'll fill below */
oldcxt = MemoryContextSwitchTo(partkeycxt);
key->partattrs = (AttrNumber *) palloc0(key->partnatts * sizeof(AttrNumber));
key->partopfamily = (Oid *) palloc0(key->partnatts * sizeof(Oid));
key->partopcintype = (Oid *) palloc0(key->partnatts * sizeof(Oid));
key->partsupfunc = (FmgrInfo *) palloc0(key->partnatts * sizeof(FmgrInfo));
key->partcollation = (Oid *) palloc0(key->partnatts * sizeof(Oid));
key->parttypid = (Oid *) palloc0(key->partnatts * sizeof(Oid));
key->parttypmod = (int32 *) palloc0(key->partnatts * sizeof(int32));
key->parttyplen = (int16 *) palloc0(key->partnatts * sizeof(int16));
key->parttypbyval = (bool *) palloc0(key->partnatts * sizeof(bool));
key->parttypalign = (char *) palloc0(key->partnatts * sizeof(char));
key->parttypcoll = (Oid *) palloc0(key->partnatts * sizeof(Oid));
MemoryContextSwitchTo(oldcxt);
/* determine support function number to search for */
procnum = (key->strategy == PARTITION_STRATEGY_HASH) ?
HASHEXTENDED_PROC : BTORDER_PROC;
/* Copy partattrs and fill other per-attribute info */
memcpy(key->partattrs, attrs, key->partnatts * sizeof(int16));
partexprs_item = list_head(key->partexprs);
for (i = 0; i < key->partnatts; i++)
{
AttrNumber attno = key->partattrs[i];
HeapTuple opclasstup;
Form_pg_opclass opclassform;
Oid funcid;
/* Collect opfamily information */
opclasstup = SearchSysCache1(CLAOID,
ObjectIdGetDatum(opclass->values[i]));
if (!HeapTupleIsValid(opclasstup))
elog(ERROR, "cache lookup failed for opclass %u", opclass->values[i]);
opclassform = (Form_pg_opclass) GETSTRUCT(opclasstup);
key->partopfamily[i] = opclassform->opcfamily;
key->partopcintype[i] = opclassform->opcintype;
/* Get a support function for the specified opfamily and datatypes */
funcid = get_opfamily_proc(opclassform->opcfamily,
opclassform->opcintype,
opclassform->opcintype,
procnum);
if (!OidIsValid(funcid))
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("operator class \"%s\" of access method %s is missing support function %d for type %s",
NameStr(opclassform->opcname),
(key->strategy == PARTITION_STRATEGY_HASH) ?
"hash" : "btree",
procnum,
format_type_be(opclassform->opcintype))));
fmgr_info_cxt(funcid, &key->partsupfunc[i], partkeycxt);
/* Collation */
key->partcollation[i] = collation->values[i];
/* Collect type information */
if (attno != 0)
{
Form_pg_attribute att = TupleDescAttr(relation->rd_att, attno - 1);
key->parttypid[i] = att->atttypid;
key->parttypmod[i] = att->atttypmod;
key->parttypcoll[i] = att->attcollation;
}
else
{
if (partexprs_item == NULL)
elog(ERROR, "wrong number of partition key expressions");
key->parttypid[i] = exprType(lfirst(partexprs_item));
key->parttypmod[i] = exprTypmod(lfirst(partexprs_item));
key->parttypcoll[i] = exprCollation(lfirst(partexprs_item));
partexprs_item = lnext(key->partexprs, partexprs_item);
}
get_typlenbyvalalign(key->parttypid[i],
&key->parttyplen[i],
&key->parttypbyval[i],
&key->parttypalign[i]);
ReleaseSysCache(opclasstup);
}
ReleaseSysCache(tuple);
/* Assert that we're not leaking any old data during assignments below */
Assert(relation->rd_partkeycxt == NULL);
Assert(relation->rd_partkey == NULL);
/*
* Success --- reparent our context and make the relcache point to the
* newly constructed key
*/
MemoryContextSetParent(partkeycxt, CacheMemoryContext);
relation->rd_partkeycxt = partkeycxt;
relation->rd_partkey = key;
}
/*
* RelationGetPartitionQual
*
* Returns a list of partition quals
*/
List *
RelationGetPartitionQual(Relation rel)
{
/* Quick exit */
if (!rel->rd_rel->relispartition)
return NIL;
return generate_partition_qual(rel);
}
/*
* get_partition_qual_relid
*
* Returns an expression tree describing the passed-in relation's partition
* constraint.
*
* If the relation is not found, or is not a partition, or there is no
* partition constraint, return NULL. We must guard against the first two
* cases because this supports a SQL function that could be passed any OID.
* The last case can happen even if relispartition is true, when a default
* partition is the only partition.
*/
Expr *
get_partition_qual_relid(Oid relid)
{
Expr *result = NULL;
/* Do the work only if this relation exists and is a partition. */
if (get_rel_relispartition(relid))
{
Relation rel = relation_open(relid, AccessShareLock);
List *and_args;
and_args = generate_partition_qual(rel);
/* Convert implicit-AND list format to boolean expression */
if (and_args == NIL)
result = NULL;
else if (list_length(and_args) > 1)
result = makeBoolExpr(AND_EXPR, and_args, -1);
else
result = linitial(and_args);
/* Keep the lock, to allow safe deparsing against the rel by caller. */
relation_close(rel, NoLock);
}
return result;
}
/*
* generate_partition_qual
*
* Generate partition predicate from rel's partition bound expression. The
* function returns a NIL list if there is no predicate.
*
* We cache a copy of the result in the relcache entry, after constructing
* it using the caller's context. This approach avoids leaking any data
* into long-lived cache contexts, especially if we fail partway through.
*/
static List *
generate_partition_qual(Relation rel)
{
HeapTuple tuple;
MemoryContext oldcxt;
Datum boundDatum;
bool isnull;
List *my_qual = NIL,
*result = NIL;
Oid parentrelid;
Relation parent;
/* Guard against stack overflow due to overly deep partition tree */
check_stack_depth();
/* If we already cached the result, just return a copy */
if (rel->rd_partcheckvalid)
return copyObject(rel->rd_partcheck);
/*
* Grab at least an AccessShareLock on the parent table. Must do this
* even if the partition has been partially detached, because transactions
* concurrent with the detach might still be trying to use a partition
* descriptor that includes it.
*/
parentrelid = get_partition_parent(RelationGetRelid(rel), true);
parent = relation_open(parentrelid, AccessShareLock);
/* Get pg_class.relpartbound */
tuple = SearchSysCache1(RELOID, RelationGetRelid(rel));
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for relation %u",
RelationGetRelid(rel));
boundDatum = SysCacheGetAttr(RELOID, tuple,
Anum_pg_class_relpartbound,
&isnull);
if (!isnull)
{
PartitionBoundSpec *bound;
bound = castNode(PartitionBoundSpec,
stringToNode(TextDatumGetCString(boundDatum)));
my_qual = get_qual_from_partbound(rel, parent, bound);
}
ReleaseSysCache(tuple);
/* Add the parent's quals to the list (if any) */
if (parent->rd_rel->relispartition)
result = list_concat(generate_partition_qual(parent), my_qual);
else
result = my_qual;
/*
* Change Vars to have partition's attnos instead of the parent's. We do
* this after we concatenate the parent's quals, because we want every Var
* in it to bear this relation's attnos. It's safe to assume varno = 1
* here.
*/
result = map_partition_varattnos(result, 1, rel, parent);
/* Assert that we're not leaking any old data during assignments below */
Assert(rel->rd_partcheckcxt == NULL);
Assert(rel->rd_partcheck == NIL);
/*
* Save a copy in the relcache. The order of these operations is fairly
* critical to avoid memory leaks and ensure that we don't leave a corrupt
* relcache entry if we fail partway through copyObject.
*
* If, as is definitely possible, the partcheck list is NIL, then we do
* not need to make a context to hold it.
*/
if (result != NIL)
{
rel->rd_partcheckcxt = AllocSetContextCreate(CacheMemoryContext,
"partition constraint",
ALLOCSET_SMALL_SIZES);
MemoryContextCopyAndSetIdentifier(rel->rd_partcheckcxt,
RelationGetRelationName(rel));
oldcxt = MemoryContextSwitchTo(rel->rd_partcheckcxt);
rel->rd_partcheck = copyObject(result);
MemoryContextSwitchTo(oldcxt);
}
else
rel->rd_partcheck = NIL;
rel->rd_partcheckvalid = true;
/* Keep the parent locked until commit */
relation_close(parent, NoLock);
/* Return the working copy to the caller */
return result;
}