mirror of
https://github.com/postgres/postgres.git
synced 2025-04-21 12:05:57 +03:00
2703 lines
80 KiB
C
2703 lines
80 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* parse_utilcmd.c
|
|
* Perform parse analysis work for various utility commands
|
|
*
|
|
* Formerly we did this work during parse_analyze() in analyze.c. However
|
|
* that is fairly unsafe in the presence of querytree caching, since any
|
|
* database state that we depend on in making the transformations might be
|
|
* obsolete by the time the utility command is executed; and utility commands
|
|
* have no infrastructure for holding locks or rechecking plan validity.
|
|
* Hence these functions are now called at the start of execution of their
|
|
* respective utility commands.
|
|
*
|
|
* NOTE: in general we must avoid scribbling on the passed-in raw parse
|
|
* tree, since it might be in a plan cache. The simplest solution is
|
|
* a quick copyObject() call before manipulating the query tree.
|
|
*
|
|
*
|
|
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* src/backend/parser/parse_utilcmd.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/genam.h"
|
|
#include "access/heapam.h"
|
|
#include "access/reloptions.h"
|
|
#include "catalog/dependency.h"
|
|
#include "catalog/heap.h"
|
|
#include "catalog/index.h"
|
|
#include "catalog/namespace.h"
|
|
#include "catalog/pg_collation.h"
|
|
#include "catalog/pg_constraint.h"
|
|
#include "catalog/pg_opclass.h"
|
|
#include "catalog/pg_operator.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "commands/comment.h"
|
|
#include "commands/defrem.h"
|
|
#include "commands/tablecmds.h"
|
|
#include "commands/tablespace.h"
|
|
#include "miscadmin.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "parser/analyze.h"
|
|
#include "parser/parse_clause.h"
|
|
#include "parser/parse_collate.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_relation.h"
|
|
#include "parser/parse_target.h"
|
|
#include "parser/parse_type.h"
|
|
#include "parser/parse_utilcmd.h"
|
|
#include "parser/parser.h"
|
|
#include "rewrite/rewriteManip.h"
|
|
#include "storage/lock.h"
|
|
#include "utils/acl.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/relcache.h"
|
|
#include "utils/syscache.h"
|
|
#include "utils/typcache.h"
|
|
|
|
|
|
/* State shared by transformCreateStmt and its subroutines */
|
|
typedef struct
|
|
{
|
|
ParseState *pstate; /* overall parser state */
|
|
const char *stmtType; /* "CREATE [FOREIGN] TABLE" or "ALTER TABLE" */
|
|
RangeVar *relation; /* relation to create */
|
|
Relation rel; /* opened/locked rel, if ALTER */
|
|
List *inhRelations; /* relations to inherit from */
|
|
bool isalter; /* true if altering existing table */
|
|
bool hasoids; /* does relation have an OID column? */
|
|
List *columns; /* ColumnDef items */
|
|
List *ckconstraints; /* CHECK constraints */
|
|
List *fkconstraints; /* FOREIGN KEY constraints */
|
|
List *ixconstraints; /* index-creating constraints */
|
|
List *inh_indexes; /* cloned indexes from INCLUDING INDEXES */
|
|
List *blist; /* "before list" of things to do before
|
|
* creating the table */
|
|
List *alist; /* "after list" of things to do after creating
|
|
* the table */
|
|
IndexStmt *pkey; /* PRIMARY KEY index, if any */
|
|
} CreateStmtContext;
|
|
|
|
/* State shared by transformCreateSchemaStmt and its subroutines */
|
|
typedef struct
|
|
{
|
|
const char *stmtType; /* "CREATE SCHEMA" or "ALTER SCHEMA" */
|
|
char *schemaname; /* name of schema */
|
|
char *authid; /* owner of schema */
|
|
List *sequences; /* CREATE SEQUENCE items */
|
|
List *tables; /* CREATE TABLE items */
|
|
List *views; /* CREATE VIEW items */
|
|
List *indexes; /* CREATE INDEX items */
|
|
List *triggers; /* CREATE TRIGGER items */
|
|
List *grants; /* GRANT items */
|
|
} CreateSchemaStmtContext;
|
|
|
|
|
|
static void transformColumnDefinition(CreateStmtContext *cxt,
|
|
ColumnDef *column);
|
|
static void transformTableConstraint(CreateStmtContext *cxt,
|
|
Constraint *constraint);
|
|
static void transformInhRelation(CreateStmtContext *cxt,
|
|
InhRelation *inhrelation);
|
|
static void transformOfType(CreateStmtContext *cxt,
|
|
TypeName *ofTypename);
|
|
static char *chooseIndexName(const RangeVar *relation, IndexStmt *index_stmt);
|
|
static IndexStmt *generateClonedIndexStmt(CreateStmtContext *cxt,
|
|
Relation parent_index, AttrNumber *attmap);
|
|
static List *get_collation(Oid collation, Oid actual_datatype);
|
|
static List *get_opclass(Oid opclass, Oid actual_datatype);
|
|
static void transformIndexConstraints(CreateStmtContext *cxt);
|
|
static IndexStmt *transformIndexConstraint(Constraint *constraint,
|
|
CreateStmtContext *cxt);
|
|
static void transformFKConstraints(CreateStmtContext *cxt,
|
|
bool skipValidation,
|
|
bool isAddConstraint);
|
|
static void transformConstraintAttrs(CreateStmtContext *cxt,
|
|
List *constraintList);
|
|
static void transformColumnType(CreateStmtContext *cxt, ColumnDef *column);
|
|
static void setSchemaName(char *context_schema, char **stmt_schema_name);
|
|
|
|
|
|
/*
|
|
* transformCreateStmt -
|
|
* parse analysis for CREATE TABLE
|
|
*
|
|
* Returns a List of utility commands to be done in sequence. One of these
|
|
* will be the transformed CreateStmt, but there may be additional actions
|
|
* to be done before and after the actual DefineRelation() call.
|
|
*
|
|
* SQL92 allows constraints to be scattered all over, so thumb through
|
|
* the columns and collect all constraints into one place.
|
|
* If there are any implied indices (e.g. UNIQUE or PRIMARY KEY)
|
|
* then expand those into multiple IndexStmt blocks.
|
|
* - thomas 1997-12-02
|
|
*/
|
|
List *
|
|
transformCreateStmt(CreateStmt *stmt, const char *queryString)
|
|
{
|
|
ParseState *pstate;
|
|
CreateStmtContext cxt;
|
|
List *result;
|
|
List *save_alist;
|
|
ListCell *elements;
|
|
Oid namespaceid;
|
|
|
|
/*
|
|
* We must not scribble on the passed-in CreateStmt, so copy it. (This is
|
|
* overkill, but easy.)
|
|
*/
|
|
stmt = (CreateStmt *) copyObject(stmt);
|
|
|
|
/*
|
|
* Look up the creation namespace. This also checks permissions on the
|
|
* target namespace, so that we throw any permissions error as early as
|
|
* possible.
|
|
*/
|
|
namespaceid = RangeVarGetAndCheckCreationNamespace(stmt->relation);
|
|
|
|
/*
|
|
* If the relation already exists and the user specified "IF NOT EXISTS",
|
|
* bail out with a NOTICE.
|
|
*/
|
|
if (stmt->if_not_exists)
|
|
{
|
|
Oid existing_relid;
|
|
|
|
existing_relid = get_relname_relid(stmt->relation->relname,
|
|
namespaceid);
|
|
if (existing_relid != InvalidOid)
|
|
{
|
|
ereport(NOTICE,
|
|
(errcode(ERRCODE_DUPLICATE_TABLE),
|
|
errmsg("relation \"%s\" already exists, skipping",
|
|
stmt->relation->relname)));
|
|
return NIL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the target relation name isn't schema-qualified, make it so. This
|
|
* prevents some corner cases in which added-on rewritten commands might
|
|
* think they should apply to other relations that have the same name and
|
|
* are earlier in the search path. But a local temp table is effectively
|
|
* specified to be in pg_temp, so no need for anything extra in that case.
|
|
*/
|
|
if (stmt->relation->schemaname == NULL
|
|
&& stmt->relation->relpersistence != RELPERSISTENCE_TEMP)
|
|
stmt->relation->schemaname = get_namespace_name(namespaceid);
|
|
|
|
/* Set up pstate and CreateStmtContext */
|
|
pstate = make_parsestate(NULL);
|
|
pstate->p_sourcetext = queryString;
|
|
|
|
cxt.pstate = pstate;
|
|
if (IsA(stmt, CreateForeignTableStmt))
|
|
cxt.stmtType = "CREATE FOREIGN TABLE";
|
|
else
|
|
cxt.stmtType = "CREATE TABLE";
|
|
cxt.relation = stmt->relation;
|
|
cxt.rel = NULL;
|
|
cxt.inhRelations = stmt->inhRelations;
|
|
cxt.isalter = false;
|
|
cxt.columns = NIL;
|
|
cxt.ckconstraints = NIL;
|
|
cxt.fkconstraints = NIL;
|
|
cxt.ixconstraints = NIL;
|
|
cxt.inh_indexes = NIL;
|
|
cxt.blist = NIL;
|
|
cxt.alist = NIL;
|
|
cxt.pkey = NULL;
|
|
cxt.hasoids = interpretOidsOption(stmt->options);
|
|
|
|
Assert(!stmt->ofTypename || !stmt->inhRelations); /* grammar enforces */
|
|
|
|
if (stmt->ofTypename)
|
|
transformOfType(&cxt, stmt->ofTypename);
|
|
|
|
/*
|
|
* Run through each primary element in the table creation clause. Separate
|
|
* column defs from constraints, and do preliminary analysis.
|
|
*/
|
|
foreach(elements, stmt->tableElts)
|
|
{
|
|
Node *element = lfirst(elements);
|
|
|
|
switch (nodeTag(element))
|
|
{
|
|
case T_ColumnDef:
|
|
transformColumnDefinition(&cxt, (ColumnDef *) element);
|
|
break;
|
|
|
|
case T_Constraint:
|
|
transformTableConstraint(&cxt, (Constraint *) element);
|
|
break;
|
|
|
|
case T_InhRelation:
|
|
transformInhRelation(&cxt, (InhRelation *) element);
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized node type: %d",
|
|
(int) nodeTag(element));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* transformIndexConstraints wants cxt.alist to contain only index
|
|
* statements, so transfer anything we already have into save_alist.
|
|
*/
|
|
save_alist = cxt.alist;
|
|
cxt.alist = NIL;
|
|
|
|
Assert(stmt->constraints == NIL);
|
|
|
|
/*
|
|
* Postprocess constraints that give rise to index definitions.
|
|
*/
|
|
transformIndexConstraints(&cxt);
|
|
|
|
/*
|
|
* Postprocess foreign-key constraints.
|
|
*/
|
|
transformFKConstraints(&cxt, true, false);
|
|
|
|
/*
|
|
* Output results.
|
|
*/
|
|
stmt->tableElts = cxt.columns;
|
|
stmt->constraints = cxt.ckconstraints;
|
|
|
|
result = lappend(cxt.blist, stmt);
|
|
result = list_concat(result, cxt.alist);
|
|
result = list_concat(result, save_alist);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* transformColumnDefinition -
|
|
* transform a single ColumnDef within CREATE TABLE
|
|
* Also used in ALTER TABLE ADD COLUMN
|
|
*/
|
|
static void
|
|
transformColumnDefinition(CreateStmtContext *cxt, ColumnDef *column)
|
|
{
|
|
bool is_serial;
|
|
bool saw_nullable;
|
|
bool saw_default;
|
|
Constraint *constraint;
|
|
ListCell *clist;
|
|
|
|
cxt->columns = lappend(cxt->columns, column);
|
|
|
|
/* Check for SERIAL pseudo-types */
|
|
is_serial = false;
|
|
if (column->typeName
|
|
&& list_length(column->typeName->names) == 1
|
|
&& !column->typeName->pct_type)
|
|
{
|
|
char *typname = strVal(linitial(column->typeName->names));
|
|
|
|
if (strcmp(typname, "serial") == 0 ||
|
|
strcmp(typname, "serial4") == 0)
|
|
{
|
|
is_serial = true;
|
|
column->typeName->names = NIL;
|
|
column->typeName->typeOid = INT4OID;
|
|
}
|
|
else if (strcmp(typname, "bigserial") == 0 ||
|
|
strcmp(typname, "serial8") == 0)
|
|
{
|
|
is_serial = true;
|
|
column->typeName->names = NIL;
|
|
column->typeName->typeOid = INT8OID;
|
|
}
|
|
|
|
/*
|
|
* We have to reject "serial[]" explicitly, because once we've set
|
|
* typeid, LookupTypeName won't notice arrayBounds. We don't need any
|
|
* special coding for serial(typmod) though.
|
|
*/
|
|
if (is_serial && column->typeName->arrayBounds != NIL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("array of serial is not implemented"),
|
|
parser_errposition(cxt->pstate,
|
|
column->typeName->location)));
|
|
}
|
|
|
|
/* Do necessary work on the column type declaration */
|
|
if (column->typeName)
|
|
transformColumnType(cxt, column);
|
|
|
|
/* Special actions for SERIAL pseudo-types */
|
|
if (is_serial)
|
|
{
|
|
Oid snamespaceid;
|
|
char *snamespace;
|
|
char *sname;
|
|
char *qstring;
|
|
A_Const *snamenode;
|
|
TypeCast *castnode;
|
|
FuncCall *funccallnode;
|
|
CreateSeqStmt *seqstmt;
|
|
AlterSeqStmt *altseqstmt;
|
|
List *attnamelist;
|
|
|
|
/*
|
|
* Determine namespace and name to use for the sequence.
|
|
*
|
|
* Although we use ChooseRelationName, it's not guaranteed that the
|
|
* selected sequence name won't conflict; given sufficiently long
|
|
* field names, two different serial columns in the same table could
|
|
* be assigned the same sequence name, and we'd not notice since we
|
|
* aren't creating the sequence quite yet. In practice this seems
|
|
* quite unlikely to be a problem, especially since few people would
|
|
* need two serial columns in one table.
|
|
*/
|
|
if (cxt->rel)
|
|
snamespaceid = RelationGetNamespace(cxt->rel);
|
|
else
|
|
snamespaceid = RangeVarGetCreationNamespace(cxt->relation);
|
|
snamespace = get_namespace_name(snamespaceid);
|
|
sname = ChooseRelationName(cxt->relation->relname,
|
|
column->colname,
|
|
"seq",
|
|
snamespaceid);
|
|
|
|
ereport(NOTICE,
|
|
(errmsg("%s will create implicit sequence \"%s\" for serial column \"%s.%s\"",
|
|
cxt->stmtType, sname,
|
|
cxt->relation->relname, column->colname)));
|
|
|
|
/*
|
|
* Build a CREATE SEQUENCE command to create the sequence object, and
|
|
* add it to the list of things to be done before this CREATE/ALTER
|
|
* TABLE.
|
|
*/
|
|
seqstmt = makeNode(CreateSeqStmt);
|
|
seqstmt->sequence = makeRangeVar(snamespace, sname, -1);
|
|
seqstmt->options = NIL;
|
|
|
|
/*
|
|
* If this is ALTER ADD COLUMN, make sure the sequence will be owned
|
|
* by the table's owner. The current user might be someone else
|
|
* (perhaps a superuser, or someone who's only a member of the owning
|
|
* role), but the SEQUENCE OWNED BY mechanisms will bleat unless table
|
|
* and sequence have exactly the same owning role.
|
|
*/
|
|
if (cxt->rel)
|
|
seqstmt->ownerId = cxt->rel->rd_rel->relowner;
|
|
else
|
|
seqstmt->ownerId = InvalidOid;
|
|
|
|
cxt->blist = lappend(cxt->blist, seqstmt);
|
|
|
|
/*
|
|
* Build an ALTER SEQUENCE ... OWNED BY command to mark the sequence
|
|
* as owned by this column, and add it to the list of things to be
|
|
* done after this CREATE/ALTER TABLE.
|
|
*/
|
|
altseqstmt = makeNode(AlterSeqStmt);
|
|
altseqstmt->sequence = makeRangeVar(snamespace, sname, -1);
|
|
attnamelist = list_make3(makeString(snamespace),
|
|
makeString(cxt->relation->relname),
|
|
makeString(column->colname));
|
|
altseqstmt->options = list_make1(makeDefElem("owned_by",
|
|
(Node *) attnamelist));
|
|
|
|
cxt->alist = lappend(cxt->alist, altseqstmt);
|
|
|
|
/*
|
|
* Create appropriate constraints for SERIAL. We do this in full,
|
|
* rather than shortcutting, so that we will detect any conflicting
|
|
* constraints the user wrote (like a different DEFAULT).
|
|
*
|
|
* Create an expression tree representing the function call
|
|
* nextval('sequencename'). We cannot reduce the raw tree to cooked
|
|
* form until after the sequence is created, but there's no need to do
|
|
* so.
|
|
*/
|
|
qstring = quote_qualified_identifier(snamespace, sname);
|
|
snamenode = makeNode(A_Const);
|
|
snamenode->val.type = T_String;
|
|
snamenode->val.val.str = qstring;
|
|
snamenode->location = -1;
|
|
castnode = makeNode(TypeCast);
|
|
castnode->typeName = SystemTypeName("regclass");
|
|
castnode->arg = (Node *) snamenode;
|
|
castnode->location = -1;
|
|
funccallnode = makeNode(FuncCall);
|
|
funccallnode->funcname = SystemFuncName("nextval");
|
|
funccallnode->args = list_make1(castnode);
|
|
funccallnode->agg_order = NIL;
|
|
funccallnode->agg_star = false;
|
|
funccallnode->agg_distinct = false;
|
|
funccallnode->func_variadic = false;
|
|
funccallnode->over = NULL;
|
|
funccallnode->location = -1;
|
|
|
|
constraint = makeNode(Constraint);
|
|
constraint->contype = CONSTR_DEFAULT;
|
|
constraint->location = -1;
|
|
constraint->raw_expr = (Node *) funccallnode;
|
|
constraint->cooked_expr = NULL;
|
|
column->constraints = lappend(column->constraints, constraint);
|
|
|
|
constraint = makeNode(Constraint);
|
|
constraint->contype = CONSTR_NOTNULL;
|
|
constraint->location = -1;
|
|
column->constraints = lappend(column->constraints, constraint);
|
|
}
|
|
|
|
/* Process column constraints, if any... */
|
|
transformConstraintAttrs(cxt, column->constraints);
|
|
|
|
saw_nullable = false;
|
|
saw_default = false;
|
|
|
|
foreach(clist, column->constraints)
|
|
{
|
|
constraint = lfirst(clist);
|
|
Assert(IsA(constraint, Constraint));
|
|
|
|
switch (constraint->contype)
|
|
{
|
|
case CONSTR_NULL:
|
|
if (saw_nullable && column->is_not_null)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("conflicting NULL/NOT NULL declarations for column \"%s\" of table \"%s\"",
|
|
column->colname, cxt->relation->relname),
|
|
parser_errposition(cxt->pstate,
|
|
constraint->location)));
|
|
column->is_not_null = FALSE;
|
|
saw_nullable = true;
|
|
break;
|
|
|
|
case CONSTR_NOTNULL:
|
|
if (saw_nullable && !column->is_not_null)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("conflicting NULL/NOT NULL declarations for column \"%s\" of table \"%s\"",
|
|
column->colname, cxt->relation->relname),
|
|
parser_errposition(cxt->pstate,
|
|
constraint->location)));
|
|
column->is_not_null = TRUE;
|
|
saw_nullable = true;
|
|
break;
|
|
|
|
case CONSTR_DEFAULT:
|
|
if (saw_default)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("multiple default values specified for column \"%s\" of table \"%s\"",
|
|
column->colname, cxt->relation->relname),
|
|
parser_errposition(cxt->pstate,
|
|
constraint->location)));
|
|
column->raw_default = constraint->raw_expr;
|
|
Assert(constraint->cooked_expr == NULL);
|
|
saw_default = true;
|
|
break;
|
|
|
|
case CONSTR_CHECK:
|
|
cxt->ckconstraints = lappend(cxt->ckconstraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_PRIMARY:
|
|
case CONSTR_UNIQUE:
|
|
if (constraint->keys == NIL)
|
|
constraint->keys = list_make1(makeString(column->colname));
|
|
cxt->ixconstraints = lappend(cxt->ixconstraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_EXCLUSION:
|
|
/* grammar does not allow EXCLUDE as a column constraint */
|
|
elog(ERROR, "column exclusion constraints are not supported");
|
|
break;
|
|
|
|
case CONSTR_FOREIGN:
|
|
|
|
/*
|
|
* Fill in the current attribute's name and throw it into the
|
|
* list of FK constraints to be processed later.
|
|
*/
|
|
constraint->fk_attrs = list_make1(makeString(column->colname));
|
|
cxt->fkconstraints = lappend(cxt->fkconstraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_ATTR_DEFERRABLE:
|
|
case CONSTR_ATTR_NOT_DEFERRABLE:
|
|
case CONSTR_ATTR_DEFERRED:
|
|
case CONSTR_ATTR_IMMEDIATE:
|
|
/* transformConstraintAttrs took care of these */
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized constraint type: %d",
|
|
constraint->contype);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* transformTableConstraint
|
|
* transform a Constraint node within CREATE TABLE or ALTER TABLE
|
|
*/
|
|
static void
|
|
transformTableConstraint(CreateStmtContext *cxt, Constraint *constraint)
|
|
{
|
|
switch (constraint->contype)
|
|
{
|
|
case CONSTR_PRIMARY:
|
|
case CONSTR_UNIQUE:
|
|
case CONSTR_EXCLUSION:
|
|
cxt->ixconstraints = lappend(cxt->ixconstraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_CHECK:
|
|
cxt->ckconstraints = lappend(cxt->ckconstraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_FOREIGN:
|
|
cxt->fkconstraints = lappend(cxt->fkconstraints, constraint);
|
|
break;
|
|
|
|
case CONSTR_NULL:
|
|
case CONSTR_NOTNULL:
|
|
case CONSTR_DEFAULT:
|
|
case CONSTR_ATTR_DEFERRABLE:
|
|
case CONSTR_ATTR_NOT_DEFERRABLE:
|
|
case CONSTR_ATTR_DEFERRED:
|
|
case CONSTR_ATTR_IMMEDIATE:
|
|
elog(ERROR, "invalid context for constraint type %d",
|
|
constraint->contype);
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized constraint type: %d",
|
|
constraint->contype);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* transformInhRelation
|
|
*
|
|
* Change the LIKE <subtable> portion of a CREATE TABLE statement into
|
|
* column definitions which recreate the user defined column portions of
|
|
* <subtable>.
|
|
*/
|
|
static void
|
|
transformInhRelation(CreateStmtContext *cxt, InhRelation *inhRelation)
|
|
{
|
|
AttrNumber parent_attno;
|
|
Relation relation;
|
|
TupleDesc tupleDesc;
|
|
TupleConstr *constr;
|
|
AclResult aclresult;
|
|
char *comment;
|
|
|
|
relation = parserOpenTable(cxt->pstate, inhRelation->relation,
|
|
AccessShareLock);
|
|
|
|
if (relation->rd_rel->relkind != RELKIND_RELATION)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("inherited relation \"%s\" is not a table",
|
|
inhRelation->relation->relname)));
|
|
|
|
/*
|
|
* Check for SELECT privilages
|
|
*/
|
|
aclresult = pg_class_aclcheck(RelationGetRelid(relation), GetUserId(),
|
|
ACL_SELECT);
|
|
if (aclresult != ACLCHECK_OK)
|
|
aclcheck_error(aclresult, ACL_KIND_CLASS,
|
|
RelationGetRelationName(relation));
|
|
|
|
tupleDesc = RelationGetDescr(relation);
|
|
constr = tupleDesc->constr;
|
|
|
|
/*
|
|
* Insert the copied attributes into the cxt for the new table definition.
|
|
*/
|
|
for (parent_attno = 1; parent_attno <= tupleDesc->natts;
|
|
parent_attno++)
|
|
{
|
|
Form_pg_attribute attribute = tupleDesc->attrs[parent_attno - 1];
|
|
char *attributeName = NameStr(attribute->attname);
|
|
ColumnDef *def;
|
|
|
|
/*
|
|
* Ignore dropped columns in the parent.
|
|
*/
|
|
if (attribute->attisdropped)
|
|
continue;
|
|
|
|
/*
|
|
* Create a new column, which is marked as NOT inherited.
|
|
*
|
|
* For constraints, ONLY the NOT NULL constraint is inherited by the
|
|
* new column definition per SQL99.
|
|
*/
|
|
def = makeNode(ColumnDef);
|
|
def->colname = pstrdup(attributeName);
|
|
def->typeName = makeTypeNameFromOid(attribute->atttypid,
|
|
attribute->atttypmod);
|
|
def->inhcount = 0;
|
|
def->is_local = true;
|
|
def->is_not_null = attribute->attnotnull;
|
|
def->is_from_type = false;
|
|
def->storage = 0;
|
|
def->raw_default = NULL;
|
|
def->cooked_default = NULL;
|
|
def->collClause = NULL;
|
|
def->collOid = attribute->attcollation;
|
|
def->constraints = NIL;
|
|
|
|
/*
|
|
* Add to column list
|
|
*/
|
|
cxt->columns = lappend(cxt->columns, def);
|
|
|
|
/*
|
|
* Copy default, if present and the default has been requested
|
|
*/
|
|
if (attribute->atthasdef &&
|
|
(inhRelation->options & CREATE_TABLE_LIKE_DEFAULTS))
|
|
{
|
|
Node *this_default = NULL;
|
|
AttrDefault *attrdef;
|
|
int i;
|
|
|
|
/* Find default in constraint structure */
|
|
Assert(constr != NULL);
|
|
attrdef = constr->defval;
|
|
for (i = 0; i < constr->num_defval; i++)
|
|
{
|
|
if (attrdef[i].adnum == parent_attno)
|
|
{
|
|
this_default = stringToNode(attrdef[i].adbin);
|
|
break;
|
|
}
|
|
}
|
|
Assert(this_default != NULL);
|
|
|
|
/*
|
|
* If default expr could contain any vars, we'd need to fix 'em,
|
|
* but it can't; so default is ready to apply to child.
|
|
*/
|
|
|
|
def->cooked_default = this_default;
|
|
}
|
|
|
|
/* Likewise, copy storage if requested */
|
|
if (inhRelation->options & CREATE_TABLE_LIKE_STORAGE)
|
|
def->storage = attribute->attstorage;
|
|
else
|
|
def->storage = 0;
|
|
|
|
/* Likewise, copy comment if requested */
|
|
if ((inhRelation->options & CREATE_TABLE_LIKE_COMMENTS) &&
|
|
(comment = GetComment(attribute->attrelid,
|
|
RelationRelationId,
|
|
attribute->attnum)) != NULL)
|
|
{
|
|
CommentStmt *stmt = makeNode(CommentStmt);
|
|
|
|
stmt->objtype = OBJECT_COLUMN;
|
|
stmt->objname = list_make3(makeString(cxt->relation->schemaname),
|
|
makeString(cxt->relation->relname),
|
|
makeString(def->colname));
|
|
stmt->objargs = NIL;
|
|
stmt->comment = comment;
|
|
|
|
cxt->alist = lappend(cxt->alist, stmt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy CHECK constraints if requested, being careful to adjust attribute
|
|
* numbers
|
|
*/
|
|
if ((inhRelation->options & CREATE_TABLE_LIKE_CONSTRAINTS) &&
|
|
tupleDesc->constr)
|
|
{
|
|
AttrNumber *attmap = varattnos_map_schema(tupleDesc, cxt->columns);
|
|
int ccnum;
|
|
|
|
for (ccnum = 0; ccnum < tupleDesc->constr->num_check; ccnum++)
|
|
{
|
|
char *ccname = tupleDesc->constr->check[ccnum].ccname;
|
|
char *ccbin = tupleDesc->constr->check[ccnum].ccbin;
|
|
Node *ccbin_node = stringToNode(ccbin);
|
|
Constraint *n = makeNode(Constraint);
|
|
|
|
change_varattnos_of_a_node(ccbin_node, attmap);
|
|
|
|
n->contype = CONSTR_CHECK;
|
|
n->location = -1;
|
|
n->conname = pstrdup(ccname);
|
|
n->raw_expr = NULL;
|
|
n->cooked_expr = nodeToString(ccbin_node);
|
|
cxt->ckconstraints = lappend(cxt->ckconstraints, n);
|
|
|
|
/* Copy comment on constraint */
|
|
if ((inhRelation->options & CREATE_TABLE_LIKE_COMMENTS) &&
|
|
(comment = GetComment(get_constraint_oid(RelationGetRelid(relation),
|
|
n->conname, false),
|
|
ConstraintRelationId,
|
|
0)) != NULL)
|
|
{
|
|
CommentStmt *stmt = makeNode(CommentStmt);
|
|
|
|
stmt->objtype = OBJECT_CONSTRAINT;
|
|
stmt->objname = list_make3(makeString(cxt->relation->schemaname),
|
|
makeString(cxt->relation->relname),
|
|
makeString(n->conname));
|
|
stmt->objargs = NIL;
|
|
stmt->comment = comment;
|
|
|
|
cxt->alist = lappend(cxt->alist, stmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Likewise, copy indexes if requested
|
|
*/
|
|
if ((inhRelation->options & CREATE_TABLE_LIKE_INDEXES) &&
|
|
relation->rd_rel->relhasindex)
|
|
{
|
|
AttrNumber *attmap = varattnos_map_schema(tupleDesc, cxt->columns);
|
|
List *parent_indexes;
|
|
ListCell *l;
|
|
|
|
parent_indexes = RelationGetIndexList(relation);
|
|
|
|
foreach(l, parent_indexes)
|
|
{
|
|
Oid parent_index_oid = lfirst_oid(l);
|
|
Relation parent_index;
|
|
IndexStmt *index_stmt;
|
|
|
|
parent_index = index_open(parent_index_oid, AccessShareLock);
|
|
|
|
/* Build CREATE INDEX statement to recreate the parent_index */
|
|
index_stmt = generateClonedIndexStmt(cxt, parent_index, attmap);
|
|
|
|
/* Copy comment on index */
|
|
if (inhRelation->options & CREATE_TABLE_LIKE_COMMENTS)
|
|
{
|
|
comment = GetComment(parent_index_oid, RelationRelationId, 0);
|
|
|
|
if (comment != NULL)
|
|
{
|
|
CommentStmt *stmt;
|
|
|
|
/*
|
|
* We have to assign the index a name now, so that we can
|
|
* reference it in CommentStmt.
|
|
*/
|
|
if (index_stmt->idxname == NULL)
|
|
index_stmt->idxname = chooseIndexName(cxt->relation,
|
|
index_stmt);
|
|
|
|
stmt = makeNode(CommentStmt);
|
|
stmt->objtype = OBJECT_INDEX;
|
|
stmt->objname =
|
|
list_make2(makeString(cxt->relation->schemaname),
|
|
makeString(index_stmt->idxname));
|
|
stmt->objargs = NIL;
|
|
stmt->comment = comment;
|
|
|
|
cxt->alist = lappend(cxt->alist, stmt);
|
|
}
|
|
}
|
|
|
|
/* Save it in the inh_indexes list for the time being */
|
|
cxt->inh_indexes = lappend(cxt->inh_indexes, index_stmt);
|
|
|
|
index_close(parent_index, AccessShareLock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Close the parent rel, but keep our AccessShareLock on it until xact
|
|
* commit. That will prevent someone else from deleting or ALTERing the
|
|
* parent before the child is committed.
|
|
*/
|
|
heap_close(relation, NoLock);
|
|
}
|
|
|
|
static void
|
|
transformOfType(CreateStmtContext *cxt, TypeName *ofTypename)
|
|
{
|
|
HeapTuple tuple;
|
|
Form_pg_type typ;
|
|
TupleDesc tupdesc;
|
|
int i;
|
|
Oid ofTypeId;
|
|
|
|
AssertArg(ofTypename);
|
|
|
|
tuple = typenameType(NULL, ofTypename, NULL);
|
|
check_of_type(tuple);
|
|
typ = (Form_pg_type) GETSTRUCT(tuple);
|
|
ofTypeId = HeapTupleGetOid(tuple);
|
|
ofTypename->typeOid = ofTypeId; /* cached for later */
|
|
|
|
tupdesc = lookup_rowtype_tupdesc(ofTypeId, -1);
|
|
for (i = 0; i < tupdesc->natts; i++)
|
|
{
|
|
Form_pg_attribute attr = tupdesc->attrs[i];
|
|
ColumnDef *n;
|
|
|
|
if (attr->attisdropped)
|
|
continue;
|
|
|
|
n = makeNode(ColumnDef);
|
|
n->colname = pstrdup(NameStr(attr->attname));
|
|
n->typeName = makeTypeNameFromOid(attr->atttypid, attr->atttypmod);
|
|
n->inhcount = 0;
|
|
n->is_local = true;
|
|
n->is_not_null = false;
|
|
n->is_from_type = true;
|
|
n->storage = 0;
|
|
n->raw_default = NULL;
|
|
n->cooked_default = NULL;
|
|
n->collClause = NULL;
|
|
n->collOid = attr->attcollation;
|
|
n->constraints = NIL;
|
|
cxt->columns = lappend(cxt->columns, n);
|
|
}
|
|
DecrTupleDescRefCount(tupdesc);
|
|
|
|
ReleaseSysCache(tuple);
|
|
}
|
|
|
|
/*
|
|
* chooseIndexName
|
|
*
|
|
* Compute name for an index. This must match code in indexcmds.c.
|
|
*
|
|
* XXX this is inherently broken because the indexes aren't created
|
|
* immediately, so we fail to resolve conflicts when the same name is
|
|
* derived for multiple indexes. However, that's a reasonably uncommon
|
|
* situation, so we'll live with it for now.
|
|
*/
|
|
static char *
|
|
chooseIndexName(const RangeVar *relation, IndexStmt *index_stmt)
|
|
{
|
|
Oid namespaceId;
|
|
List *colnames;
|
|
|
|
namespaceId = RangeVarGetCreationNamespace(relation);
|
|
colnames = ChooseIndexColumnNames(index_stmt->indexParams);
|
|
return ChooseIndexName(relation->relname, namespaceId,
|
|
colnames, index_stmt->excludeOpNames,
|
|
index_stmt->primary, index_stmt->isconstraint);
|
|
}
|
|
|
|
/*
|
|
* Generate an IndexStmt node using information from an already existing index
|
|
* "source_idx". Attribute numbers should be adjusted according to attmap.
|
|
*/
|
|
static IndexStmt *
|
|
generateClonedIndexStmt(CreateStmtContext *cxt, Relation source_idx,
|
|
AttrNumber *attmap)
|
|
{
|
|
Oid source_relid = RelationGetRelid(source_idx);
|
|
Form_pg_attribute *attrs = RelationGetDescr(source_idx)->attrs;
|
|
HeapTuple ht_idxrel;
|
|
HeapTuple ht_idx;
|
|
Form_pg_class idxrelrec;
|
|
Form_pg_index idxrec;
|
|
Form_pg_am amrec;
|
|
oidvector *indcollation;
|
|
oidvector *indclass;
|
|
IndexStmt *index;
|
|
List *indexprs;
|
|
ListCell *indexpr_item;
|
|
Oid indrelid;
|
|
int keyno;
|
|
Oid keycoltype;
|
|
Datum datum;
|
|
bool isnull;
|
|
|
|
/*
|
|
* Fetch pg_class tuple of source index. We can't use the copy in the
|
|
* relcache entry because it doesn't include optional fields.
|
|
*/
|
|
ht_idxrel = SearchSysCache1(RELOID, ObjectIdGetDatum(source_relid));
|
|
if (!HeapTupleIsValid(ht_idxrel))
|
|
elog(ERROR, "cache lookup failed for relation %u", source_relid);
|
|
idxrelrec = (Form_pg_class) GETSTRUCT(ht_idxrel);
|
|
|
|
/* Fetch pg_index tuple for source index from relcache entry */
|
|
ht_idx = source_idx->rd_indextuple;
|
|
idxrec = (Form_pg_index) GETSTRUCT(ht_idx);
|
|
indrelid = idxrec->indrelid;
|
|
|
|
/* Fetch pg_am tuple for source index from relcache entry */
|
|
amrec = source_idx->rd_am;
|
|
|
|
/* Extract indcollation from the pg_index tuple */
|
|
datum = SysCacheGetAttr(INDEXRELID, ht_idx,
|
|
Anum_pg_index_indcollation, &isnull);
|
|
Assert(!isnull);
|
|
indcollation = (oidvector *) DatumGetPointer(datum);
|
|
|
|
/* Extract indclass from the pg_index tuple */
|
|
datum = SysCacheGetAttr(INDEXRELID, ht_idx,
|
|
Anum_pg_index_indclass, &isnull);
|
|
Assert(!isnull);
|
|
indclass = (oidvector *) DatumGetPointer(datum);
|
|
|
|
/* Begin building the IndexStmt */
|
|
index = makeNode(IndexStmt);
|
|
index->relation = cxt->relation;
|
|
index->accessMethod = pstrdup(NameStr(amrec->amname));
|
|
if (OidIsValid(idxrelrec->reltablespace))
|
|
index->tableSpace = get_tablespace_name(idxrelrec->reltablespace);
|
|
else
|
|
index->tableSpace = NULL;
|
|
index->indexOid = InvalidOid;
|
|
index->unique = idxrec->indisunique;
|
|
index->primary = idxrec->indisprimary;
|
|
index->concurrent = false;
|
|
|
|
/*
|
|
* We don't try to preserve the name of the source index; instead, just
|
|
* let DefineIndex() choose a reasonable name.
|
|
*/
|
|
index->idxname = NULL;
|
|
|
|
/*
|
|
* If the index is marked PRIMARY or has an exclusion condition, it's
|
|
* certainly from a constraint; else, if it's not marked UNIQUE, it
|
|
* certainly isn't. If it is or might be from a constraint, we have to
|
|
* fetch the pg_constraint record.
|
|
*/
|
|
if (index->primary || index->unique || idxrec->indisexclusion)
|
|
{
|
|
Oid constraintId = get_index_constraint(source_relid);
|
|
|
|
if (OidIsValid(constraintId))
|
|
{
|
|
HeapTuple ht_constr;
|
|
Form_pg_constraint conrec;
|
|
|
|
ht_constr = SearchSysCache1(CONSTROID,
|
|
ObjectIdGetDatum(constraintId));
|
|
if (!HeapTupleIsValid(ht_constr))
|
|
elog(ERROR, "cache lookup failed for constraint %u",
|
|
constraintId);
|
|
conrec = (Form_pg_constraint) GETSTRUCT(ht_constr);
|
|
|
|
index->isconstraint = true;
|
|
index->deferrable = conrec->condeferrable;
|
|
index->initdeferred = conrec->condeferred;
|
|
|
|
/* If it's an exclusion constraint, we need the operator names */
|
|
if (idxrec->indisexclusion)
|
|
{
|
|
Datum *elems;
|
|
int nElems;
|
|
int i;
|
|
|
|
Assert(conrec->contype == CONSTRAINT_EXCLUSION);
|
|
/* Extract operator OIDs from the pg_constraint tuple */
|
|
datum = SysCacheGetAttr(CONSTROID, ht_constr,
|
|
Anum_pg_constraint_conexclop,
|
|
&isnull);
|
|
if (isnull)
|
|
elog(ERROR, "null conexclop for constraint %u",
|
|
constraintId);
|
|
|
|
deconstruct_array(DatumGetArrayTypeP(datum),
|
|
OIDOID, sizeof(Oid), true, 'i',
|
|
&elems, NULL, &nElems);
|
|
|
|
for (i = 0; i < nElems; i++)
|
|
{
|
|
Oid operid = DatumGetObjectId(elems[i]);
|
|
HeapTuple opertup;
|
|
Form_pg_operator operform;
|
|
char *oprname;
|
|
char *nspname;
|
|
List *namelist;
|
|
|
|
opertup = SearchSysCache1(OPEROID,
|
|
ObjectIdGetDatum(operid));
|
|
if (!HeapTupleIsValid(opertup))
|
|
elog(ERROR, "cache lookup failed for operator %u",
|
|
operid);
|
|
operform = (Form_pg_operator) GETSTRUCT(opertup);
|
|
oprname = pstrdup(NameStr(operform->oprname));
|
|
/* For simplicity we always schema-qualify the op name */
|
|
nspname = get_namespace_name(operform->oprnamespace);
|
|
namelist = list_make2(makeString(nspname),
|
|
makeString(oprname));
|
|
index->excludeOpNames = lappend(index->excludeOpNames,
|
|
namelist);
|
|
ReleaseSysCache(opertup);
|
|
}
|
|
}
|
|
|
|
ReleaseSysCache(ht_constr);
|
|
}
|
|
else
|
|
index->isconstraint = false;
|
|
}
|
|
else
|
|
index->isconstraint = false;
|
|
|
|
/* Get the index expressions, if any */
|
|
datum = SysCacheGetAttr(INDEXRELID, ht_idx,
|
|
Anum_pg_index_indexprs, &isnull);
|
|
if (!isnull)
|
|
{
|
|
char *exprsString;
|
|
|
|
exprsString = TextDatumGetCString(datum);
|
|
indexprs = (List *) stringToNode(exprsString);
|
|
}
|
|
else
|
|
indexprs = NIL;
|
|
|
|
/* Build the list of IndexElem */
|
|
index->indexParams = NIL;
|
|
|
|
indexpr_item = list_head(indexprs);
|
|
for (keyno = 0; keyno < idxrec->indnatts; keyno++)
|
|
{
|
|
IndexElem *iparam;
|
|
AttrNumber attnum = idxrec->indkey.values[keyno];
|
|
int16 opt = source_idx->rd_indoption[keyno];
|
|
|
|
iparam = makeNode(IndexElem);
|
|
|
|
if (AttributeNumberIsValid(attnum))
|
|
{
|
|
/* Simple index column */
|
|
char *attname;
|
|
|
|
attname = get_relid_attribute_name(indrelid, attnum);
|
|
keycoltype = get_atttype(indrelid, attnum);
|
|
|
|
iparam->name = attname;
|
|
iparam->expr = NULL;
|
|
}
|
|
else
|
|
{
|
|
/* Expressional index */
|
|
Node *indexkey;
|
|
|
|
if (indexpr_item == NULL)
|
|
elog(ERROR, "too few entries in indexprs list");
|
|
indexkey = (Node *) lfirst(indexpr_item);
|
|
indexpr_item = lnext(indexpr_item);
|
|
|
|
/* OK to modify indexkey since we are working on a private copy */
|
|
change_varattnos_of_a_node(indexkey, attmap);
|
|
|
|
iparam->name = NULL;
|
|
iparam->expr = indexkey;
|
|
|
|
keycoltype = exprType(indexkey);
|
|
}
|
|
|
|
/* Copy the original index column name */
|
|
iparam->indexcolname = pstrdup(NameStr(attrs[keyno]->attname));
|
|
|
|
/* Add the collation name, if non-default */
|
|
iparam->collation = get_collation(indcollation->values[keyno], keycoltype);
|
|
|
|
/* Add the operator class name, if non-default */
|
|
iparam->opclass = get_opclass(indclass->values[keyno], keycoltype);
|
|
|
|
iparam->ordering = SORTBY_DEFAULT;
|
|
iparam->nulls_ordering = SORTBY_NULLS_DEFAULT;
|
|
|
|
/* Adjust options if necessary */
|
|
if (amrec->amcanorder)
|
|
{
|
|
/*
|
|
* If it supports sort ordering, copy DESC and NULLS opts. Don't
|
|
* set non-default settings unnecessarily, though, so as to
|
|
* improve the chance of recognizing equivalence to constraint
|
|
* indexes.
|
|
*/
|
|
if (opt & INDOPTION_DESC)
|
|
{
|
|
iparam->ordering = SORTBY_DESC;
|
|
if ((opt & INDOPTION_NULLS_FIRST) == 0)
|
|
iparam->nulls_ordering = SORTBY_NULLS_LAST;
|
|
}
|
|
else
|
|
{
|
|
if (opt & INDOPTION_NULLS_FIRST)
|
|
iparam->nulls_ordering = SORTBY_NULLS_FIRST;
|
|
}
|
|
}
|
|
|
|
index->indexParams = lappend(index->indexParams, iparam);
|
|
}
|
|
|
|
/* Copy reloptions if any */
|
|
datum = SysCacheGetAttr(RELOID, ht_idxrel,
|
|
Anum_pg_class_reloptions, &isnull);
|
|
if (!isnull)
|
|
index->options = untransformRelOptions(datum);
|
|
|
|
/* If it's a partial index, decompile and append the predicate */
|
|
datum = SysCacheGetAttr(INDEXRELID, ht_idx,
|
|
Anum_pg_index_indpred, &isnull);
|
|
if (!isnull)
|
|
{
|
|
char *pred_str;
|
|
|
|
/* Convert text string to node tree */
|
|
pred_str = TextDatumGetCString(datum);
|
|
index->whereClause = (Node *) stringToNode(pred_str);
|
|
/* Adjust attribute numbers */
|
|
change_varattnos_of_a_node(index->whereClause, attmap);
|
|
}
|
|
|
|
/* Clean up */
|
|
ReleaseSysCache(ht_idxrel);
|
|
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* get_collation - fetch qualified name of a collation
|
|
*
|
|
* If collation is InvalidOid or is the default for the given actual_datatype,
|
|
* then the return value is NIL.
|
|
*/
|
|
static List *
|
|
get_collation(Oid collation, Oid actual_datatype)
|
|
{
|
|
List *result;
|
|
HeapTuple ht_coll;
|
|
Form_pg_collation coll_rec;
|
|
char *nsp_name;
|
|
char *coll_name;
|
|
|
|
if (!OidIsValid(collation))
|
|
return NIL; /* easy case */
|
|
if (collation == get_typcollation(actual_datatype))
|
|
return NIL; /* just let it default */
|
|
|
|
ht_coll = SearchSysCache1(COLLOID, ObjectIdGetDatum(collation));
|
|
if (!HeapTupleIsValid(ht_coll))
|
|
elog(ERROR, "cache lookup failed for collation %u", collation);
|
|
coll_rec = (Form_pg_collation) GETSTRUCT(ht_coll);
|
|
|
|
/* For simplicity, we always schema-qualify the name */
|
|
nsp_name = get_namespace_name(coll_rec->collnamespace);
|
|
coll_name = pstrdup(NameStr(coll_rec->collname));
|
|
result = list_make2(makeString(nsp_name), makeString(coll_name));
|
|
|
|
ReleaseSysCache(ht_coll);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* get_opclass - fetch qualified name of an index operator class
|
|
*
|
|
* If the opclass is the default for the given actual_datatype, then
|
|
* the return value is NIL.
|
|
*/
|
|
static List *
|
|
get_opclass(Oid opclass, Oid actual_datatype)
|
|
{
|
|
List *result = NIL;
|
|
HeapTuple ht_opc;
|
|
Form_pg_opclass opc_rec;
|
|
|
|
ht_opc = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
|
|
if (!HeapTupleIsValid(ht_opc))
|
|
elog(ERROR, "cache lookup failed for opclass %u", opclass);
|
|
opc_rec = (Form_pg_opclass) GETSTRUCT(ht_opc);
|
|
|
|
if (GetDefaultOpClass(actual_datatype, opc_rec->opcmethod) != opclass)
|
|
{
|
|
/* For simplicity, we always schema-qualify the name */
|
|
char *nsp_name = get_namespace_name(opc_rec->opcnamespace);
|
|
char *opc_name = pstrdup(NameStr(opc_rec->opcname));
|
|
|
|
result = list_make2(makeString(nsp_name), makeString(opc_name));
|
|
}
|
|
|
|
ReleaseSysCache(ht_opc);
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* transformIndexConstraints
|
|
* Handle UNIQUE, PRIMARY KEY, EXCLUDE constraints, which create indexes.
|
|
* We also merge in any index definitions arising from
|
|
* LIKE ... INCLUDING INDEXES.
|
|
*/
|
|
static void
|
|
transformIndexConstraints(CreateStmtContext *cxt)
|
|
{
|
|
IndexStmt *index;
|
|
List *indexlist = NIL;
|
|
ListCell *lc;
|
|
|
|
/*
|
|
* Run through the constraints that need to generate an index. For PRIMARY
|
|
* KEY, mark each column as NOT NULL and create an index. For UNIQUE or
|
|
* EXCLUDE, create an index as for PRIMARY KEY, but do not insist on NOT
|
|
* NULL.
|
|
*/
|
|
foreach(lc, cxt->ixconstraints)
|
|
{
|
|
Constraint *constraint = (Constraint *) lfirst(lc);
|
|
|
|
Assert(IsA(constraint, Constraint));
|
|
Assert(constraint->contype == CONSTR_PRIMARY ||
|
|
constraint->contype == CONSTR_UNIQUE ||
|
|
constraint->contype == CONSTR_EXCLUSION);
|
|
|
|
index = transformIndexConstraint(constraint, cxt);
|
|
|
|
indexlist = lappend(indexlist, index);
|
|
}
|
|
|
|
/* Add in any indexes defined by LIKE ... INCLUDING INDEXES */
|
|
foreach(lc, cxt->inh_indexes)
|
|
{
|
|
index = (IndexStmt *) lfirst(lc);
|
|
|
|
if (index->primary)
|
|
{
|
|
if (cxt->pkey != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
|
|
errmsg("multiple primary keys for table \"%s\" are not allowed",
|
|
cxt->relation->relname)));
|
|
cxt->pkey = index;
|
|
}
|
|
|
|
indexlist = lappend(indexlist, index);
|
|
}
|
|
|
|
/*
|
|
* Scan the index list and remove any redundant index specifications. This
|
|
* can happen if, for instance, the user writes UNIQUE PRIMARY KEY. A
|
|
* strict reading of SQL92 would suggest raising an error instead, but
|
|
* that strikes me as too anal-retentive. - tgl 2001-02-14
|
|
*
|
|
* XXX in ALTER TABLE case, it'd be nice to look for duplicate
|
|
* pre-existing indexes, too.
|
|
*/
|
|
Assert(cxt->alist == NIL);
|
|
if (cxt->pkey != NULL)
|
|
{
|
|
/* Make sure we keep the PKEY index in preference to others... */
|
|
cxt->alist = list_make1(cxt->pkey);
|
|
}
|
|
|
|
foreach(lc, indexlist)
|
|
{
|
|
bool keep = true;
|
|
ListCell *k;
|
|
|
|
index = lfirst(lc);
|
|
|
|
/* if it's pkey, it's already in cxt->alist */
|
|
if (index == cxt->pkey)
|
|
continue;
|
|
|
|
foreach(k, cxt->alist)
|
|
{
|
|
IndexStmt *priorindex = lfirst(k);
|
|
|
|
if (equal(index->indexParams, priorindex->indexParams) &&
|
|
equal(index->whereClause, priorindex->whereClause) &&
|
|
equal(index->excludeOpNames, priorindex->excludeOpNames) &&
|
|
strcmp(index->accessMethod, priorindex->accessMethod) == 0 &&
|
|
index->deferrable == priorindex->deferrable &&
|
|
index->initdeferred == priorindex->initdeferred)
|
|
{
|
|
priorindex->unique |= index->unique;
|
|
|
|
/*
|
|
* If the prior index is as yet unnamed, and this one is
|
|
* named, then transfer the name to the prior index. This
|
|
* ensures that if we have named and unnamed constraints,
|
|
* we'll use (at least one of) the names for the index.
|
|
*/
|
|
if (priorindex->idxname == NULL)
|
|
priorindex->idxname = index->idxname;
|
|
keep = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (keep)
|
|
cxt->alist = lappend(cxt->alist, index);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* transformIndexConstraint
|
|
* Transform one UNIQUE, PRIMARY KEY, or EXCLUDE constraint for
|
|
* transformIndexConstraints.
|
|
*/
|
|
static IndexStmt *
|
|
transformIndexConstraint(Constraint *constraint, CreateStmtContext *cxt)
|
|
{
|
|
IndexStmt *index;
|
|
ListCell *lc;
|
|
|
|
index = makeNode(IndexStmt);
|
|
|
|
index->unique = (constraint->contype != CONSTR_EXCLUSION);
|
|
index->primary = (constraint->contype == CONSTR_PRIMARY);
|
|
if (index->primary)
|
|
{
|
|
if (cxt->pkey != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
|
|
errmsg("multiple primary keys for table \"%s\" are not allowed",
|
|
cxt->relation->relname),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
cxt->pkey = index;
|
|
|
|
/*
|
|
* In ALTER TABLE case, a primary index might already exist, but
|
|
* DefineIndex will check for it.
|
|
*/
|
|
}
|
|
index->isconstraint = true;
|
|
index->deferrable = constraint->deferrable;
|
|
index->initdeferred = constraint->initdeferred;
|
|
|
|
if (constraint->conname != NULL)
|
|
index->idxname = pstrdup(constraint->conname);
|
|
else
|
|
index->idxname = NULL; /* DefineIndex will choose name */
|
|
|
|
index->relation = cxt->relation;
|
|
index->accessMethod = constraint->access_method ? constraint->access_method : DEFAULT_INDEX_TYPE;
|
|
index->options = constraint->options;
|
|
index->tableSpace = constraint->indexspace;
|
|
index->whereClause = constraint->where_clause;
|
|
index->indexParams = NIL;
|
|
index->excludeOpNames = NIL;
|
|
index->indexOid = InvalidOid;
|
|
index->concurrent = false;
|
|
|
|
/*
|
|
* If it's ALTER TABLE ADD CONSTRAINT USING INDEX, look up the index and
|
|
* verify it's usable, then extract the implied column name list. (We
|
|
* will not actually need the column name list at runtime, but we need it
|
|
* now to check for duplicate column entries below.)
|
|
*/
|
|
if (constraint->indexname != NULL)
|
|
{
|
|
char *index_name = constraint->indexname;
|
|
Relation heap_rel = cxt->rel;
|
|
Oid index_oid;
|
|
Relation index_rel;
|
|
Form_pg_index index_form;
|
|
oidvector *indclass;
|
|
Datum indclassDatum;
|
|
bool isnull;
|
|
int i;
|
|
|
|
/* Grammar should not allow this with explicit column list */
|
|
Assert(constraint->keys == NIL);
|
|
|
|
/* Grammar should only allow PRIMARY and UNIQUE constraints */
|
|
Assert(constraint->contype == CONSTR_PRIMARY ||
|
|
constraint->contype == CONSTR_UNIQUE);
|
|
|
|
/* Must be ALTER, not CREATE, but grammar doesn't enforce that */
|
|
if (!cxt->isalter)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot use an existing index in CREATE TABLE"),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
/* Look for the index in the same schema as the table */
|
|
index_oid = get_relname_relid(index_name, RelationGetNamespace(heap_rel));
|
|
|
|
if (!OidIsValid(index_oid))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_OBJECT),
|
|
errmsg("index \"%s\" does not exist", index_name),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
/* Open the index (this will throw an error if it is not an index) */
|
|
index_rel = index_open(index_oid, AccessShareLock);
|
|
index_form = index_rel->rd_index;
|
|
|
|
/* Check that it does not have an associated constraint already */
|
|
if (OidIsValid(get_index_constraint(index_oid)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("index \"%s\" is already associated with a constraint",
|
|
index_name),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
/* Perform validity checks on the index */
|
|
if (index_form->indrelid != RelationGetRelid(heap_rel))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("index \"%s\" does not belong to table \"%s\"",
|
|
index_name, RelationGetRelationName(heap_rel)),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
if (!index_form->indisvalid)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("index \"%s\" is not valid", index_name),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
if (!index_form->indisready)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("index \"%s\" is not ready", index_name),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
if (!index_form->indisunique)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("\"%s\" is not a unique index", index_name),
|
|
errdetail("Cannot create a PRIMARY KEY or UNIQUE constraint using such an index."),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
if (RelationGetIndexExpressions(index_rel) != NIL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("index \"%s\" contains expressions", index_name),
|
|
errdetail("Cannot create a PRIMARY KEY or UNIQUE constraint using such an index."),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
if (RelationGetIndexPredicate(index_rel) != NIL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("\"%s\" is a partial index", index_name),
|
|
errdetail("Cannot create a PRIMARY KEY or UNIQUE constraint using such an index."),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
/*
|
|
* It's probably unsafe to change a deferred index to non-deferred. (A
|
|
* non-constraint index couldn't be deferred anyway, so this case
|
|
* should never occur; no need to sweat, but let's check it.)
|
|
*/
|
|
if (!index_form->indimmediate && !constraint->deferrable)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("\"%s\" is a deferrable index", index_name),
|
|
errdetail("Cannot create a non-deferrable constraint using a deferrable index."),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
/*
|
|
* Insist on it being a btree. That's the only kind that supports
|
|
* uniqueness at the moment anyway; but we must have an index that
|
|
* exactly matches what you'd get from plain ADD CONSTRAINT syntax,
|
|
* else dump and reload will produce a different index (breaking
|
|
* pg_upgrade in particular).
|
|
*/
|
|
if (index_rel->rd_rel->relam != get_am_oid(DEFAULT_INDEX_TYPE, false))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("index \"%s\" is not a b-tree", index_name),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
/* Must get indclass the hard way */
|
|
indclassDatum = SysCacheGetAttr(INDEXRELID, index_rel->rd_indextuple,
|
|
Anum_pg_index_indclass, &isnull);
|
|
Assert(!isnull);
|
|
indclass = (oidvector *) DatumGetPointer(indclassDatum);
|
|
|
|
for (i = 0; i < index_form->indnatts; i++)
|
|
{
|
|
int2 attnum = index_form->indkey.values[i];
|
|
Form_pg_attribute attform;
|
|
char *attname;
|
|
Oid defopclass;
|
|
|
|
/*
|
|
* We shouldn't see attnum == 0 here, since we already rejected
|
|
* expression indexes. If we do, SystemAttributeDefinition will
|
|
* throw an error.
|
|
*/
|
|
if (attnum > 0)
|
|
{
|
|
Assert(attnum <= heap_rel->rd_att->natts);
|
|
attform = heap_rel->rd_att->attrs[attnum - 1];
|
|
}
|
|
else
|
|
attform = SystemAttributeDefinition(attnum,
|
|
heap_rel->rd_rel->relhasoids);
|
|
attname = pstrdup(NameStr(attform->attname));
|
|
|
|
/*
|
|
* Insist on default opclass and sort options. While the index
|
|
* would still work as a constraint with non-default settings, it
|
|
* might not provide exactly the same uniqueness semantics as
|
|
* you'd get from a normally-created constraint; and there's also
|
|
* the dump/reload problem mentioned above.
|
|
*/
|
|
defopclass = GetDefaultOpClass(attform->atttypid,
|
|
index_rel->rd_rel->relam);
|
|
if (indclass->values[i] != defopclass ||
|
|
index_rel->rd_indoption[i] != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("index \"%s\" does not have default sorting behavior", index_name),
|
|
errdetail("Cannot create a PRIMARY KEY or UNIQUE constraint using such an index."),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
constraint->keys = lappend(constraint->keys, makeString(attname));
|
|
}
|
|
|
|
/* Close the index relation but keep the lock */
|
|
relation_close(index_rel, NoLock);
|
|
|
|
index->indexOid = index_oid;
|
|
}
|
|
|
|
/*
|
|
* If it's an EXCLUDE constraint, the grammar returns a list of pairs of
|
|
* IndexElems and operator names. We have to break that apart into
|
|
* separate lists.
|
|
*/
|
|
if (constraint->contype == CONSTR_EXCLUSION)
|
|
{
|
|
foreach(lc, constraint->exclusions)
|
|
{
|
|
List *pair = (List *) lfirst(lc);
|
|
IndexElem *elem;
|
|
List *opname;
|
|
|
|
Assert(list_length(pair) == 2);
|
|
elem = (IndexElem *) linitial(pair);
|
|
Assert(IsA(elem, IndexElem));
|
|
opname = (List *) lsecond(pair);
|
|
Assert(IsA(opname, List));
|
|
|
|
index->indexParams = lappend(index->indexParams, elem);
|
|
index->excludeOpNames = lappend(index->excludeOpNames, opname);
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* For UNIQUE and PRIMARY KEY, we just have a list of column names.
|
|
*
|
|
* Make sure referenced keys exist. If we are making a PRIMARY KEY index,
|
|
* also make sure they are NOT NULL, if possible. (Although we could leave
|
|
* it to DefineIndex to mark the columns NOT NULL, it's more efficient to
|
|
* get it right the first time.)
|
|
*/
|
|
foreach(lc, constraint->keys)
|
|
{
|
|
char *key = strVal(lfirst(lc));
|
|
bool found = false;
|
|
ColumnDef *column = NULL;
|
|
ListCell *columns;
|
|
IndexElem *iparam;
|
|
|
|
foreach(columns, cxt->columns)
|
|
{
|
|
column = (ColumnDef *) lfirst(columns);
|
|
Assert(IsA(column, ColumnDef));
|
|
if (strcmp(column->colname, key) == 0)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found)
|
|
{
|
|
/* found column in the new table; force it to be NOT NULL */
|
|
if (constraint->contype == CONSTR_PRIMARY)
|
|
column->is_not_null = TRUE;
|
|
}
|
|
else if (SystemAttributeByName(key, cxt->hasoids) != NULL)
|
|
{
|
|
/*
|
|
* column will be a system column in the new table, so accept it.
|
|
* System columns can't ever be null, so no need to worry about
|
|
* PRIMARY/NOT NULL constraint.
|
|
*/
|
|
found = true;
|
|
}
|
|
else if (cxt->inhRelations)
|
|
{
|
|
/* try inherited tables */
|
|
ListCell *inher;
|
|
|
|
foreach(inher, cxt->inhRelations)
|
|
{
|
|
RangeVar *inh = (RangeVar *) lfirst(inher);
|
|
Relation rel;
|
|
int count;
|
|
|
|
Assert(IsA(inh, RangeVar));
|
|
rel = heap_openrv(inh, AccessShareLock);
|
|
if (rel->rd_rel->relkind != RELKIND_RELATION)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("inherited relation \"%s\" is not a table",
|
|
inh->relname)));
|
|
for (count = 0; count < rel->rd_att->natts; count++)
|
|
{
|
|
Form_pg_attribute inhattr = rel->rd_att->attrs[count];
|
|
char *inhname = NameStr(inhattr->attname);
|
|
|
|
if (inhattr->attisdropped)
|
|
continue;
|
|
if (strcmp(key, inhname) == 0)
|
|
{
|
|
found = true;
|
|
|
|
/*
|
|
* We currently have no easy way to force an inherited
|
|
* column to be NOT NULL at creation, if its parent
|
|
* wasn't so already. We leave it to DefineIndex to
|
|
* fix things up in this case.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
heap_close(rel, NoLock);
|
|
if (found)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In the ALTER TABLE case, don't complain about index keys not
|
|
* created in the command; they may well exist already. DefineIndex
|
|
* will complain about them if not, and will also take care of marking
|
|
* them NOT NULL.
|
|
*/
|
|
if (!found && !cxt->isalter)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_COLUMN),
|
|
errmsg("column \"%s\" named in key does not exist", key),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
|
|
/* Check for PRIMARY KEY(foo, foo) */
|
|
foreach(columns, index->indexParams)
|
|
{
|
|
iparam = (IndexElem *) lfirst(columns);
|
|
if (iparam->name && strcmp(key, iparam->name) == 0)
|
|
{
|
|
if (index->primary)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DUPLICATE_COLUMN),
|
|
errmsg("column \"%s\" appears twice in primary key constraint",
|
|
key),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DUPLICATE_COLUMN),
|
|
errmsg("column \"%s\" appears twice in unique constraint",
|
|
key),
|
|
parser_errposition(cxt->pstate, constraint->location)));
|
|
}
|
|
}
|
|
|
|
/* OK, add it to the index definition */
|
|
iparam = makeNode(IndexElem);
|
|
iparam->name = pstrdup(key);
|
|
iparam->expr = NULL;
|
|
iparam->indexcolname = NULL;
|
|
iparam->collation = NIL;
|
|
iparam->opclass = NIL;
|
|
iparam->ordering = SORTBY_DEFAULT;
|
|
iparam->nulls_ordering = SORTBY_NULLS_DEFAULT;
|
|
index->indexParams = lappend(index->indexParams, iparam);
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* transformFKConstraints
|
|
* handle FOREIGN KEY constraints
|
|
*/
|
|
static void
|
|
transformFKConstraints(CreateStmtContext *cxt,
|
|
bool skipValidation, bool isAddConstraint)
|
|
{
|
|
ListCell *fkclist;
|
|
|
|
if (cxt->fkconstraints == NIL)
|
|
return;
|
|
|
|
/*
|
|
* If CREATE TABLE or adding a column with NULL default, we can safely
|
|
* skip validation of the constraint.
|
|
*/
|
|
if (skipValidation)
|
|
{
|
|
foreach(fkclist, cxt->fkconstraints)
|
|
{
|
|
Constraint *constraint = (Constraint *) lfirst(fkclist);
|
|
|
|
constraint->skip_validation = true;
|
|
constraint->initially_valid = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For CREATE TABLE or ALTER TABLE ADD COLUMN, gin up an ALTER TABLE ADD
|
|
* CONSTRAINT command to execute after the basic command is complete. (If
|
|
* called from ADD CONSTRAINT, that routine will add the FK constraints to
|
|
* its own subcommand list.)
|
|
*
|
|
* Note: the ADD CONSTRAINT command must also execute after any index
|
|
* creation commands. Thus, this should run after
|
|
* transformIndexConstraints, so that the CREATE INDEX commands are
|
|
* already in cxt->alist.
|
|
*/
|
|
if (!isAddConstraint)
|
|
{
|
|
AlterTableStmt *alterstmt = makeNode(AlterTableStmt);
|
|
|
|
alterstmt->relation = cxt->relation;
|
|
alterstmt->cmds = NIL;
|
|
alterstmt->relkind = OBJECT_TABLE;
|
|
|
|
foreach(fkclist, cxt->fkconstraints)
|
|
{
|
|
Constraint *constraint = (Constraint *) lfirst(fkclist);
|
|
AlterTableCmd *altercmd = makeNode(AlterTableCmd);
|
|
|
|
altercmd->subtype = AT_ProcessedConstraint;
|
|
altercmd->name = NULL;
|
|
altercmd->def = (Node *) constraint;
|
|
alterstmt->cmds = lappend(alterstmt->cmds, altercmd);
|
|
}
|
|
|
|
cxt->alist = lappend(cxt->alist, alterstmt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* transformIndexStmt - parse analysis for CREATE INDEX and ALTER TABLE
|
|
*
|
|
* Note: this is a no-op for an index not using either index expressions or
|
|
* a predicate expression. There are several code paths that create indexes
|
|
* without bothering to call this, because they know they don't have any
|
|
* such expressions to deal with.
|
|
*/
|
|
IndexStmt *
|
|
transformIndexStmt(IndexStmt *stmt, const char *queryString)
|
|
{
|
|
Relation rel;
|
|
ParseState *pstate;
|
|
RangeTblEntry *rte;
|
|
ListCell *l;
|
|
|
|
/*
|
|
* We must not scribble on the passed-in IndexStmt, so copy it. (This is
|
|
* overkill, but easy.)
|
|
*/
|
|
stmt = (IndexStmt *) copyObject(stmt);
|
|
|
|
/*
|
|
* Open the parent table with appropriate locking. We must do this
|
|
* because addRangeTableEntry() would acquire only AccessShareLock,
|
|
* leaving DefineIndex() needing to do a lock upgrade with consequent risk
|
|
* of deadlock. Make sure this stays in sync with the type of lock
|
|
* DefineIndex() wants. If we are being called by ALTER TABLE, we will
|
|
* already hold a higher lock.
|
|
*/
|
|
rel = heap_openrv(stmt->relation,
|
|
(stmt->concurrent ? ShareUpdateExclusiveLock : ShareLock));
|
|
|
|
/* Set up pstate */
|
|
pstate = make_parsestate(NULL);
|
|
pstate->p_sourcetext = queryString;
|
|
|
|
/*
|
|
* Put the parent table into the rtable so that the expressions can refer
|
|
* to its fields without qualification.
|
|
*/
|
|
rte = addRangeTableEntry(pstate, stmt->relation, NULL, false, true);
|
|
|
|
/* no to join list, yes to namespaces */
|
|
addRTEtoQuery(pstate, rte, false, true, true);
|
|
|
|
/* take care of the where clause */
|
|
if (stmt->whereClause)
|
|
{
|
|
stmt->whereClause = transformWhereClause(pstate,
|
|
stmt->whereClause,
|
|
"WHERE");
|
|
/* we have to fix its collations too */
|
|
assign_expr_collations(pstate, stmt->whereClause);
|
|
}
|
|
|
|
/* take care of any index expressions */
|
|
foreach(l, stmt->indexParams)
|
|
{
|
|
IndexElem *ielem = (IndexElem *) lfirst(l);
|
|
|
|
if (ielem->expr)
|
|
{
|
|
/* Extract preliminary index col name before transforming expr */
|
|
if (ielem->indexcolname == NULL)
|
|
ielem->indexcolname = FigureIndexColname(ielem->expr);
|
|
|
|
/* Now do parse transformation of the expression */
|
|
ielem->expr = transformExpr(pstate, ielem->expr);
|
|
|
|
/* We have to fix its collations too */
|
|
assign_expr_collations(pstate, ielem->expr);
|
|
|
|
/*
|
|
* We check only that the result type is legitimate; this is for
|
|
* consistency with what transformWhereClause() checks for the
|
|
* predicate. DefineIndex() will make more checks.
|
|
*/
|
|
if (expression_returns_set(ielem->expr))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("index expression cannot return a set")));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check that only the base rel is mentioned.
|
|
*/
|
|
if (list_length(pstate->p_rtable) != 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
|
|
errmsg("index expressions and predicates can refer only to the table being indexed")));
|
|
|
|
free_parsestate(pstate);
|
|
|
|
/* Close relation, but keep the lock */
|
|
heap_close(rel, NoLock);
|
|
|
|
return stmt;
|
|
}
|
|
|
|
|
|
/*
|
|
* transformRuleStmt -
|
|
* transform a CREATE RULE Statement. The action is a list of parse
|
|
* trees which is transformed into a list of query trees, and we also
|
|
* transform the WHERE clause if any.
|
|
*
|
|
* actions and whereClause are output parameters that receive the
|
|
* transformed results.
|
|
*
|
|
* Note that we must not scribble on the passed-in RuleStmt, so we do
|
|
* copyObject() on the actions and WHERE clause.
|
|
*/
|
|
void
|
|
transformRuleStmt(RuleStmt *stmt, const char *queryString,
|
|
List **actions, Node **whereClause)
|
|
{
|
|
Relation rel;
|
|
ParseState *pstate;
|
|
RangeTblEntry *oldrte;
|
|
RangeTblEntry *newrte;
|
|
|
|
/*
|
|
* To avoid deadlock, make sure the first thing we do is grab
|
|
* AccessExclusiveLock on the target relation. This will be needed by
|
|
* DefineQueryRewrite(), and we don't want to grab a lesser lock
|
|
* beforehand.
|
|
*/
|
|
rel = heap_openrv(stmt->relation, AccessExclusiveLock);
|
|
|
|
/* Set up pstate */
|
|
pstate = make_parsestate(NULL);
|
|
pstate->p_sourcetext = queryString;
|
|
|
|
/*
|
|
* NOTE: 'OLD' must always have a varno equal to 1 and 'NEW' equal to 2.
|
|
* Set up their RTEs in the main pstate for use in parsing the rule
|
|
* qualification.
|
|
*/
|
|
oldrte = addRangeTableEntryForRelation(pstate, rel,
|
|
makeAlias("old", NIL),
|
|
false, false);
|
|
newrte = addRangeTableEntryForRelation(pstate, rel,
|
|
makeAlias("new", NIL),
|
|
false, false);
|
|
/* Must override addRangeTableEntry's default access-check flags */
|
|
oldrte->requiredPerms = 0;
|
|
newrte->requiredPerms = 0;
|
|
|
|
/*
|
|
* They must be in the namespace too for lookup purposes, but only add the
|
|
* one(s) that are relevant for the current kind of rule. In an UPDATE
|
|
* rule, quals must refer to OLD.field or NEW.field to be unambiguous, but
|
|
* there's no need to be so picky for INSERT & DELETE. We do not add them
|
|
* to the joinlist.
|
|
*/
|
|
switch (stmt->event)
|
|
{
|
|
case CMD_SELECT:
|
|
addRTEtoQuery(pstate, oldrte, false, true, true);
|
|
break;
|
|
case CMD_UPDATE:
|
|
addRTEtoQuery(pstate, oldrte, false, true, true);
|
|
addRTEtoQuery(pstate, newrte, false, true, true);
|
|
break;
|
|
case CMD_INSERT:
|
|
addRTEtoQuery(pstate, newrte, false, true, true);
|
|
break;
|
|
case CMD_DELETE:
|
|
addRTEtoQuery(pstate, oldrte, false, true, true);
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized event type: %d",
|
|
(int) stmt->event);
|
|
break;
|
|
}
|
|
|
|
/* take care of the where clause */
|
|
*whereClause = transformWhereClause(pstate,
|
|
(Node *) copyObject(stmt->whereClause),
|
|
"WHERE");
|
|
/* we have to fix its collations too */
|
|
assign_expr_collations(pstate, *whereClause);
|
|
|
|
if (list_length(pstate->p_rtable) != 2) /* naughty, naughty... */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("rule WHERE condition cannot contain references to other relations")));
|
|
|
|
/* aggregates not allowed (but subselects are okay) */
|
|
if (pstate->p_hasAggs)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("cannot use aggregate function in rule WHERE condition")));
|
|
if (pstate->p_hasWindowFuncs)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WINDOWING_ERROR),
|
|
errmsg("cannot use window function in rule WHERE condition")));
|
|
|
|
/*
|
|
* 'instead nothing' rules with a qualification need a query rangetable so
|
|
* the rewrite handler can add the negated rule qualification to the
|
|
* original query. We create a query with the new command type CMD_NOTHING
|
|
* here that is treated specially by the rewrite system.
|
|
*/
|
|
if (stmt->actions == NIL)
|
|
{
|
|
Query *nothing_qry = makeNode(Query);
|
|
|
|
nothing_qry->commandType = CMD_NOTHING;
|
|
nothing_qry->rtable = pstate->p_rtable;
|
|
nothing_qry->jointree = makeFromExpr(NIL, NULL); /* no join wanted */
|
|
|
|
*actions = list_make1(nothing_qry);
|
|
}
|
|
else
|
|
{
|
|
ListCell *l;
|
|
List *newactions = NIL;
|
|
|
|
/*
|
|
* transform each statement, like parse_sub_analyze()
|
|
*/
|
|
foreach(l, stmt->actions)
|
|
{
|
|
Node *action = (Node *) lfirst(l);
|
|
ParseState *sub_pstate = make_parsestate(NULL);
|
|
Query *sub_qry,
|
|
*top_subqry;
|
|
bool has_old,
|
|
has_new;
|
|
|
|
/*
|
|
* Since outer ParseState isn't parent of inner, have to pass down
|
|
* the query text by hand.
|
|
*/
|
|
sub_pstate->p_sourcetext = queryString;
|
|
|
|
/*
|
|
* Set up OLD/NEW in the rtable for this statement. The entries
|
|
* are added only to relnamespace, not varnamespace, because we
|
|
* don't want them to be referred to by unqualified field names
|
|
* nor "*" in the rule actions. We decide later whether to put
|
|
* them in the joinlist.
|
|
*/
|
|
oldrte = addRangeTableEntryForRelation(sub_pstate, rel,
|
|
makeAlias("old", NIL),
|
|
false, false);
|
|
newrte = addRangeTableEntryForRelation(sub_pstate, rel,
|
|
makeAlias("new", NIL),
|
|
false, false);
|
|
oldrte->requiredPerms = 0;
|
|
newrte->requiredPerms = 0;
|
|
addRTEtoQuery(sub_pstate, oldrte, false, true, false);
|
|
addRTEtoQuery(sub_pstate, newrte, false, true, false);
|
|
|
|
/* Transform the rule action statement */
|
|
top_subqry = transformStmt(sub_pstate,
|
|
(Node *) copyObject(action));
|
|
|
|
/*
|
|
* We cannot support utility-statement actions (eg NOTIFY) with
|
|
* nonempty rule WHERE conditions, because there's no way to make
|
|
* the utility action execute conditionally.
|
|
*/
|
|
if (top_subqry->commandType == CMD_UTILITY &&
|
|
*whereClause != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("rules with WHERE conditions can only have SELECT, INSERT, UPDATE, or DELETE actions")));
|
|
|
|
/*
|
|
* If the action is INSERT...SELECT, OLD/NEW have been pushed down
|
|
* into the SELECT, and that's what we need to look at. (Ugly
|
|
* kluge ... try to fix this when we redesign querytrees.)
|
|
*/
|
|
sub_qry = getInsertSelectQuery(top_subqry, NULL);
|
|
|
|
/*
|
|
* If the sub_qry is a setop, we cannot attach any qualifications
|
|
* to it, because the planner won't notice them. This could
|
|
* perhaps be relaxed someday, but for now, we may as well reject
|
|
* such a rule immediately.
|
|
*/
|
|
if (sub_qry->setOperations != NULL && *whereClause != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("conditional UNION/INTERSECT/EXCEPT statements are not implemented")));
|
|
|
|
/*
|
|
* Validate action's use of OLD/NEW, qual too
|
|
*/
|
|
has_old =
|
|
rangeTableEntry_used((Node *) sub_qry, PRS2_OLD_VARNO, 0) ||
|
|
rangeTableEntry_used(*whereClause, PRS2_OLD_VARNO, 0);
|
|
has_new =
|
|
rangeTableEntry_used((Node *) sub_qry, PRS2_NEW_VARNO, 0) ||
|
|
rangeTableEntry_used(*whereClause, PRS2_NEW_VARNO, 0);
|
|
|
|
switch (stmt->event)
|
|
{
|
|
case CMD_SELECT:
|
|
if (has_old)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("ON SELECT rule cannot use OLD")));
|
|
if (has_new)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("ON SELECT rule cannot use NEW")));
|
|
break;
|
|
case CMD_UPDATE:
|
|
/* both are OK */
|
|
break;
|
|
case CMD_INSERT:
|
|
if (has_old)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("ON INSERT rule cannot use OLD")));
|
|
break;
|
|
case CMD_DELETE:
|
|
if (has_new)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
|
|
errmsg("ON DELETE rule cannot use NEW")));
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized event type: %d",
|
|
(int) stmt->event);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* OLD/NEW are not allowed in WITH queries, because they would
|
|
* amount to outer references for the WITH, which we disallow.
|
|
* However, they were already in the outer rangetable when we
|
|
* analyzed the query, so we have to check.
|
|
*
|
|
* Note that in the INSERT...SELECT case, we need to examine the
|
|
* CTE lists of both top_subqry and sub_qry.
|
|
*
|
|
* Note that we aren't digging into the body of the query looking
|
|
* for WITHs in nested sub-SELECTs. A WITH down there can
|
|
* legitimately refer to OLD/NEW, because it'd be an
|
|
* indirect-correlated outer reference.
|
|
*/
|
|
if (rangeTableEntry_used((Node *) top_subqry->cteList,
|
|
PRS2_OLD_VARNO, 0) ||
|
|
rangeTableEntry_used((Node *) sub_qry->cteList,
|
|
PRS2_OLD_VARNO, 0))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot refer to OLD within WITH query")));
|
|
if (rangeTableEntry_used((Node *) top_subqry->cteList,
|
|
PRS2_NEW_VARNO, 0) ||
|
|
rangeTableEntry_used((Node *) sub_qry->cteList,
|
|
PRS2_NEW_VARNO, 0))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot refer to NEW within WITH query")));
|
|
|
|
/*
|
|
* For efficiency's sake, add OLD to the rule action's jointree
|
|
* only if it was actually referenced in the statement or qual.
|
|
*
|
|
* For INSERT, NEW is not really a relation (only a reference to
|
|
* the to-be-inserted tuple) and should never be added to the
|
|
* jointree.
|
|
*
|
|
* For UPDATE, we treat NEW as being another kind of reference to
|
|
* OLD, because it represents references to *transformed* tuples
|
|
* of the existing relation. It would be wrong to enter NEW
|
|
* separately in the jointree, since that would cause a double
|
|
* join of the updated relation. It's also wrong to fail to make
|
|
* a jointree entry if only NEW and not OLD is mentioned.
|
|
*/
|
|
if (has_old || (has_new && stmt->event == CMD_UPDATE))
|
|
{
|
|
/*
|
|
* If sub_qry is a setop, manipulating its jointree will do no
|
|
* good at all, because the jointree is dummy. (This should be
|
|
* a can't-happen case because of prior tests.)
|
|
*/
|
|
if (sub_qry->setOperations != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("conditional UNION/INTERSECT/EXCEPT statements are not implemented")));
|
|
/* hack so we can use addRTEtoQuery() */
|
|
sub_pstate->p_rtable = sub_qry->rtable;
|
|
sub_pstate->p_joinlist = sub_qry->jointree->fromlist;
|
|
addRTEtoQuery(sub_pstate, oldrte, true, false, false);
|
|
sub_qry->jointree->fromlist = sub_pstate->p_joinlist;
|
|
}
|
|
|
|
newactions = lappend(newactions, top_subqry);
|
|
|
|
free_parsestate(sub_pstate);
|
|
}
|
|
|
|
*actions = newactions;
|
|
}
|
|
|
|
free_parsestate(pstate);
|
|
|
|
/* Close relation, but keep the exclusive lock */
|
|
heap_close(rel, NoLock);
|
|
}
|
|
|
|
|
|
/*
|
|
* transformAlterTableStmt -
|
|
* parse analysis for ALTER TABLE
|
|
*
|
|
* Returns a List of utility commands to be done in sequence. One of these
|
|
* will be the transformed AlterTableStmt, but there may be additional actions
|
|
* to be done before and after the actual AlterTable() call.
|
|
*/
|
|
List *
|
|
transformAlterTableStmt(AlterTableStmt *stmt, const char *queryString)
|
|
{
|
|
Relation rel;
|
|
ParseState *pstate;
|
|
CreateStmtContext cxt;
|
|
List *result;
|
|
List *save_alist;
|
|
ListCell *lcmd,
|
|
*l;
|
|
List *newcmds = NIL;
|
|
bool skipValidation = true;
|
|
AlterTableCmd *newcmd;
|
|
LOCKMODE lockmode;
|
|
|
|
/*
|
|
* We must not scribble on the passed-in AlterTableStmt, so copy it. (This
|
|
* is overkill, but easy.)
|
|
*/
|
|
stmt = (AlterTableStmt *) copyObject(stmt);
|
|
|
|
/*
|
|
* Determine the appropriate lock level for this list of subcommands.
|
|
*/
|
|
lockmode = AlterTableGetLockLevel(stmt->cmds);
|
|
|
|
/*
|
|
* Acquire appropriate lock on the target relation, which will be held
|
|
* until end of transaction. This ensures any decisions we make here
|
|
* based on the state of the relation will still be good at execution. We
|
|
* must get lock now because execution will later require it; taking a
|
|
* lower grade lock now and trying to upgrade later risks deadlock. Any
|
|
* new commands we add after this must not upgrade the lock level
|
|
* requested here.
|
|
*/
|
|
rel = relation_openrv(stmt->relation, lockmode);
|
|
|
|
/* Set up pstate and CreateStmtContext */
|
|
pstate = make_parsestate(NULL);
|
|
pstate->p_sourcetext = queryString;
|
|
|
|
cxt.pstate = pstate;
|
|
cxt.stmtType = "ALTER TABLE";
|
|
cxt.relation = stmt->relation;
|
|
cxt.rel = rel;
|
|
cxt.inhRelations = NIL;
|
|
cxt.isalter = true;
|
|
cxt.hasoids = false; /* need not be right */
|
|
cxt.columns = NIL;
|
|
cxt.ckconstraints = NIL;
|
|
cxt.fkconstraints = NIL;
|
|
cxt.ixconstraints = NIL;
|
|
cxt.inh_indexes = NIL;
|
|
cxt.blist = NIL;
|
|
cxt.alist = NIL;
|
|
cxt.pkey = NULL;
|
|
|
|
/*
|
|
* The only subtypes that currently require parse transformation handling
|
|
* are ADD COLUMN and ADD CONSTRAINT. These largely re-use code from
|
|
* CREATE TABLE.
|
|
*/
|
|
foreach(lcmd, stmt->cmds)
|
|
{
|
|
AlterTableCmd *cmd = (AlterTableCmd *) lfirst(lcmd);
|
|
|
|
switch (cmd->subtype)
|
|
{
|
|
case AT_AddColumn:
|
|
case AT_AddColumnToView:
|
|
{
|
|
ColumnDef *def = (ColumnDef *) cmd->def;
|
|
|
|
Assert(IsA(def, ColumnDef));
|
|
transformColumnDefinition(&cxt, def);
|
|
|
|
/*
|
|
* If the column has a non-null default, we can't skip
|
|
* validation of foreign keys.
|
|
*/
|
|
if (def->raw_default != NULL)
|
|
skipValidation = false;
|
|
|
|
/*
|
|
* All constraints are processed in other ways. Remove the
|
|
* original list
|
|
*/
|
|
def->constraints = NIL;
|
|
|
|
newcmds = lappend(newcmds, cmd);
|
|
break;
|
|
}
|
|
case AT_AddConstraint:
|
|
|
|
/*
|
|
* The original AddConstraint cmd node doesn't go to newcmds
|
|
*/
|
|
if (IsA(cmd->def, Constraint))
|
|
{
|
|
transformTableConstraint(&cxt, (Constraint *) cmd->def);
|
|
if (((Constraint *) cmd->def)->contype == CONSTR_FOREIGN)
|
|
skipValidation = false;
|
|
}
|
|
else
|
|
elog(ERROR, "unrecognized node type: %d",
|
|
(int) nodeTag(cmd->def));
|
|
break;
|
|
|
|
case AT_ProcessedConstraint:
|
|
|
|
/*
|
|
* Already-transformed ADD CONSTRAINT, so just make it look
|
|
* like the standard case.
|
|
*/
|
|
cmd->subtype = AT_AddConstraint;
|
|
newcmds = lappend(newcmds, cmd);
|
|
break;
|
|
|
|
default:
|
|
newcmds = lappend(newcmds, cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* transformIndexConstraints wants cxt.alist to contain only index
|
|
* statements, so transfer anything we already have into save_alist
|
|
* immediately.
|
|
*/
|
|
save_alist = cxt.alist;
|
|
cxt.alist = NIL;
|
|
|
|
/* Postprocess index and FK constraints */
|
|
transformIndexConstraints(&cxt);
|
|
|
|
transformFKConstraints(&cxt, skipValidation, true);
|
|
|
|
/*
|
|
* Push any index-creation commands into the ALTER, so that they can be
|
|
* scheduled nicely by tablecmds.c. Note that tablecmds.c assumes that
|
|
* the IndexStmt attached to an AT_AddIndex or AT_AddIndexConstraint
|
|
* subcommand has already been through transformIndexStmt.
|
|
*/
|
|
foreach(l, cxt.alist)
|
|
{
|
|
IndexStmt *idxstmt = (IndexStmt *) lfirst(l);
|
|
|
|
Assert(IsA(idxstmt, IndexStmt));
|
|
idxstmt = transformIndexStmt(idxstmt, queryString);
|
|
newcmd = makeNode(AlterTableCmd);
|
|
newcmd->subtype = OidIsValid(idxstmt->indexOid) ? AT_AddIndexConstraint : AT_AddIndex;
|
|
newcmd->def = (Node *) idxstmt;
|
|
newcmds = lappend(newcmds, newcmd);
|
|
}
|
|
cxt.alist = NIL;
|
|
|
|
/* Append any CHECK or FK constraints to the commands list */
|
|
foreach(l, cxt.ckconstraints)
|
|
{
|
|
newcmd = makeNode(AlterTableCmd);
|
|
newcmd->subtype = AT_AddConstraint;
|
|
newcmd->def = (Node *) lfirst(l);
|
|
newcmds = lappend(newcmds, newcmd);
|
|
}
|
|
foreach(l, cxt.fkconstraints)
|
|
{
|
|
newcmd = makeNode(AlterTableCmd);
|
|
newcmd->subtype = AT_AddConstraint;
|
|
newcmd->def = (Node *) lfirst(l);
|
|
newcmds = lappend(newcmds, newcmd);
|
|
}
|
|
|
|
/* Close rel but keep lock */
|
|
relation_close(rel, NoLock);
|
|
|
|
/*
|
|
* Output results.
|
|
*/
|
|
stmt->cmds = newcmds;
|
|
|
|
result = lappend(cxt.blist, stmt);
|
|
result = list_concat(result, cxt.alist);
|
|
result = list_concat(result, save_alist);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Preprocess a list of column constraint clauses
|
|
* to attach constraint attributes to their primary constraint nodes
|
|
* and detect inconsistent/misplaced constraint attributes.
|
|
*
|
|
* NOTE: currently, attributes are only supported for FOREIGN KEY, UNIQUE,
|
|
* and PRIMARY KEY constraints, but someday they ought to be supported
|
|
* for other constraint types.
|
|
*/
|
|
static void
|
|
transformConstraintAttrs(CreateStmtContext *cxt, List *constraintList)
|
|
{
|
|
Constraint *lastprimarycon = NULL;
|
|
bool saw_deferrability = false;
|
|
bool saw_initially = false;
|
|
ListCell *clist;
|
|
|
|
#define SUPPORTS_ATTRS(node) \
|
|
((node) != NULL && \
|
|
((node)->contype == CONSTR_PRIMARY || \
|
|
(node)->contype == CONSTR_UNIQUE || \
|
|
(node)->contype == CONSTR_EXCLUSION || \
|
|
(node)->contype == CONSTR_FOREIGN))
|
|
|
|
foreach(clist, constraintList)
|
|
{
|
|
Constraint *con = (Constraint *) lfirst(clist);
|
|
|
|
if (!IsA(con, Constraint))
|
|
elog(ERROR, "unrecognized node type: %d",
|
|
(int) nodeTag(con));
|
|
switch (con->contype)
|
|
{
|
|
case CONSTR_ATTR_DEFERRABLE:
|
|
if (!SUPPORTS_ATTRS(lastprimarycon))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("misplaced DEFERRABLE clause"),
|
|
parser_errposition(cxt->pstate, con->location)));
|
|
if (saw_deferrability)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("multiple DEFERRABLE/NOT DEFERRABLE clauses not allowed"),
|
|
parser_errposition(cxt->pstate, con->location)));
|
|
saw_deferrability = true;
|
|
lastprimarycon->deferrable = true;
|
|
break;
|
|
|
|
case CONSTR_ATTR_NOT_DEFERRABLE:
|
|
if (!SUPPORTS_ATTRS(lastprimarycon))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("misplaced NOT DEFERRABLE clause"),
|
|
parser_errposition(cxt->pstate, con->location)));
|
|
if (saw_deferrability)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("multiple DEFERRABLE/NOT DEFERRABLE clauses not allowed"),
|
|
parser_errposition(cxt->pstate, con->location)));
|
|
saw_deferrability = true;
|
|
lastprimarycon->deferrable = false;
|
|
if (saw_initially &&
|
|
lastprimarycon->initdeferred)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("constraint declared INITIALLY DEFERRED must be DEFERRABLE"),
|
|
parser_errposition(cxt->pstate, con->location)));
|
|
break;
|
|
|
|
case CONSTR_ATTR_DEFERRED:
|
|
if (!SUPPORTS_ATTRS(lastprimarycon))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("misplaced INITIALLY DEFERRED clause"),
|
|
parser_errposition(cxt->pstate, con->location)));
|
|
if (saw_initially)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("multiple INITIALLY IMMEDIATE/DEFERRED clauses not allowed"),
|
|
parser_errposition(cxt->pstate, con->location)));
|
|
saw_initially = true;
|
|
lastprimarycon->initdeferred = true;
|
|
|
|
/*
|
|
* If only INITIALLY DEFERRED appears, assume DEFERRABLE
|
|
*/
|
|
if (!saw_deferrability)
|
|
lastprimarycon->deferrable = true;
|
|
else if (!lastprimarycon->deferrable)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("constraint declared INITIALLY DEFERRED must be DEFERRABLE"),
|
|
parser_errposition(cxt->pstate, con->location)));
|
|
break;
|
|
|
|
case CONSTR_ATTR_IMMEDIATE:
|
|
if (!SUPPORTS_ATTRS(lastprimarycon))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("misplaced INITIALLY IMMEDIATE clause"),
|
|
parser_errposition(cxt->pstate, con->location)));
|
|
if (saw_initially)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("multiple INITIALLY IMMEDIATE/DEFERRED clauses not allowed"),
|
|
parser_errposition(cxt->pstate, con->location)));
|
|
saw_initially = true;
|
|
lastprimarycon->initdeferred = false;
|
|
break;
|
|
|
|
default:
|
|
/* Otherwise it's not an attribute */
|
|
lastprimarycon = con;
|
|
/* reset flags for new primary node */
|
|
saw_deferrability = false;
|
|
saw_initially = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Special handling of type definition for a column
|
|
*/
|
|
static void
|
|
transformColumnType(CreateStmtContext *cxt, ColumnDef *column)
|
|
{
|
|
/*
|
|
* All we really need to do here is verify that the type is valid,
|
|
* including any collation spec that might be present.
|
|
*/
|
|
Type ctype = typenameType(cxt->pstate, column->typeName, NULL);
|
|
|
|
if (column->collClause)
|
|
{
|
|
Form_pg_type typtup = (Form_pg_type) GETSTRUCT(ctype);
|
|
|
|
LookupCollation(cxt->pstate,
|
|
column->collClause->collname,
|
|
column->collClause->location);
|
|
/* Complain if COLLATE is applied to an uncollatable type */
|
|
if (!OidIsValid(typtup->typcollation))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("collations are not supported by type %s",
|
|
format_type_be(HeapTupleGetOid(ctype))),
|
|
parser_errposition(cxt->pstate,
|
|
column->collClause->location)));
|
|
}
|
|
|
|
ReleaseSysCache(ctype);
|
|
}
|
|
|
|
|
|
/*
|
|
* transformCreateSchemaStmt -
|
|
* analyzes the CREATE SCHEMA statement
|
|
*
|
|
* Split the schema element list into individual commands and place
|
|
* them in the result list in an order such that there are no forward
|
|
* references (e.g. GRANT to a table created later in the list). Note
|
|
* that the logic we use for determining forward references is
|
|
* presently quite incomplete.
|
|
*
|
|
* SQL92 also allows constraints to make forward references, so thumb through
|
|
* the table columns and move forward references to a posterior alter-table
|
|
* command.
|
|
*
|
|
* The result is a list of parse nodes that still need to be analyzed ---
|
|
* but we can't analyze the later commands until we've executed the earlier
|
|
* ones, because of possible inter-object references.
|
|
*
|
|
* Note: this breaks the rules a little bit by modifying schema-name fields
|
|
* within passed-in structs. However, the transformation would be the same
|
|
* if done over, so it should be all right to scribble on the input to this
|
|
* extent.
|
|
*/
|
|
List *
|
|
transformCreateSchemaStmt(CreateSchemaStmt *stmt)
|
|
{
|
|
CreateSchemaStmtContext cxt;
|
|
List *result;
|
|
ListCell *elements;
|
|
|
|
cxt.stmtType = "CREATE SCHEMA";
|
|
cxt.schemaname = stmt->schemaname;
|
|
cxt.authid = stmt->authid;
|
|
cxt.sequences = NIL;
|
|
cxt.tables = NIL;
|
|
cxt.views = NIL;
|
|
cxt.indexes = NIL;
|
|
cxt.triggers = NIL;
|
|
cxt.grants = NIL;
|
|
|
|
/*
|
|
* Run through each schema element in the schema element list. Separate
|
|
* statements by type, and do preliminary analysis.
|
|
*/
|
|
foreach(elements, stmt->schemaElts)
|
|
{
|
|
Node *element = lfirst(elements);
|
|
|
|
switch (nodeTag(element))
|
|
{
|
|
case T_CreateSeqStmt:
|
|
{
|
|
CreateSeqStmt *elp = (CreateSeqStmt *) element;
|
|
|
|
setSchemaName(cxt.schemaname, &elp->sequence->schemaname);
|
|
cxt.sequences = lappend(cxt.sequences, element);
|
|
}
|
|
break;
|
|
|
|
case T_CreateStmt:
|
|
{
|
|
CreateStmt *elp = (CreateStmt *) element;
|
|
|
|
setSchemaName(cxt.schemaname, &elp->relation->schemaname);
|
|
|
|
/*
|
|
* XXX todo: deal with constraints
|
|
*/
|
|
cxt.tables = lappend(cxt.tables, element);
|
|
}
|
|
break;
|
|
|
|
case T_ViewStmt:
|
|
{
|
|
ViewStmt *elp = (ViewStmt *) element;
|
|
|
|
setSchemaName(cxt.schemaname, &elp->view->schemaname);
|
|
|
|
/*
|
|
* XXX todo: deal with references between views
|
|
*/
|
|
cxt.views = lappend(cxt.views, element);
|
|
}
|
|
break;
|
|
|
|
case T_IndexStmt:
|
|
{
|
|
IndexStmt *elp = (IndexStmt *) element;
|
|
|
|
setSchemaName(cxt.schemaname, &elp->relation->schemaname);
|
|
cxt.indexes = lappend(cxt.indexes, element);
|
|
}
|
|
break;
|
|
|
|
case T_CreateTrigStmt:
|
|
{
|
|
CreateTrigStmt *elp = (CreateTrigStmt *) element;
|
|
|
|
setSchemaName(cxt.schemaname, &elp->relation->schemaname);
|
|
cxt.triggers = lappend(cxt.triggers, element);
|
|
}
|
|
break;
|
|
|
|
case T_GrantStmt:
|
|
cxt.grants = lappend(cxt.grants, element);
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized node type: %d",
|
|
(int) nodeTag(element));
|
|
}
|
|
}
|
|
|
|
result = NIL;
|
|
result = list_concat(result, cxt.sequences);
|
|
result = list_concat(result, cxt.tables);
|
|
result = list_concat(result, cxt.views);
|
|
result = list_concat(result, cxt.indexes);
|
|
result = list_concat(result, cxt.triggers);
|
|
result = list_concat(result, cxt.grants);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* setSchemaName
|
|
* Set or check schema name in an element of a CREATE SCHEMA command
|
|
*/
|
|
static void
|
|
setSchemaName(char *context_schema, char **stmt_schema_name)
|
|
{
|
|
if (*stmt_schema_name == NULL)
|
|
*stmt_schema_name = context_schema;
|
|
else if (strcmp(context_schema, *stmt_schema_name) != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_SCHEMA_DEFINITION),
|
|
errmsg("CREATE specifies a schema (%s) "
|
|
"different from the one being created (%s)",
|
|
*stmt_schema_name, context_schema)));
|
|
}
|