1
0
mirror of https://github.com/postgres/postgres.git synced 2025-12-07 12:02:30 +03:00
Files
postgres/contrib/btree_gin/btree_gin.c
Michael Paquier 713d9a847e Update some timestamp[tz] functions to use soft-error reporting
This commit updates two functions that convert "timestamptz" to
"timestamp", and vice-versa, to use the soft error reporting rather than
a their own logic to do the same.  These are now named as follows:
- timestamp2timestamptz_safe()
- timestamptz2timestamp_safe()

These functions were suffixed with "_opt_overflow", previously.

This shaves some code, as it is possible to detect how a timestamp[tz]
overflowed based on the returned value rather than a custom state.  It
is optionally possible for the callers of these functions to rely on the
error generated internally by these functions, depending on the error
context.

Similar work has been done in d03668ea05 and 4246a977ba.

Reviewed-by: Amul Sul <sulamul@gmail.com>
Discussion: https://postgr.es/m/aS09YF2GmVXjAxbJ@paquier.xyz
2025-12-02 09:30:23 +09:00

979 lines
25 KiB
C

/*
* contrib/btree_gin/btree_gin.c
*/
#include "postgres.h"
#include <limits.h>
#include "access/stratnum.h"
#include "mb/pg_wchar.h"
#include "nodes/miscnodes.h"
#include "utils/builtins.h"
#include "utils/date.h"
#include "utils/float.h"
#include "utils/inet.h"
#include "utils/numeric.h"
#include "utils/timestamp.h"
#include "utils/uuid.h"
#include "varatt.h"
PG_MODULE_MAGIC_EXT(
.name = "btree_gin",
.version = PG_VERSION
);
/*
* Our opclasses use the same strategy numbers as btree (1-5) for same-type
* comparison operators. For cross-type comparison operators, the
* low 4 bits of our strategy numbers are the btree strategy number,
* and the upper bits are a code for the right-hand-side data type.
*/
#define BTGIN_GET_BTREE_STRATEGY(strat) ((strat) & 0x0F)
#define BTGIN_GET_RHS_TYPE_CODE(strat) ((strat) >> 4)
/* extra data passed from gin_btree_extract_query to gin_btree_compare_prefix */
typedef struct QueryInfo
{
StrategyNumber strategy; /* operator strategy number */
Datum orig_datum; /* original query (comparison) datum */
Datum entry_datum; /* datum we reported as the entry value */
PGFunction typecmp; /* appropriate btree comparison function */
} QueryInfo;
typedef Datum (*btree_gin_convert_function) (Datum input);
typedef Datum (*btree_gin_leftmost_function) (void);
/*** GIN support functions shared by all datatypes ***/
static Datum
gin_btree_extract_value(FunctionCallInfo fcinfo, bool is_varlena)
{
Datum datum = PG_GETARG_DATUM(0);
int32 *nentries = (int32 *) PG_GETARG_POINTER(1);
Datum *entries = (Datum *) palloc(sizeof(Datum));
/* Ensure that values stored in the index are not toasted */
if (is_varlena)
datum = PointerGetDatum(PG_DETOAST_DATUM(datum));
entries[0] = datum;
*nentries = 1;
PG_RETURN_POINTER(entries);
}
static Datum
gin_btree_extract_query(FunctionCallInfo fcinfo,
btree_gin_leftmost_function leftmostvalue,
const bool *rhs_is_varlena,
const btree_gin_convert_function *cvt_fns,
const PGFunction *cmp_fns)
{
Datum datum = PG_GETARG_DATUM(0);
int32 *nentries = (int32 *) PG_GETARG_POINTER(1);
StrategyNumber strategy = PG_GETARG_UINT16(2);
bool **partialmatch = (bool **) PG_GETARG_POINTER(3);
Pointer **extra_data = (Pointer **) PG_GETARG_POINTER(4);
Datum *entries = (Datum *) palloc(sizeof(Datum));
QueryInfo *data = (QueryInfo *) palloc(sizeof(QueryInfo));
bool *ptr_partialmatch = (bool *) palloc(sizeof(bool));
int btree_strat,
rhs_code;
/*
* Extract the btree strategy code and the RHS data type code from the
* given strategy number.
*/
btree_strat = BTGIN_GET_BTREE_STRATEGY(strategy);
rhs_code = BTGIN_GET_RHS_TYPE_CODE(strategy);
/*
* Detoast the comparison datum. This isn't necessary for correctness,
* but it can save repeat detoastings within the comparison function.
*/
if (rhs_is_varlena[rhs_code])
datum = PointerGetDatum(PG_DETOAST_DATUM(datum));
/* Prep single comparison key with possible partial-match flag */
*nentries = 1;
*partialmatch = ptr_partialmatch;
*ptr_partialmatch = false;
/*
* For BTGreaterEqualStrategyNumber, BTGreaterStrategyNumber, and
* BTEqualStrategyNumber we want to start the index scan at the supplied
* query datum, and work forward. For BTLessStrategyNumber and
* BTLessEqualStrategyNumber, we need to start at the leftmost key, and
* work forward until the supplied query datum (which we'll send along
* inside the QueryInfo structure). Use partial match rules except for
* BTEqualStrategyNumber without a conversion function. (If there is a
* conversion function, comparison to the entry value is not trustworthy.)
*/
switch (btree_strat)
{
case BTLessStrategyNumber:
case BTLessEqualStrategyNumber:
entries[0] = leftmostvalue();
*ptr_partialmatch = true;
break;
case BTGreaterEqualStrategyNumber:
case BTGreaterStrategyNumber:
*ptr_partialmatch = true;
/* FALLTHROUGH */
case BTEqualStrategyNumber:
/* If we have a conversion function, apply it */
if (cvt_fns && cvt_fns[rhs_code])
{
entries[0] = (*cvt_fns[rhs_code]) (datum);
*ptr_partialmatch = true;
}
else
entries[0] = datum;
break;
default:
elog(ERROR, "unrecognized strategy number: %d", strategy);
}
/* Fill "extra" data */
data->strategy = strategy;
data->orig_datum = datum;
data->entry_datum = entries[0];
data->typecmp = cmp_fns[rhs_code];
*extra_data = (Pointer *) palloc(sizeof(Pointer));
**extra_data = (Pointer) data;
PG_RETURN_POINTER(entries);
}
static Datum
gin_btree_compare_prefix(FunctionCallInfo fcinfo)
{
Datum partial_key PG_USED_FOR_ASSERTS_ONLY = PG_GETARG_DATUM(0);
Datum key = PG_GETARG_DATUM(1);
QueryInfo *data = (QueryInfo *) PG_GETARG_POINTER(3);
int32 res,
cmp;
/*
* partial_key is only an approximation to the real comparison value,
* especially if it's a leftmost value. We can get an accurate answer by
* doing a possibly-cross-type comparison to the real comparison value.
* (Note that partial_key and key are of the indexed datatype while
* orig_datum is of the query operator's RHS datatype.)
*
* But just to be sure that things are what we expect, let's assert that
* partial_key is indeed what gin_btree_extract_query reported, so that
* we'll notice if anyone ever changes the core code in a way that breaks
* our assumptions.
*/
Assert(partial_key == data->entry_datum);
cmp = DatumGetInt32(CallerFInfoFunctionCall2(data->typecmp,
fcinfo->flinfo,
PG_GET_COLLATION(),
data->orig_datum,
key));
/*
* Convert the comparison result to the correct thing for the search
* operator strategy. When dealing with cross-type comparisons, an
* imprecise entry datum could lead GIN to start the scan just before the
* first possible match, so we must continue the scan if the current index
* entry doesn't satisfy the search condition for >= and > cases. But if
* that happens in an = search we can stop, because an imprecise entry
* datum means that the search value is unrepresentable in the indexed
* data type, so that there will be no exact matches.
*/
switch (BTGIN_GET_BTREE_STRATEGY(data->strategy))
{
case BTLessStrategyNumber:
/* If original datum > indexed one then return match */
if (cmp > 0)
res = 0;
else
res = 1; /* end scan */
break;
case BTLessEqualStrategyNumber:
/* If original datum >= indexed one then return match */
if (cmp >= 0)
res = 0;
else
res = 1; /* end scan */
break;
case BTEqualStrategyNumber:
/* If original datum = indexed one then return match */
/* See above about why we can end scan when cmp < 0 */
if (cmp == 0)
res = 0;
else
res = 1; /* end scan */
break;
case BTGreaterEqualStrategyNumber:
/* If original datum <= indexed one then return match */
if (cmp <= 0)
res = 0;
else
res = -1; /* keep scanning */
break;
case BTGreaterStrategyNumber:
/* If original datum < indexed one then return match */
if (cmp < 0)
res = 0;
else
res = -1; /* keep scanning */
break;
default:
elog(ERROR, "unrecognized strategy number: %d",
data->strategy);
res = 0;
}
PG_RETURN_INT32(res);
}
PG_FUNCTION_INFO_V1(gin_btree_consistent);
Datum
gin_btree_consistent(PG_FUNCTION_ARGS)
{
bool *recheck = (bool *) PG_GETARG_POINTER(5);
*recheck = false;
PG_RETURN_BOOL(true);
}
/*** GIN_SUPPORT macro defines the datatype specific functions ***/
#define GIN_SUPPORT(type, leftmostvalue, is_varlena, cvtfns, cmpfns) \
PG_FUNCTION_INFO_V1(gin_extract_value_##type); \
Datum \
gin_extract_value_##type(PG_FUNCTION_ARGS) \
{ \
return gin_btree_extract_value(fcinfo, is_varlena[0]); \
} \
PG_FUNCTION_INFO_V1(gin_extract_query_##type); \
Datum \
gin_extract_query_##type(PG_FUNCTION_ARGS) \
{ \
return gin_btree_extract_query(fcinfo, \
leftmostvalue, is_varlena, \
cvtfns, cmpfns); \
} \
PG_FUNCTION_INFO_V1(gin_compare_prefix_##type); \
Datum \
gin_compare_prefix_##type(PG_FUNCTION_ARGS) \
{ \
return gin_btree_compare_prefix(fcinfo); \
}
/*** Datatype specifications ***/
/* Function to produce the least possible value of the indexed datatype */
static Datum
leftmostvalue_int2(void)
{
return Int16GetDatum(SHRT_MIN);
}
/*
* For cross-type support, we must provide conversion functions that produce
* a Datum of the indexed datatype, since GIN requires the "entry" datums to
* be of that type. If an exact conversion is not possible, produce a value
* that will lead GIN to find the first index entry that is greater than
* or equal to the actual comparison value. (But rounding down is OK, so
* sometimes we might find an index entry that's just less than the
* comparison value.)
*
* For integer values, it's sufficient to clamp the input to be in-range.
*
* Note: for out-of-range input values, we could in theory detect that the
* search condition matches all or none of the index, and avoid a useless
* index descent in the latter case. Such searches are probably rare though,
* so we don't contort this code enough to do that.
*/
static Datum
cvt_int4_int2(Datum input)
{
int32 val = DatumGetInt32(input);
val = Max(val, SHRT_MIN);
val = Min(val, SHRT_MAX);
return Int16GetDatum((int16) val);
}
static Datum
cvt_int8_int2(Datum input)
{
int64 val = DatumGetInt64(input);
val = Max(val, SHRT_MIN);
val = Min(val, SHRT_MAX);
return Int16GetDatum((int16) val);
}
/*
* RHS-type-is-varlena flags, conversion and comparison function arrays,
* indexed by high bits of the operator strategy number. A NULL in the
* conversion function array indicates that no conversion is needed, which
* will always be the case for the zero'th entry. Note that the cross-type
* comparison functions should be the ones with the indexed datatype second.
*/
static const bool int2_rhs_is_varlena[] =
{false, false, false};
static const btree_gin_convert_function int2_cvt_fns[] =
{NULL, cvt_int4_int2, cvt_int8_int2};
static const PGFunction int2_cmp_fns[] =
{btint2cmp, btint42cmp, btint82cmp};
GIN_SUPPORT(int2, leftmostvalue_int2, int2_rhs_is_varlena, int2_cvt_fns, int2_cmp_fns)
static Datum
leftmostvalue_int4(void)
{
return Int32GetDatum(INT_MIN);
}
static Datum
cvt_int2_int4(Datum input)
{
int16 val = DatumGetInt16(input);
return Int32GetDatum((int32) val);
}
static Datum
cvt_int8_int4(Datum input)
{
int64 val = DatumGetInt64(input);
val = Max(val, INT_MIN);
val = Min(val, INT_MAX);
return Int32GetDatum((int32) val);
}
static const bool int4_rhs_is_varlena[] =
{false, false, false};
static const btree_gin_convert_function int4_cvt_fns[] =
{NULL, cvt_int2_int4, cvt_int8_int4};
static const PGFunction int4_cmp_fns[] =
{btint4cmp, btint24cmp, btint84cmp};
GIN_SUPPORT(int4, leftmostvalue_int4, int4_rhs_is_varlena, int4_cvt_fns, int4_cmp_fns)
static Datum
leftmostvalue_int8(void)
{
return Int64GetDatum(PG_INT64_MIN);
}
static Datum
cvt_int2_int8(Datum input)
{
int16 val = DatumGetInt16(input);
return Int64GetDatum((int64) val);
}
static Datum
cvt_int4_int8(Datum input)
{
int32 val = DatumGetInt32(input);
return Int64GetDatum((int64) val);
}
static const bool int8_rhs_is_varlena[] =
{false, false, false};
static const btree_gin_convert_function int8_cvt_fns[] =
{NULL, cvt_int2_int8, cvt_int4_int8};
static const PGFunction int8_cmp_fns[] =
{btint8cmp, btint28cmp, btint48cmp};
GIN_SUPPORT(int8, leftmostvalue_int8, int8_rhs_is_varlena, int8_cvt_fns, int8_cmp_fns)
static Datum
leftmostvalue_float4(void)
{
return Float4GetDatum(-get_float4_infinity());
}
static Datum
cvt_float8_float4(Datum input)
{
float8 val = DatumGetFloat8(input);
float4 result;
/*
* Assume that ordinary C conversion will produce a usable result.
* (Compare dtof(), which raises error conditions that we don't need.)
* Note that for inputs that aren't exactly representable as float4, it
* doesn't matter whether the conversion rounds up or down. That might
* cause us to scan a few index entries that we'll reject as not matching,
* but we won't miss any that should match.
*/
result = (float4) val;
return Float4GetDatum(result);
}
static const bool float4_rhs_is_varlena[] =
{false, false};
static const btree_gin_convert_function float4_cvt_fns[] =
{NULL, cvt_float8_float4};
static const PGFunction float4_cmp_fns[] =
{btfloat4cmp, btfloat84cmp};
GIN_SUPPORT(float4, leftmostvalue_float4, float4_rhs_is_varlena, float4_cvt_fns, float4_cmp_fns)
static Datum
leftmostvalue_float8(void)
{
return Float8GetDatum(-get_float8_infinity());
}
static Datum
cvt_float4_float8(Datum input)
{
float4 val = DatumGetFloat4(input);
return Float8GetDatum((float8) val);
}
static const bool float8_rhs_is_varlena[] =
{false, false};
static const btree_gin_convert_function float8_cvt_fns[] =
{NULL, cvt_float4_float8};
static const PGFunction float8_cmp_fns[] =
{btfloat8cmp, btfloat48cmp};
GIN_SUPPORT(float8, leftmostvalue_float8, float8_rhs_is_varlena, float8_cvt_fns, float8_cmp_fns)
static Datum
leftmostvalue_money(void)
{
return Int64GetDatum(PG_INT64_MIN);
}
static const bool money_rhs_is_varlena[] =
{false};
static const PGFunction money_cmp_fns[] =
{cash_cmp};
GIN_SUPPORT(money, leftmostvalue_money, money_rhs_is_varlena, NULL, money_cmp_fns)
static Datum
leftmostvalue_oid(void)
{
return ObjectIdGetDatum(0);
}
static const bool oid_rhs_is_varlena[] =
{false};
static const PGFunction oid_cmp_fns[] =
{btoidcmp};
GIN_SUPPORT(oid, leftmostvalue_oid, oid_rhs_is_varlena, NULL, oid_cmp_fns)
static Datum
leftmostvalue_timestamp(void)
{
return TimestampGetDatum(DT_NOBEGIN);
}
static Datum
cvt_date_timestamp(Datum input)
{
DateADT val = DatumGetDateADT(input);
Timestamp result;
ErrorSaveContext escontext = {T_ErrorSaveContext};
result = date2timestamp_safe(val, (Node *) &escontext);
/* We can ignore errors, since result is useful as-is */
return TimestampGetDatum(result);
}
static Datum
cvt_timestamptz_timestamp(Datum input)
{
TimestampTz val = DatumGetTimestampTz(input);
ErrorSaveContext escontext = {T_ErrorSaveContext};
Timestamp result;
result = timestamptz2timestamp_safe(val, (Node *) &escontext);
/* We can ignore errors, since result is useful as-is */
return TimestampGetDatum(result);
}
static const bool timestamp_rhs_is_varlena[] =
{false, false, false};
static const btree_gin_convert_function timestamp_cvt_fns[] =
{NULL, cvt_date_timestamp, cvt_timestamptz_timestamp};
static const PGFunction timestamp_cmp_fns[] =
{timestamp_cmp, date_cmp_timestamp, timestamptz_cmp_timestamp};
GIN_SUPPORT(timestamp, leftmostvalue_timestamp, timestamp_rhs_is_varlena, timestamp_cvt_fns, timestamp_cmp_fns)
static Datum
cvt_date_timestamptz(Datum input)
{
DateADT val = DatumGetDateADT(input);
ErrorSaveContext escontext = {T_ErrorSaveContext};
TimestampTz result;
result = date2timestamptz_safe(val, (Node *) &escontext);
/* We can ignore errors, since result is useful as-is */
return TimestampTzGetDatum(result);
}
static Datum
cvt_timestamp_timestamptz(Datum input)
{
Timestamp val = DatumGetTimestamp(input);
ErrorSaveContext escontext = {T_ErrorSaveContext};
TimestampTz result;
result = timestamp2timestamptz_safe(val, (Node *) &escontext);
/* We can ignore errors, since result is useful as-is */
return TimestampTzGetDatum(result);
}
static const bool timestamptz_rhs_is_varlena[] =
{false, false, false};
static const btree_gin_convert_function timestamptz_cvt_fns[] =
{NULL, cvt_date_timestamptz, cvt_timestamp_timestamptz};
static const PGFunction timestamptz_cmp_fns[] =
{timestamp_cmp, date_cmp_timestamptz, timestamp_cmp_timestamptz};
GIN_SUPPORT(timestamptz, leftmostvalue_timestamp, timestamptz_rhs_is_varlena, timestamptz_cvt_fns, timestamptz_cmp_fns)
static Datum
leftmostvalue_time(void)
{
return TimeADTGetDatum(0);
}
static const bool time_rhs_is_varlena[] =
{false};
static const PGFunction time_cmp_fns[] =
{time_cmp};
GIN_SUPPORT(time, leftmostvalue_time, time_rhs_is_varlena, NULL, time_cmp_fns)
static Datum
leftmostvalue_timetz(void)
{
TimeTzADT *v = palloc(sizeof(TimeTzADT));
v->time = 0;
v->zone = -24 * 3600; /* XXX is that true? */
return TimeTzADTPGetDatum(v);
}
static const bool timetz_rhs_is_varlena[] =
{false};
static const PGFunction timetz_cmp_fns[] =
{timetz_cmp};
GIN_SUPPORT(timetz, leftmostvalue_timetz, timetz_rhs_is_varlena, NULL, timetz_cmp_fns)
static Datum
leftmostvalue_date(void)
{
return DateADTGetDatum(DATEVAL_NOBEGIN);
}
static Datum
cvt_timestamp_date(Datum input)
{
Timestamp val = DatumGetTimestamp(input);
ErrorSaveContext escontext = {T_ErrorSaveContext};
DateADT result;
result = timestamp2date_safe(val, (Node *) &escontext);
/* We can ignore errors, since result is useful as-is */
return DateADTGetDatum(result);
}
static Datum
cvt_timestamptz_date(Datum input)
{
TimestampTz val = DatumGetTimestampTz(input);
ErrorSaveContext escontext = {T_ErrorSaveContext};
DateADT result;
result = timestamptz2date_safe(val, (Node *) &escontext);
/* We can ignore errors, since result is useful as-is */
return DateADTGetDatum(result);
}
static const bool date_rhs_is_varlena[] =
{false, false, false};
static const btree_gin_convert_function date_cvt_fns[] =
{NULL, cvt_timestamp_date, cvt_timestamptz_date};
static const PGFunction date_cmp_fns[] =
{date_cmp, timestamp_cmp_date, timestamptz_cmp_date};
GIN_SUPPORT(date, leftmostvalue_date, date_rhs_is_varlena, date_cvt_fns, date_cmp_fns)
static Datum
leftmostvalue_interval(void)
{
Interval *v = palloc(sizeof(Interval));
INTERVAL_NOBEGIN(v);
return IntervalPGetDatum(v);
}
static const bool interval_rhs_is_varlena[] =
{false};
static const PGFunction interval_cmp_fns[] =
{interval_cmp};
GIN_SUPPORT(interval, leftmostvalue_interval, interval_rhs_is_varlena, NULL, interval_cmp_fns)
static Datum
leftmostvalue_macaddr(void)
{
macaddr *v = palloc0(sizeof(macaddr));
return MacaddrPGetDatum(v);
}
static const bool macaddr_rhs_is_varlena[] =
{false};
static const PGFunction macaddr_cmp_fns[] =
{macaddr_cmp};
GIN_SUPPORT(macaddr, leftmostvalue_macaddr, macaddr_rhs_is_varlena, NULL, macaddr_cmp_fns)
static Datum
leftmostvalue_macaddr8(void)
{
macaddr8 *v = palloc0(sizeof(macaddr8));
return Macaddr8PGetDatum(v);
}
static const bool macaddr8_rhs_is_varlena[] =
{false};
static const PGFunction macaddr8_cmp_fns[] =
{macaddr8_cmp};
GIN_SUPPORT(macaddr8, leftmostvalue_macaddr8, macaddr8_rhs_is_varlena, NULL, macaddr8_cmp_fns)
static Datum
leftmostvalue_inet(void)
{
return DirectFunctionCall1(inet_in, CStringGetDatum("0.0.0.0/0"));
}
static const bool inet_rhs_is_varlena[] =
{true};
static const PGFunction inet_cmp_fns[] =
{network_cmp};
GIN_SUPPORT(inet, leftmostvalue_inet, inet_rhs_is_varlena, NULL, inet_cmp_fns)
static const bool cidr_rhs_is_varlena[] =
{true};
static const PGFunction cidr_cmp_fns[] =
{network_cmp};
GIN_SUPPORT(cidr, leftmostvalue_inet, cidr_rhs_is_varlena, NULL, cidr_cmp_fns)
static Datum
leftmostvalue_text(void)
{
return PointerGetDatum(cstring_to_text_with_len("", 0));
}
static Datum
cvt_name_text(Datum input)
{
Name val = DatumGetName(input);
return PointerGetDatum(cstring_to_text(NameStr(*val)));
}
static const bool text_rhs_is_varlena[] =
{true, false};
static const btree_gin_convert_function text_cvt_fns[] =
{NULL, cvt_name_text};
static const PGFunction text_cmp_fns[] =
{bttextcmp, btnametextcmp};
GIN_SUPPORT(text, leftmostvalue_text, text_rhs_is_varlena, text_cvt_fns, text_cmp_fns)
static const bool bpchar_rhs_is_varlena[] =
{true};
static const PGFunction bpchar_cmp_fns[] =
{bpcharcmp};
GIN_SUPPORT(bpchar, leftmostvalue_text, bpchar_rhs_is_varlena, NULL, bpchar_cmp_fns)
static Datum
leftmostvalue_char(void)
{
return CharGetDatum(0);
}
static const bool char_rhs_is_varlena[] =
{false};
static const PGFunction char_cmp_fns[] =
{btcharcmp};
GIN_SUPPORT(char, leftmostvalue_char, char_rhs_is_varlena, NULL, char_cmp_fns)
static const bool bytea_rhs_is_varlena[] =
{true};
static const PGFunction bytea_cmp_fns[] =
{byteacmp};
GIN_SUPPORT(bytea, leftmostvalue_text, bytea_rhs_is_varlena, NULL, bytea_cmp_fns)
static Datum
leftmostvalue_bit(void)
{
return DirectFunctionCall3(bit_in,
CStringGetDatum(""),
ObjectIdGetDatum(0),
Int32GetDatum(-1));
}
static const bool bit_rhs_is_varlena[] =
{true};
static const PGFunction bit_cmp_fns[] =
{bitcmp};
GIN_SUPPORT(bit, leftmostvalue_bit, bit_rhs_is_varlena, NULL, bit_cmp_fns)
static Datum
leftmostvalue_varbit(void)
{
return DirectFunctionCall3(varbit_in,
CStringGetDatum(""),
ObjectIdGetDatum(0),
Int32GetDatum(-1));
}
static const bool varbit_rhs_is_varlena[] =
{true};
static const PGFunction varbit_cmp_fns[] =
{bitcmp};
GIN_SUPPORT(varbit, leftmostvalue_varbit, varbit_rhs_is_varlena, NULL, varbit_cmp_fns)
/*
* Numeric type hasn't a real left-most value, so we use PointerGetDatum(NULL)
* (*not* a SQL NULL) to represent that. We can get away with that because
* the value returned by our leftmostvalue function will never be stored in
* the index nor passed to anything except our compare and prefix-comparison
* functions. The same trick could be used for other pass-by-reference types.
*/
#define NUMERIC_IS_LEFTMOST(x) ((x) == NULL)
PG_FUNCTION_INFO_V1(gin_numeric_cmp);
Datum
gin_numeric_cmp(PG_FUNCTION_ARGS)
{
Numeric a = (Numeric) PG_GETARG_POINTER(0);
Numeric b = (Numeric) PG_GETARG_POINTER(1);
int res = 0;
if (NUMERIC_IS_LEFTMOST(a))
{
res = (NUMERIC_IS_LEFTMOST(b)) ? 0 : -1;
}
else if (NUMERIC_IS_LEFTMOST(b))
{
res = 1;
}
else
{
res = DatumGetInt32(DirectFunctionCall2(numeric_cmp,
NumericGetDatum(a),
NumericGetDatum(b)));
}
PG_RETURN_INT32(res);
}
static Datum
leftmostvalue_numeric(void)
{
return PointerGetDatum(NULL);
}
static const bool numeric_rhs_is_varlena[] =
{true};
static const PGFunction numeric_cmp_fns[] =
{gin_numeric_cmp};
GIN_SUPPORT(numeric, leftmostvalue_numeric, numeric_rhs_is_varlena, NULL, numeric_cmp_fns)
/*
* Use a similar trick to that used for numeric for enums, since we don't
* actually know the leftmost value of any enum without knowing the concrete
* type, so we use a dummy leftmost value of InvalidOid.
*
* Note that we use CallerFInfoFunctionCall2 here so that enum_cmp
* gets a valid fn_extra to work with. Unlike most other type comparison
* routines it needs it, so we can't use DirectFunctionCall2.
*/
#define ENUM_IS_LEFTMOST(x) ((x) == InvalidOid)
PG_FUNCTION_INFO_V1(gin_enum_cmp);
Datum
gin_enum_cmp(PG_FUNCTION_ARGS)
{
Oid a = PG_GETARG_OID(0);
Oid b = PG_GETARG_OID(1);
int res = 0;
if (ENUM_IS_LEFTMOST(a))
{
res = (ENUM_IS_LEFTMOST(b)) ? 0 : -1;
}
else if (ENUM_IS_LEFTMOST(b))
{
res = 1;
}
else
{
res = DatumGetInt32(CallerFInfoFunctionCall2(enum_cmp,
fcinfo->flinfo,
PG_GET_COLLATION(),
ObjectIdGetDatum(a),
ObjectIdGetDatum(b)));
}
PG_RETURN_INT32(res);
}
static Datum
leftmostvalue_enum(void)
{
return ObjectIdGetDatum(InvalidOid);
}
static const bool enum_rhs_is_varlena[] =
{false};
static const PGFunction enum_cmp_fns[] =
{gin_enum_cmp};
GIN_SUPPORT(anyenum, leftmostvalue_enum, enum_rhs_is_varlena, NULL, enum_cmp_fns)
static Datum
leftmostvalue_uuid(void)
{
/*
* palloc0 will create the UUID with all zeroes:
* "00000000-0000-0000-0000-000000000000"
*/
pg_uuid_t *retval = (pg_uuid_t *) palloc0(sizeof(pg_uuid_t));
return UUIDPGetDatum(retval);
}
static const bool uuid_rhs_is_varlena[] =
{false};
static const PGFunction uuid_cmp_fns[] =
{uuid_cmp};
GIN_SUPPORT(uuid, leftmostvalue_uuid, uuid_rhs_is_varlena, NULL, uuid_cmp_fns)
static Datum
leftmostvalue_name(void)
{
NameData *result = (NameData *) palloc0(NAMEDATALEN);
return NameGetDatum(result);
}
static Datum
cvt_text_name(Datum input)
{
text *val = DatumGetTextPP(input);
NameData *result = (NameData *) palloc0(NAMEDATALEN);
int len = VARSIZE_ANY_EXHDR(val);
/*
* Truncate oversize input. We're assuming this will produce a result
* considered less than the original. That could be a bad assumption in
* some collations, but fortunately an index on "name" is generally going
* to use C collation.
*/
if (len >= NAMEDATALEN)
len = pg_mbcliplen(VARDATA_ANY(val), len, NAMEDATALEN - 1);
memcpy(NameStr(*result), VARDATA_ANY(val), len);
return NameGetDatum(result);
}
static const bool name_rhs_is_varlena[] =
{false, true};
static const btree_gin_convert_function name_cvt_fns[] =
{NULL, cvt_text_name};
static const PGFunction name_cmp_fns[] =
{btnamecmp, bttextnamecmp};
GIN_SUPPORT(name, leftmostvalue_name, name_rhs_is_varlena, name_cvt_fns, name_cmp_fns)
static Datum
leftmostvalue_bool(void)
{
return BoolGetDatum(false);
}
static const bool bool_rhs_is_varlena[] =
{false};
static const PGFunction bool_cmp_fns[] =
{btboolcmp};
GIN_SUPPORT(bool, leftmostvalue_bool, bool_rhs_is_varlena, NULL, bool_cmp_fns)