mirror of
				https://github.com/postgres/postgres.git
				synced 2025-11-03 09:13:20 +03:00 
			
		
		
		
	getting rid of numerous ad-hoc versions that have popped up in various places. Shortens code and avoids conflict with Windows min() and max() macros.
		
			
				
	
	
		
			1219 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1219 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/******************************************************************************
 | 
						|
  This file contains routines that can be bound to a Postgres backend and
 | 
						|
  called by the backend in the process of processing queries.  The calling
 | 
						|
  format for these routines is dictated by Postgres architecture.
 | 
						|
******************************************************************************/
 | 
						|
 | 
						|
#include "postgres.h"
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
#include "access/gist.h"
 | 
						|
#include "access/rtree.h"
 | 
						|
#include "lib/stringinfo.h"
 | 
						|
#include "utils/builtins.h"
 | 
						|
 | 
						|
#include "cubedata.h"
 | 
						|
 | 
						|
extern int	cube_yyparse();
 | 
						|
extern void cube_yyerror(const char *message);
 | 
						|
extern void cube_scanner_init(const char *str);
 | 
						|
extern void cube_scanner_finish(void);
 | 
						|
 | 
						|
/*
 | 
						|
** Input/Output routines
 | 
						|
*/
 | 
						|
NDBOX	   *cube_in(char *str);
 | 
						|
NDBOX	   *cube(text *str);
 | 
						|
char	   *cube_out(NDBOX * cube);
 | 
						|
NDBOX	   *cube_f8(double *);
 | 
						|
NDBOX	   *cube_f8_f8(double *, double *);
 | 
						|
NDBOX	   *cube_c_f8(NDBOX *, double *);
 | 
						|
NDBOX	   *cube_c_f8_f8(NDBOX *, double *, double *);
 | 
						|
int4		cube_dim(NDBOX * a);
 | 
						|
double	   *cube_ll_coord(NDBOX * a, int4 n);
 | 
						|
double	   *cube_ur_coord(NDBOX * a, int4 n);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** GiST support methods
 | 
						|
*/
 | 
						|
bool		g_cube_consistent(GISTENTRY *entry, NDBOX * query, StrategyNumber strategy);
 | 
						|
GISTENTRY  *g_cube_compress(GISTENTRY *entry);
 | 
						|
GISTENTRY  *g_cube_decompress(GISTENTRY *entry);
 | 
						|
float	   *g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
 | 
						|
GIST_SPLITVEC *g_cube_picksplit(GistEntryVector *entryvec, GIST_SPLITVEC *v);
 | 
						|
bool		g_cube_leaf_consistent(NDBOX * key, NDBOX * query, StrategyNumber strategy);
 | 
						|
bool		g_cube_internal_consistent(NDBOX * key, NDBOX * query, StrategyNumber strategy);
 | 
						|
NDBOX	   *g_cube_union(GistEntryVector *entryvec, int *sizep);
 | 
						|
NDBOX	   *g_cube_binary_union(NDBOX * r1, NDBOX * r2, int *sizep);
 | 
						|
bool	   *g_cube_same(NDBOX * b1, NDBOX * b2, bool *result);
 | 
						|
 | 
						|
/*
 | 
						|
** B-tree support functions
 | 
						|
*/
 | 
						|
bool		cube_eq(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_ne(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_lt(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_gt(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_le(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_ge(NDBOX * a, NDBOX * b);
 | 
						|
int32		cube_cmp(NDBOX * a, NDBOX * b);
 | 
						|
 | 
						|
/*
 | 
						|
** R-tree support functions
 | 
						|
*/
 | 
						|
bool		cube_contains(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_contained(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_overlap(NDBOX * a, NDBOX * b);
 | 
						|
NDBOX	   *cube_union(NDBOX * a, NDBOX * b);
 | 
						|
NDBOX	   *cube_inter(NDBOX * a, NDBOX * b);
 | 
						|
double	   *cube_size(NDBOX * a);
 | 
						|
void		rt_cube_size(NDBOX * a, double *sz);
 | 
						|
 | 
						|
/*
 | 
						|
** These make no sense for this type, but R-tree wants them
 | 
						|
*/
 | 
						|
bool		cube_over_left(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_over_right(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_left(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_right(NDBOX * a, NDBOX * b);
 | 
						|
 | 
						|
/*
 | 
						|
** miscellaneous
 | 
						|
*/
 | 
						|
bool		cube_lt(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_gt(NDBOX * a, NDBOX * b);
 | 
						|
double	   *cube_distance(NDBOX * a, NDBOX * b);
 | 
						|
bool		cube_is_point(NDBOX * a);
 | 
						|
NDBOX	   *cube_enlarge(NDBOX * a, double *r, int4 n);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Auxiliary funxtions
 | 
						|
*/
 | 
						|
static double distance_1D(double a1, double a2, double b1, double b2);
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 * Input/Output functions
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
/* NdBox = [(lowerleft),(upperright)] */
 | 
						|
/* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
 | 
						|
NDBOX *
 | 
						|
cube_in(char *str)
 | 
						|
{
 | 
						|
	void	   *result;
 | 
						|
 | 
						|
	cube_scanner_init(str);
 | 
						|
 | 
						|
	if (cube_yyparse(&result) != 0)
 | 
						|
		cube_yyerror("bogus input");
 | 
						|
 | 
						|
	cube_scanner_finish();
 | 
						|
 | 
						|
	return ((NDBOX *) result);
 | 
						|
}
 | 
						|
 | 
						|
/* Allow conversion from text to cube to allow input of computed strings */
 | 
						|
/* There may be issues with toasted data here. I don't know enough to be sure.*/
 | 
						|
NDBOX *
 | 
						|
cube(text *str)
 | 
						|
{
 | 
						|
	return cube_in(DatumGetCString(DirectFunctionCall1(textout,
 | 
						|
												 PointerGetDatum(str))));
 | 
						|
}
 | 
						|
 | 
						|
char *
 | 
						|
cube_out(NDBOX * cube)
 | 
						|
{
 | 
						|
	StringInfoData buf;
 | 
						|
	bool		equal = true;
 | 
						|
	int			dim = cube->dim;
 | 
						|
	int			i;
 | 
						|
	int			ndig;
 | 
						|
 | 
						|
	initStringInfo(&buf);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get the number of digits to display.
 | 
						|
	 */
 | 
						|
	ndig = DBL_DIG + extra_float_digits;
 | 
						|
	if (ndig < 1)
 | 
						|
		ndig = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * while printing the first (LL) corner, check if it is equal to the
 | 
						|
	 * second one
 | 
						|
	 */
 | 
						|
	appendStringInfoChar(&buf, '(');
 | 
						|
	for (i = 0; i < dim; i++)
 | 
						|
	{
 | 
						|
		if (i > 0)
 | 
						|
			appendStringInfo(&buf, ", ");
 | 
						|
		appendStringInfo(&buf, "%.*g", ndig, cube->x[i]);
 | 
						|
		if (cube->x[i] != cube->x[i + dim])
 | 
						|
			equal = false;
 | 
						|
	}
 | 
						|
	appendStringInfoChar(&buf, ')');
 | 
						|
 | 
						|
	if (!equal)
 | 
						|
	{
 | 
						|
		appendStringInfo(&buf, ",(");
 | 
						|
		for (i = 0; i < dim; i++)
 | 
						|
		{
 | 
						|
			if (i > 0)
 | 
						|
				appendStringInfo(&buf, ", ");
 | 
						|
			appendStringInfo(&buf, "%.*g", ndig, cube->x[i + dim]);
 | 
						|
		}
 | 
						|
		appendStringInfoChar(&buf, ')');
 | 
						|
	}
 | 
						|
 | 
						|
	return buf.data;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 *						   GiST functions
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Consistent method for boxes
 | 
						|
** Should return false if for all data items x below entry,
 | 
						|
** the predicate x op query == FALSE, where op is the oper
 | 
						|
** corresponding to strategy in the pg_amop table.
 | 
						|
*/
 | 
						|
bool
 | 
						|
g_cube_consistent(GISTENTRY *entry,
 | 
						|
				  NDBOX * query,
 | 
						|
				  StrategyNumber strategy)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * if entry is not leaf, use g_cube_internal_consistent, else use
 | 
						|
	 * g_cube_leaf_consistent
 | 
						|
	 */
 | 
						|
	if (GIST_LEAF(entry))
 | 
						|
		return g_cube_leaf_consistent((NDBOX *) DatumGetPointer(entry->key),
 | 
						|
									  query, strategy);
 | 
						|
	else
 | 
						|
		return g_cube_internal_consistent((NDBOX *) DatumGetPointer(entry->key),
 | 
						|
										  query, strategy);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Union method for boxes
 | 
						|
** returns the minimal bounding box that encloses all the entries in entryvec
 | 
						|
*/
 | 
						|
NDBOX *
 | 
						|
g_cube_union(GistEntryVector *entryvec, int *sizep)
 | 
						|
{
 | 
						|
	int			i;
 | 
						|
	NDBOX	   *out = (NDBOX *) NULL;
 | 
						|
	NDBOX	   *tmp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * fprintf(stderr, "union\n");
 | 
						|
	 */
 | 
						|
	tmp = (NDBOX *) DatumGetPointer(entryvec->vector[0].key);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * sizep = sizeof(NDBOX); -- NDBOX has variable size
 | 
						|
	 */
 | 
						|
	*sizep = tmp->size;
 | 
						|
 | 
						|
	for (i = 1; i < entryvec->n; i++)
 | 
						|
	{
 | 
						|
		out = g_cube_binary_union(tmp, (NDBOX *)
 | 
						|
								DatumGetPointer(entryvec->vector[i].key),
 | 
						|
								  sizep);
 | 
						|
		if (i > 1)
 | 
						|
			pfree(tmp);
 | 
						|
		tmp = out;
 | 
						|
	}
 | 
						|
 | 
						|
	return (out);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** GiST Compress and Decompress methods for boxes
 | 
						|
** do not do anything.
 | 
						|
*/
 | 
						|
GISTENTRY *
 | 
						|
g_cube_compress(GISTENTRY *entry)
 | 
						|
{
 | 
						|
	return (entry);
 | 
						|
}
 | 
						|
 | 
						|
GISTENTRY *
 | 
						|
g_cube_decompress(GISTENTRY *entry)
 | 
						|
{
 | 
						|
	return (entry);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Penalty method for boxes
 | 
						|
** As in the R-tree paper, we use change in area as our penalty metric
 | 
						|
*/
 | 
						|
float *
 | 
						|
g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
 | 
						|
{
 | 
						|
	NDBOX	   *ud;
 | 
						|
	double		tmp1,
 | 
						|
				tmp2;
 | 
						|
 | 
						|
	ud = cube_union((NDBOX *) DatumGetPointer(origentry->key),
 | 
						|
					(NDBOX *) DatumGetPointer(newentry->key));
 | 
						|
	rt_cube_size(ud, &tmp1);
 | 
						|
	rt_cube_size((NDBOX *) DatumGetPointer(origentry->key), &tmp2);
 | 
						|
	*result = (float) (tmp1 - tmp2);
 | 
						|
	pfree(ud);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * fprintf(stderr, "penalty\n"); fprintf(stderr, "\t%g\n", *result);
 | 
						|
	 */
 | 
						|
	return (result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST PickSplit method for boxes
 | 
						|
** We use Guttman's poly time split algorithm
 | 
						|
*/
 | 
						|
GIST_SPLITVEC *
 | 
						|
g_cube_picksplit(GistEntryVector *entryvec,
 | 
						|
				 GIST_SPLITVEC *v)
 | 
						|
{
 | 
						|
	OffsetNumber i,
 | 
						|
				j;
 | 
						|
	NDBOX	   *datum_alpha,
 | 
						|
			   *datum_beta;
 | 
						|
	NDBOX	   *datum_l,
 | 
						|
			   *datum_r;
 | 
						|
	NDBOX	   *union_d,
 | 
						|
			   *union_dl,
 | 
						|
			   *union_dr;
 | 
						|
	NDBOX	   *inter_d;
 | 
						|
	bool		firsttime;
 | 
						|
	double		size_alpha,
 | 
						|
				size_beta,
 | 
						|
				size_union,
 | 
						|
				size_inter;
 | 
						|
	double		size_waste,
 | 
						|
				waste;
 | 
						|
	double		size_l,
 | 
						|
				size_r;
 | 
						|
	int			nbytes;
 | 
						|
	OffsetNumber seed_1 = 0,
 | 
						|
				seed_2 = 0;
 | 
						|
	OffsetNumber *left,
 | 
						|
			   *right;
 | 
						|
	OffsetNumber maxoff;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * fprintf(stderr, "picksplit\n");
 | 
						|
	 */
 | 
						|
	maxoff = entryvec->n - 2;
 | 
						|
	nbytes = (maxoff + 2) * sizeof(OffsetNumber);
 | 
						|
	v->spl_left = (OffsetNumber *) palloc(nbytes);
 | 
						|
	v->spl_right = (OffsetNumber *) palloc(nbytes);
 | 
						|
 | 
						|
	firsttime = true;
 | 
						|
	waste = 0.0;
 | 
						|
 | 
						|
	for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
 | 
						|
	{
 | 
						|
		datum_alpha = (NDBOX *) DatumGetPointer(entryvec->vector[i].key);
 | 
						|
		for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
 | 
						|
		{
 | 
						|
			datum_beta = (NDBOX *) DatumGetPointer(entryvec->vector[j].key);
 | 
						|
 | 
						|
			/* compute the wasted space by unioning these guys */
 | 
						|
			/* size_waste = size_union - size_inter; */
 | 
						|
			union_d = cube_union(datum_alpha, datum_beta);
 | 
						|
			rt_cube_size(union_d, &size_union);
 | 
						|
			inter_d = cube_inter(datum_alpha, datum_beta);
 | 
						|
			rt_cube_size(inter_d, &size_inter);
 | 
						|
			size_waste = size_union - size_inter;
 | 
						|
 | 
						|
			pfree(union_d);
 | 
						|
 | 
						|
			if (inter_d != (NDBOX *) NULL)
 | 
						|
				pfree(inter_d);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * are these a more promising split than what we've already
 | 
						|
			 * seen?
 | 
						|
			 */
 | 
						|
 | 
						|
			if (size_waste > waste || firsttime)
 | 
						|
			{
 | 
						|
				waste = size_waste;
 | 
						|
				seed_1 = i;
 | 
						|
				seed_2 = j;
 | 
						|
				firsttime = false;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	left = v->spl_left;
 | 
						|
	v->spl_nleft = 0;
 | 
						|
	right = v->spl_right;
 | 
						|
	v->spl_nright = 0;
 | 
						|
 | 
						|
	datum_alpha = (NDBOX *) DatumGetPointer(entryvec->vector[seed_1].key);
 | 
						|
	datum_l = cube_union(datum_alpha, datum_alpha);
 | 
						|
	rt_cube_size(datum_l, &size_l);
 | 
						|
	datum_beta = (NDBOX *) DatumGetPointer(entryvec->vector[seed_2].key);
 | 
						|
	datum_r = cube_union(datum_beta, datum_beta);
 | 
						|
	rt_cube_size(datum_r, &size_r);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now split up the regions between the two seeds.	An important
 | 
						|
	 * property of this split algorithm is that the split vector v has the
 | 
						|
	 * indices of items to be split in order in its left and right
 | 
						|
	 * vectors.  We exploit this property by doing a merge in the code
 | 
						|
	 * that actually splits the page.
 | 
						|
	 *
 | 
						|
	 * For efficiency, we also place the new index tuple in this loop. This
 | 
						|
	 * is handled at the very end, when we have placed all the existing
 | 
						|
	 * tuples and i == maxoff + 1.
 | 
						|
	 */
 | 
						|
 | 
						|
	maxoff = OffsetNumberNext(maxoff);
 | 
						|
	for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
 | 
						|
	{
 | 
						|
		/*
 | 
						|
		 * If we've already decided where to place this item, just put it
 | 
						|
		 * on the right list.  Otherwise, we need to figure out which page
 | 
						|
		 * needs the least enlargement in order to store the item.
 | 
						|
		 */
 | 
						|
 | 
						|
		if (i == seed_1)
 | 
						|
		{
 | 
						|
			*left++ = i;
 | 
						|
			v->spl_nleft++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		else if (i == seed_2)
 | 
						|
		{
 | 
						|
			*right++ = i;
 | 
						|
			v->spl_nright++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* okay, which page needs least enlargement? */
 | 
						|
		datum_alpha = (NDBOX *) DatumGetPointer(entryvec->vector[i].key);
 | 
						|
		union_dl = cube_union(datum_l, datum_alpha);
 | 
						|
		union_dr = cube_union(datum_r, datum_alpha);
 | 
						|
		rt_cube_size(union_dl, &size_alpha);
 | 
						|
		rt_cube_size(union_dr, &size_beta);
 | 
						|
 | 
						|
		/* pick which page to add it to */
 | 
						|
		if (size_alpha - size_l < size_beta - size_r)
 | 
						|
		{
 | 
						|
			pfree(datum_l);
 | 
						|
			pfree(union_dr);
 | 
						|
			datum_l = union_dl;
 | 
						|
			size_l = size_alpha;
 | 
						|
			*left++ = i;
 | 
						|
			v->spl_nleft++;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			pfree(datum_r);
 | 
						|
			pfree(union_dl);
 | 
						|
			datum_r = union_dr;
 | 
						|
			size_r = size_alpha;
 | 
						|
			*right++ = i;
 | 
						|
			v->spl_nright++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
 | 
						|
 | 
						|
	v->spl_ldatum = PointerGetDatum(datum_l);
 | 
						|
	v->spl_rdatum = PointerGetDatum(datum_r);
 | 
						|
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Equality method
 | 
						|
*/
 | 
						|
bool *
 | 
						|
g_cube_same(NDBOX * b1, NDBOX * b2, bool *result)
 | 
						|
{
 | 
						|
	if (cube_eq(b1, b2))
 | 
						|
		*result = TRUE;
 | 
						|
	else
 | 
						|
		*result = FALSE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
 | 
						|
	 */
 | 
						|
	return (result);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** SUPPORT ROUTINES
 | 
						|
*/
 | 
						|
bool
 | 
						|
g_cube_leaf_consistent(NDBOX * key,
 | 
						|
					   NDBOX * query,
 | 
						|
					   StrategyNumber strategy)
 | 
						|
{
 | 
						|
	bool		retval;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * fprintf(stderr, "leaf_consistent, %d\n", strategy);
 | 
						|
	 */
 | 
						|
	switch (strategy)
 | 
						|
	{
 | 
						|
		case RTLeftStrategyNumber:
 | 
						|
			retval = (bool) cube_left(key, query);
 | 
						|
			break;
 | 
						|
		case RTOverLeftStrategyNumber:
 | 
						|
			retval = (bool) cube_over_left(key, query);
 | 
						|
			break;
 | 
						|
		case RTOverlapStrategyNumber:
 | 
						|
			retval = (bool) cube_overlap(key, query);
 | 
						|
			break;
 | 
						|
		case RTOverRightStrategyNumber:
 | 
						|
			retval = (bool) cube_over_right(key, query);
 | 
						|
			break;
 | 
						|
		case RTRightStrategyNumber:
 | 
						|
			retval = (bool) cube_right(key, query);
 | 
						|
			break;
 | 
						|
		case RTSameStrategyNumber:
 | 
						|
			retval = (bool) cube_eq(key, query);
 | 
						|
			break;
 | 
						|
		case RTContainsStrategyNumber:
 | 
						|
			retval = (bool) cube_contains(key, query);
 | 
						|
			break;
 | 
						|
		case RTContainedByStrategyNumber:
 | 
						|
			retval = (bool) cube_contained(key, query);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			retval = FALSE;
 | 
						|
	}
 | 
						|
	return (retval);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
g_cube_internal_consistent(NDBOX * key,
 | 
						|
						   NDBOX * query,
 | 
						|
						   StrategyNumber strategy)
 | 
						|
{
 | 
						|
	bool		retval;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * fprintf(stderr, "internal_consistent, %d\n", strategy);
 | 
						|
	 */
 | 
						|
	switch (strategy)
 | 
						|
	{
 | 
						|
		case RTLeftStrategyNumber:
 | 
						|
		case RTOverLeftStrategyNumber:
 | 
						|
			retval = (bool) cube_over_left(key, query);
 | 
						|
			break;
 | 
						|
		case RTOverlapStrategyNumber:
 | 
						|
			retval = (bool) cube_overlap(key, query);
 | 
						|
			break;
 | 
						|
		case RTOverRightStrategyNumber:
 | 
						|
		case RTRightStrategyNumber:
 | 
						|
			retval = (bool) cube_right(key, query);
 | 
						|
			break;
 | 
						|
		case RTSameStrategyNumber:
 | 
						|
		case RTContainsStrategyNumber:
 | 
						|
			retval = (bool) cube_contains(key, query);
 | 
						|
			break;
 | 
						|
		case RTContainedByStrategyNumber:
 | 
						|
			retval = (bool) cube_overlap(key, query);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			retval = FALSE;
 | 
						|
	}
 | 
						|
	return (retval);
 | 
						|
}
 | 
						|
 | 
						|
NDBOX *
 | 
						|
g_cube_binary_union(NDBOX * r1, NDBOX * r2, int *sizep)
 | 
						|
{
 | 
						|
	NDBOX	   *retval;
 | 
						|
 | 
						|
	retval = cube_union(r1, r2);
 | 
						|
	*sizep = retval->size;
 | 
						|
 | 
						|
	return (retval);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* cube_union */
 | 
						|
NDBOX *
 | 
						|
cube_union(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	int			i;
 | 
						|
	NDBOX	   *result;
 | 
						|
 | 
						|
	if (a->dim >= b->dim)
 | 
						|
	{
 | 
						|
		result = palloc(a->size);
 | 
						|
		memset(result, 0, a->size);
 | 
						|
		result->size = a->size;
 | 
						|
		result->dim = a->dim;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		result = palloc(b->size);
 | 
						|
		memset(result, 0, b->size);
 | 
						|
		result->size = b->size;
 | 
						|
		result->dim = b->dim;
 | 
						|
	}
 | 
						|
 | 
						|
	/* swap the box pointers if needed */
 | 
						|
	if (a->dim < b->dim)
 | 
						|
	{
 | 
						|
		NDBOX	   *tmp = b;
 | 
						|
 | 
						|
		b = a;
 | 
						|
		a = tmp;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * use the potentially smaller of the two boxes (b) to fill in the
 | 
						|
	 * result, padding absent dimensions with zeroes
 | 
						|
	 */
 | 
						|
	for (i = 0; i < b->dim; i++)
 | 
						|
	{
 | 
						|
		result->x[i] = Min(b->x[i], b->x[i + b->dim]);
 | 
						|
		result->x[i + a->dim] = Max(b->x[i], b->x[i + b->dim]);
 | 
						|
	}
 | 
						|
	for (i = b->dim; i < a->dim; i++)
 | 
						|
	{
 | 
						|
		result->x[i] = 0;
 | 
						|
		result->x[i + a->dim] = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* compute the union */
 | 
						|
	for (i = 0; i < a->dim; i++)
 | 
						|
	{
 | 
						|
		result->x[i] =
 | 
						|
			Min(Min(a->x[i], a->x[i + a->dim]), result->x[i]);
 | 
						|
		result->x[i + a->dim] = Max(Max(a->x[i],
 | 
						|
							   a->x[i + a->dim]), result->x[i + a->dim]);
 | 
						|
	}
 | 
						|
 | 
						|
	return (result);
 | 
						|
}
 | 
						|
 | 
						|
/* cube_inter */
 | 
						|
NDBOX *
 | 
						|
cube_inter(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	int			i;
 | 
						|
	NDBOX	   *result;
 | 
						|
 | 
						|
	if (a->dim >= b->dim)
 | 
						|
	{
 | 
						|
		result = palloc(a->size);
 | 
						|
		memset(result, 0, a->size);
 | 
						|
		result->size = a->size;
 | 
						|
		result->dim = a->dim;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		result = palloc(b->size);
 | 
						|
		memset(result, 0, b->size);
 | 
						|
		result->size = b->size;
 | 
						|
		result->dim = b->dim;
 | 
						|
	}
 | 
						|
 | 
						|
	/* swap the box pointers if needed */
 | 
						|
	if (a->dim < b->dim)
 | 
						|
	{
 | 
						|
		NDBOX	   *tmp = b;
 | 
						|
 | 
						|
		b = a;
 | 
						|
		a = tmp;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * use the potentially	smaller of the two boxes (b) to fill in the
 | 
						|
	 * result, padding absent dimensions with zeroes
 | 
						|
	 */
 | 
						|
	for (i = 0; i < b->dim; i++)
 | 
						|
	{
 | 
						|
		result->x[i] = Min(b->x[i], b->x[i + b->dim]);
 | 
						|
		result->x[i + a->dim] = Max(b->x[i], b->x[i + b->dim]);
 | 
						|
	}
 | 
						|
	for (i = b->dim; i < a->dim; i++)
 | 
						|
	{
 | 
						|
		result->x[i] = 0;
 | 
						|
		result->x[i + a->dim] = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* compute the intersection */
 | 
						|
	for (i = 0; i < a->dim; i++)
 | 
						|
	{
 | 
						|
		result->x[i] =
 | 
						|
			Max(Min(a->x[i], a->x[i + a->dim]), result->x[i]);
 | 
						|
		result->x[i + a->dim] = Min(Max(a->x[i],
 | 
						|
							   a->x[i + a->dim]), result->x[i + a->dim]);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Is it OK to return a non-null intersection for non-overlapping
 | 
						|
	 * boxes?
 | 
						|
	 */
 | 
						|
	return (result);
 | 
						|
}
 | 
						|
 | 
						|
/* cube_size */
 | 
						|
double *
 | 
						|
cube_size(NDBOX * a)
 | 
						|
{
 | 
						|
	int			i,
 | 
						|
				j;
 | 
						|
	double	   *result;
 | 
						|
 | 
						|
	result = (double *) palloc(sizeof(double));
 | 
						|
 | 
						|
	*result = 1.0;
 | 
						|
	for (i = 0, j = a->dim; i < a->dim; i++, j++)
 | 
						|
		*result = (*result) * Abs((a->x[j] - a->x[i]));
 | 
						|
 | 
						|
	return (result);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rt_cube_size(NDBOX * a, double *size)
 | 
						|
{
 | 
						|
	int			i,
 | 
						|
				j;
 | 
						|
 | 
						|
	if (a == (NDBOX *) NULL)
 | 
						|
		*size = 0.0;
 | 
						|
	else
 | 
						|
	{
 | 
						|
		*size = 1.0;
 | 
						|
		for (i = 0, j = a->dim; i < a->dim; i++, j++)
 | 
						|
			*size = (*size) * Abs((a->x[j] - a->x[i]));
 | 
						|
	}
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
/* The following four methods compare the projections of the boxes
 | 
						|
   onto the 0-th coordinate axis. These methods are useless for dimensions
 | 
						|
   larger than 2, but it seems that R-tree requires all its strategies
 | 
						|
   map to real functions that return something */
 | 
						|
 | 
						|
/*	is the right edge of (a) located to the left of
 | 
						|
	the right edge of (b)? */
 | 
						|
bool
 | 
						|
cube_over_left(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	if ((a == NULL) || (b == NULL))
 | 
						|
		return (FALSE);
 | 
						|
 | 
						|
	return (Min(a->x[a->dim - 1], a->x[2 * a->dim - 1]) <=
 | 
						|
			Min(b->x[b->dim - 1], b->x[2 * b->dim - 1]) &&
 | 
						|
			!cube_left(a, b) && !cube_right(a, b));
 | 
						|
}
 | 
						|
 | 
						|
/*	is the left edge of (a) located to the right of
 | 
						|
	the left edge of (b)? */
 | 
						|
bool
 | 
						|
cube_over_right(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	if ((a == NULL) || (b == NULL))
 | 
						|
		return (FALSE);
 | 
						|
 | 
						|
	return (Min(a->x[a->dim - 1], a->x[2 * a->dim - 1]) >=
 | 
						|
			Min(b->x[b->dim - 1], b->x[2 * b->dim - 1]) &&
 | 
						|
			!cube_left(a, b) && !cube_right(a, b));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* return 'true' if the projection of 'a' is
 | 
						|
   entirely on the left of the projection of 'b' */
 | 
						|
bool
 | 
						|
cube_left(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	if ((a == NULL) || (b == NULL))
 | 
						|
		return (FALSE);
 | 
						|
 | 
						|
	return (Min(a->x[a->dim - 1], a->x[2 * a->dim - 1]) <
 | 
						|
			Min(b->x[0], b->x[b->dim]));
 | 
						|
}
 | 
						|
 | 
						|
/* return 'true' if the projection of 'a' is
 | 
						|
   entirely on the right  of the projection of 'b' */
 | 
						|
bool
 | 
						|
cube_right(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	if ((a == NULL) || (b == NULL))
 | 
						|
		return (FALSE);
 | 
						|
 | 
						|
	return (Min(a->x[0], a->x[a->dim]) >
 | 
						|
			Min(b->x[b->dim - 1], b->x[2 * b->dim - 1]));
 | 
						|
}
 | 
						|
 | 
						|
/* make up a metric in which one box will be 'lower' than the other
 | 
						|
   -- this can be useful for sorting and to determine uniqueness */
 | 
						|
int32
 | 
						|
cube_cmp(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	int			i;
 | 
						|
	int			dim;
 | 
						|
 | 
						|
	dim = Min(a->dim, b->dim);
 | 
						|
 | 
						|
	/* compare the common dimensions */
 | 
						|
	for (i = 0; i < dim; i++)
 | 
						|
	{
 | 
						|
		if (Min(a->x[i], a->x[a->dim + i]) >
 | 
						|
			Min(b->x[i], b->x[b->dim + i]))
 | 
						|
			return 1;
 | 
						|
		if (Min(a->x[i], a->x[a->dim + i]) <
 | 
						|
			Min(b->x[i], b->x[b->dim + i]))
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
	for (i = 0; i < dim; i++)
 | 
						|
	{
 | 
						|
		if (Max(a->x[i], a->x[a->dim + i]) >
 | 
						|
			Max(b->x[i], b->x[b->dim + i]))
 | 
						|
			return 1;
 | 
						|
		if (Max(a->x[i], a->x[a->dim + i]) <
 | 
						|
			Max(b->x[i], b->x[b->dim + i]))
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* compare extra dimensions to zero */
 | 
						|
	if (a->dim > b->dim)
 | 
						|
	{
 | 
						|
		for (i = dim; i < a->dim; i++)
 | 
						|
		{
 | 
						|
			if (Min(a->x[i], a->x[a->dim + i]) > 0)
 | 
						|
				return 1;
 | 
						|
			if (Min(a->x[i], a->x[a->dim + i]) < 0)
 | 
						|
				return -1;
 | 
						|
		}
 | 
						|
		for (i = dim; i < a->dim; i++)
 | 
						|
		{
 | 
						|
			if (Max(a->x[i], a->x[a->dim + i]) > 0)
 | 
						|
				return 1;
 | 
						|
			if (Max(a->x[i], a->x[a->dim + i]) < 0)
 | 
						|
				return -1;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * if all common dimensions are equal, the cube with more
 | 
						|
		 * dimensions wins
 | 
						|
		 */
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	if (a->dim < b->dim)
 | 
						|
	{
 | 
						|
		for (i = dim; i < b->dim; i++)
 | 
						|
		{
 | 
						|
			if (Min(b->x[i], b->x[b->dim + i]) > 0)
 | 
						|
				return -1;
 | 
						|
			if (Min(b->x[i], b->x[b->dim + i]) < 0)
 | 
						|
				return 1;
 | 
						|
		}
 | 
						|
		for (i = dim; i < b->dim; i++)
 | 
						|
		{
 | 
						|
			if (Max(b->x[i], b->x[b->dim + i]) > 0)
 | 
						|
				return -1;
 | 
						|
			if (Max(b->x[i], b->x[b->dim + i]) < 0)
 | 
						|
				return 1;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * if all common dimensions are equal, the cube with more
 | 
						|
		 * dimensions wins
 | 
						|
		 */
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* They're really equal */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool
 | 
						|
cube_eq(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	return (cube_cmp(a, b) == 0);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
cube_ne(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	return (cube_cmp(a, b) != 0);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
cube_lt(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	return (cube_cmp(a, b) < 0);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
cube_gt(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	return (cube_cmp(a, b) > 0);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
cube_le(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	return (cube_cmp(a, b) <= 0);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
cube_ge(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	return (cube_cmp(a, b) >= 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Contains */
 | 
						|
/* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */
 | 
						|
bool
 | 
						|
cube_contains(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	int			i;
 | 
						|
 | 
						|
	if ((a == NULL) || (b == NULL))
 | 
						|
		return (FALSE);
 | 
						|
 | 
						|
	if (a->dim < b->dim)
 | 
						|
	{
 | 
						|
		/*
 | 
						|
		 * the further comparisons will make sense if the excess
 | 
						|
		 * dimensions of (b) were zeroes Since both UL and UR coordinates
 | 
						|
		 * must be zero, we can check them all without worrying about
 | 
						|
		 * which is which.
 | 
						|
		 */
 | 
						|
		for (i = a->dim; i < b->dim; i++)
 | 
						|
		{
 | 
						|
			if (b->x[i] != 0)
 | 
						|
				return (FALSE);
 | 
						|
			if (b->x[i + b->dim] != 0)
 | 
						|
				return (FALSE);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Can't care less about the excess dimensions of (a), if any */
 | 
						|
	for (i = 0; i < Min(a->dim, b->dim); i++)
 | 
						|
	{
 | 
						|
		if (Min(a->x[i], a->x[a->dim + i]) >
 | 
						|
			Min(b->x[i], b->x[b->dim + i]))
 | 
						|
			return (FALSE);
 | 
						|
		if (Max(a->x[i], a->x[a->dim + i]) <
 | 
						|
			Max(b->x[i], b->x[b->dim + i]))
 | 
						|
			return (FALSE);
 | 
						|
	}
 | 
						|
 | 
						|
	return (TRUE);
 | 
						|
}
 | 
						|
 | 
						|
/* Contained */
 | 
						|
/* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */
 | 
						|
bool
 | 
						|
cube_contained(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	if (cube_contains(b, a) == TRUE)
 | 
						|
		return (TRUE);
 | 
						|
	else
 | 
						|
		return (FALSE);
 | 
						|
}
 | 
						|
 | 
						|
/* Overlap */
 | 
						|
/* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */
 | 
						|
bool
 | 
						|
cube_overlap(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	int			i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This *very bad* error was found in the source: if ( (a==NULL) ||
 | 
						|
	 * (b=NULL) ) return(FALSE);
 | 
						|
	 */
 | 
						|
	if ((a == NULL) || (b == NULL))
 | 
						|
		return (FALSE);
 | 
						|
 | 
						|
	/* swap the box pointers if needed */
 | 
						|
	if (a->dim < b->dim)
 | 
						|
	{
 | 
						|
		NDBOX	   *tmp = b;
 | 
						|
 | 
						|
		b = a;
 | 
						|
		a = tmp;
 | 
						|
	}
 | 
						|
 | 
						|
	/* compare within the dimensions of (b) */
 | 
						|
	for (i = 0; i < b->dim; i++)
 | 
						|
	{
 | 
						|
		if (Min(a->x[i], a->x[a->dim + i]) >
 | 
						|
			Max(b->x[i], b->x[b->dim + i]))
 | 
						|
			return (FALSE);
 | 
						|
		if (Max(a->x[i], a->x[a->dim + i]) <
 | 
						|
			Min(b->x[i], b->x[b->dim + i]))
 | 
						|
			return (FALSE);
 | 
						|
	}
 | 
						|
 | 
						|
	/* compare to zero those dimensions in (a) absent in (b) */
 | 
						|
	for (i = b->dim; i < a->dim; i++)
 | 
						|
	{
 | 
						|
		if (Min(a->x[i], a->x[a->dim + i]) > 0)
 | 
						|
			return (FALSE);
 | 
						|
		if (Max(a->x[i], a->x[a->dim + i]) < 0)
 | 
						|
			return (FALSE);
 | 
						|
	}
 | 
						|
 | 
						|
	return (TRUE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Distance */
 | 
						|
/* The distance is computed as a per axis sum of the squared distances
 | 
						|
   between 1D projections of the boxes onto Cartesian axes. Assuming zero
 | 
						|
   distance between overlapping projections, this metric coincides with the
 | 
						|
   "common sense" geometric distance */
 | 
						|
double *
 | 
						|
cube_distance(NDBOX * a, NDBOX * b)
 | 
						|
{
 | 
						|
	int			i;
 | 
						|
	double		d,
 | 
						|
				distance;
 | 
						|
	double	   *result;
 | 
						|
 | 
						|
	result = (double *) palloc(sizeof(double));
 | 
						|
 | 
						|
	/* swap the box pointers if needed */
 | 
						|
	if (a->dim < b->dim)
 | 
						|
	{
 | 
						|
		NDBOX	   *tmp = b;
 | 
						|
 | 
						|
		b = a;
 | 
						|
		a = tmp;
 | 
						|
	}
 | 
						|
 | 
						|
	distance = 0.0;
 | 
						|
	/* compute within the dimensions of (b) */
 | 
						|
	for (i = 0; i < b->dim; i++)
 | 
						|
	{
 | 
						|
		d = distance_1D(a->x[i], a->x[i + a->dim], b->x[i], b->x[i + b->dim]);
 | 
						|
		distance += d * d;
 | 
						|
	}
 | 
						|
 | 
						|
	/* compute distance to zero for those dimensions in (a) absent in (b) */
 | 
						|
	for (i = b->dim; i < a->dim; i++)
 | 
						|
	{
 | 
						|
		d = distance_1D(a->x[i], a->x[i + a->dim], 0.0, 0.0);
 | 
						|
		distance += d * d;
 | 
						|
	}
 | 
						|
 | 
						|
	*result = (double) sqrt(distance);
 | 
						|
 | 
						|
	return (result);
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
distance_1D(double a1, double a2, double b1, double b2)
 | 
						|
{
 | 
						|
	/* interval (a) is entirely on the left of (b) */
 | 
						|
	if ((a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2))
 | 
						|
		return (Min(b1, b2) - Max(a1, a2));
 | 
						|
 | 
						|
	/* interval (a) is entirely on the right of (b) */
 | 
						|
	if ((a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2))
 | 
						|
		return (Min(a1, a2) - Max(b1, b2));
 | 
						|
 | 
						|
	/* the rest are all sorts of intersections */
 | 
						|
	return (0.0);
 | 
						|
}
 | 
						|
 | 
						|
/* Test if a box is also a point */
 | 
						|
bool
 | 
						|
cube_is_point(NDBOX * a)
 | 
						|
{
 | 
						|
	int			i,
 | 
						|
				j;
 | 
						|
 | 
						|
	for (i = 0, j = a->dim; i < a->dim; i++, j++)
 | 
						|
	{
 | 
						|
		if (a->x[i] != a->x[j])
 | 
						|
			return FALSE;
 | 
						|
	}
 | 
						|
 | 
						|
	return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
/* Return dimensions in use in the data structure */
 | 
						|
int4
 | 
						|
cube_dim(NDBOX * a)
 | 
						|
{
 | 
						|
	/* Other things will break before unsigned int doesn't fit. */
 | 
						|
	return a->dim;
 | 
						|
}
 | 
						|
 | 
						|
/* Return a specific normalized LL coordinate */
 | 
						|
double *
 | 
						|
cube_ll_coord(NDBOX * a, int4 n)
 | 
						|
{
 | 
						|
	double	   *result;
 | 
						|
 | 
						|
	result = (double *) palloc(sizeof(double));
 | 
						|
	*result = 0;
 | 
						|
	if (a->dim >= n && n > 0)
 | 
						|
		*result = Min(a->x[n - 1], a->x[a->dim + n - 1]);
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Return a specific normalized UR coordinate */
 | 
						|
double *
 | 
						|
cube_ur_coord(NDBOX * a, int4 n)
 | 
						|
{
 | 
						|
	double	   *result;
 | 
						|
 | 
						|
	result = (double *) palloc(sizeof(double));
 | 
						|
	*result = 0;
 | 
						|
	if (a->dim >= n && n > 0)
 | 
						|
		*result = Max(a->x[n - 1], a->x[a->dim + n - 1]);
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Increase or decrease box size by a radius in at least n dimensions. */
 | 
						|
NDBOX *
 | 
						|
cube_enlarge(NDBOX * a, double *r, int4 n)
 | 
						|
{
 | 
						|
	NDBOX	   *result;
 | 
						|
	int			dim = 0;
 | 
						|
	int			size;
 | 
						|
	int			i,
 | 
						|
				j,
 | 
						|
				k;
 | 
						|
 | 
						|
	if (n > CUBE_MAX_DIM)
 | 
						|
		n = CUBE_MAX_DIM;
 | 
						|
	if (*r > 0 && n > 0)
 | 
						|
		dim = n;
 | 
						|
	if (a->dim > dim)
 | 
						|
		dim = a->dim;
 | 
						|
	size = offsetof(NDBOX, x[0]) + sizeof(double) * dim * 2;
 | 
						|
	result = (NDBOX *) palloc(size);
 | 
						|
	memset(result, 0, size);
 | 
						|
	result->size = size;
 | 
						|
	result->dim = dim;
 | 
						|
	for (i = 0, j = dim, k = a->dim; i < a->dim; i++, j++, k++)
 | 
						|
	{
 | 
						|
		if (a->x[i] >= a->x[k])
 | 
						|
		{
 | 
						|
			result->x[i] = a->x[k] - *r;
 | 
						|
			result->x[j] = a->x[i] + *r;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			result->x[i] = a->x[i] - *r;
 | 
						|
			result->x[j] = a->x[k] + *r;
 | 
						|
		}
 | 
						|
		if (result->x[i] > result->x[j])
 | 
						|
		{
 | 
						|
			result->x[i] = (result->x[i] + result->x[j]) / 2;
 | 
						|
			result->x[j] = result->x[i];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* dim > a->dim only if r > 0 */
 | 
						|
	for (; i < dim; i++, j++)
 | 
						|
	{
 | 
						|
		result->x[i] = -*r;
 | 
						|
		result->x[j] = *r;
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a one dimensional box with identical upper and lower coordinates */
 | 
						|
NDBOX *
 | 
						|
cube_f8(double *x1)
 | 
						|
{
 | 
						|
	NDBOX	   *result;
 | 
						|
	int			size;
 | 
						|
 | 
						|
	size = offsetof(NDBOX, x[0]) + sizeof(double) * 2;
 | 
						|
	result = (NDBOX *) palloc(size);
 | 
						|
	memset(result, 0, size);
 | 
						|
	result->size = size;
 | 
						|
	result->dim = 1;
 | 
						|
	result->x[0] = *x1;
 | 
						|
	result->x[1] = *x1;
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a one dimensional box */
 | 
						|
NDBOX *
 | 
						|
cube_f8_f8(double *x1, double *x2)
 | 
						|
{
 | 
						|
	NDBOX	   *result;
 | 
						|
	int			size;
 | 
						|
 | 
						|
	size = offsetof(NDBOX, x[0]) + sizeof(double) * 2;
 | 
						|
	result = (NDBOX *) palloc(size);
 | 
						|
	memset(result, 0, size);
 | 
						|
	result->size = size;
 | 
						|
	result->dim = 1;
 | 
						|
	result->x[0] = *x1;
 | 
						|
	result->x[1] = *x2;
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Add a dimension to an existing cube with the same values for the new
 | 
						|
   coordinate */
 | 
						|
NDBOX *
 | 
						|
cube_c_f8(NDBOX * c, double *x1)
 | 
						|
{
 | 
						|
	NDBOX	   *result;
 | 
						|
	int			size;
 | 
						|
	int			i;
 | 
						|
 | 
						|
	size = offsetof(NDBOX, x[0]) + sizeof(double) * (c->dim + 1) *2;
 | 
						|
	result = (NDBOX *) palloc(size);
 | 
						|
	memset(result, 0, size);
 | 
						|
	result->size = size;
 | 
						|
	result->dim = c->dim + 1;
 | 
						|
	for (i = 0; i < c->dim; i++)
 | 
						|
	{
 | 
						|
		result->x[i] = c->x[i];
 | 
						|
		result->x[result->dim + i] = c->x[c->dim + i];
 | 
						|
	}
 | 
						|
	result->x[result->dim - 1] = *x1;
 | 
						|
	result->x[2 * result->dim - 1] = *x1;
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Add a dimension to an existing cube */
 | 
						|
NDBOX *
 | 
						|
cube_c_f8_f8(NDBOX * c, double *x1, double *x2)
 | 
						|
{
 | 
						|
	NDBOX	   *result;
 | 
						|
	int			size;
 | 
						|
	int			i;
 | 
						|
 | 
						|
	size = offsetof(NDBOX, x[0]) + sizeof(double) * (c->dim + 1) *2;
 | 
						|
	result = (NDBOX *) palloc(size);
 | 
						|
	memset(result, 0, size);
 | 
						|
	result->size = size;
 | 
						|
	result->dim = c->dim + 1;
 | 
						|
	for (i = 0; i < c->dim; i++)
 | 
						|
	{
 | 
						|
		result->x[i] = c->x[i];
 | 
						|
		result->x[result->dim + i] = c->x[c->dim + i];
 | 
						|
	}
 | 
						|
	result->x[result->dim - 1] = *x1;
 | 
						|
	result->x[2 * result->dim - 1] = *x2;
 | 
						|
	return result;
 | 
						|
}
 |