1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-05 09:19:17 +03:00
postgres/src/common/cryptohash.c
Michael Paquier b83dcf7928 Add result size as argument of pg_cryptohash_final() for overflow checks
With its current design, a careless use of pg_cryptohash_final() could
would result in an out-of-bound write in memory as the size of the
destination buffer to store the result digest is not known to the
cryptohash internals, without the caller knowing about that.  This
commit adds a new argument to pg_cryptohash_final() to allow such sanity
checks, and implements such defenses.

The internals of SCRAM for HMAC could be tightened a bit more, but as
everything is based on SCRAM_KEY_LEN with uses particular to this code
there is no need to complicate its interface more than necessary, and
this comes back to the refactoring of HMAC in core.  Except that, this
minimizes the uses of the existing DIGEST_LENGTH variables, relying
instead on sizeof() for the result sizes.  In ossp-uuid, this also makes
the code more defensive, as it already relied on dce_uuid_t being at
least the size of a MD5 digest.

This is in philosophy similar to cfc40d3 for base64.c and aef8948 for
hex.c.

Reported-by: Ranier Vilela
Author: Michael Paquier, Ranier Vilela
Reviewed-by: Kyotaro Horiguchi
Discussion: https://postgr.es/m/CAEudQAoqEGmcff3J4sTSV-R_16Monuz-UpJFbf_dnVH=APr02Q@mail.gmail.com
2021-02-15 10:18:34 +09:00

224 lines
4.6 KiB
C

/*-------------------------------------------------------------------------
*
* cryptohash.c
* Fallback implementations for cryptographic hash functions.
*
* This is the set of in-core functions used when there are no other
* alternative options like OpenSSL.
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/common/cryptohash.c
*
*-------------------------------------------------------------------------
*/
#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif
#include <sys/param.h>
#include "common/cryptohash.h"
#include "md5_int.h"
#include "sha1_int.h"
#include "sha2_int.h"
/*
* In backend, use palloc/pfree to ease the error handling. In frontend,
* use malloc to be able to return a failure status back to the caller.
*/
#ifndef FRONTEND
#define ALLOC(size) palloc(size)
#define FREE(ptr) pfree(ptr)
#else
#define ALLOC(size) malloc(size)
#define FREE(ptr) free(ptr)
#endif
/* Internal pg_cryptohash_ctx structure */
struct pg_cryptohash_ctx
{
pg_cryptohash_type type;
union
{
pg_md5_ctx md5;
pg_sha1_ctx sha1;
pg_sha224_ctx sha224;
pg_sha256_ctx sha256;
pg_sha384_ctx sha384;
pg_sha512_ctx sha512;
} data;
};
/*
* pg_cryptohash_create
*
* Allocate a hash context. Returns NULL on failure for an OOM. The
* backend issues an error, without returning.
*/
pg_cryptohash_ctx *
pg_cryptohash_create(pg_cryptohash_type type)
{
pg_cryptohash_ctx *ctx;
/*
* Note that this always allocates enough space for the largest hash. A
* smaller allocation would be enough for md5, sha224 and sha256, but the
* small extra amount of memory does not make it worth complicating this
* code.
*/
ctx = ALLOC(sizeof(pg_cryptohash_ctx));
if (ctx == NULL)
return NULL;
memset(ctx, 0, sizeof(pg_cryptohash_ctx));
ctx->type = type;
return ctx;
}
/*
* pg_cryptohash_init
*
* Initialize a hash context. Note that this implementation is designed
* to never fail, so this always returns 0.
*/
int
pg_cryptohash_init(pg_cryptohash_ctx *ctx)
{
if (ctx == NULL)
return -1;
switch (ctx->type)
{
case PG_MD5:
pg_md5_init(&ctx->data.md5);
break;
case PG_SHA1:
pg_sha1_init(&ctx->data.sha1);
break;
case PG_SHA224:
pg_sha224_init(&ctx->data.sha224);
break;
case PG_SHA256:
pg_sha256_init(&ctx->data.sha256);
break;
case PG_SHA384:
pg_sha384_init(&ctx->data.sha384);
break;
case PG_SHA512:
pg_sha512_init(&ctx->data.sha512);
break;
}
return 0;
}
/*
* pg_cryptohash_update
*
* Update a hash context. Note that this implementation is designed
* to never fail, so this always returns 0 except if the caller has
* given a NULL context.
*/
int
pg_cryptohash_update(pg_cryptohash_ctx *ctx, const uint8 *data, size_t len)
{
if (ctx == NULL)
return -1;
switch (ctx->type)
{
case PG_MD5:
pg_md5_update(&ctx->data.md5, data, len);
break;
case PG_SHA1:
pg_sha1_update(&ctx->data.sha1, data, len);
break;
case PG_SHA224:
pg_sha224_update(&ctx->data.sha224, data, len);
break;
case PG_SHA256:
pg_sha256_update(&ctx->data.sha256, data, len);
break;
case PG_SHA384:
pg_sha384_update(&ctx->data.sha384, data, len);
break;
case PG_SHA512:
pg_sha512_update(&ctx->data.sha512, data, len);
break;
}
return 0;
}
/*
* pg_cryptohash_final
*
* Finalize a hash context. Note that this implementation is designed to
* never fail, so this always returns 0 except if the destination buffer
* is not large enough.
*/
int
pg_cryptohash_final(pg_cryptohash_ctx *ctx, uint8 *dest, size_t len)
{
if (ctx == NULL)
return -1;
switch (ctx->type)
{
case PG_MD5:
if (len < MD5_DIGEST_LENGTH)
return -1;
pg_md5_final(&ctx->data.md5, dest);
break;
case PG_SHA1:
if (len < SHA1_DIGEST_LENGTH)
return -1;
pg_sha1_final(&ctx->data.sha1, dest);
break;
case PG_SHA224:
if (len < PG_SHA224_DIGEST_LENGTH)
return -1;
pg_sha224_final(&ctx->data.sha224, dest);
break;
case PG_SHA256:
if (len < PG_SHA256_DIGEST_LENGTH)
return -1;
pg_sha256_final(&ctx->data.sha256, dest);
break;
case PG_SHA384:
if (len < PG_SHA384_DIGEST_LENGTH)
return -1;
pg_sha384_final(&ctx->data.sha384, dest);
break;
case PG_SHA512:
if (len < PG_SHA512_DIGEST_LENGTH)
return -1;
pg_sha512_final(&ctx->data.sha512, dest);
break;
}
return 0;
}
/*
* pg_cryptohash_free
*
* Free a hash context.
*/
void
pg_cryptohash_free(pg_cryptohash_ctx *ctx)
{
if (ctx == NULL)
return;
explicit_bzero(ctx, sizeof(pg_cryptohash_ctx));
FREE(ctx);
}