1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-11 05:41:32 +03:00
postgres/src/backend/optimizer/util/restrictinfo.c
Tom Lane 64ad85860c Change more places to be less trusting of RestrictInfo.is_pushed_down.
On further reflection, commit e5d83995e didn't go far enough: pretty much
everywhere in the planner that examines a clause's is_pushed_down flag
ought to be changed to use the more complicated behavior where we also
check the clause's required_relids.  Otherwise we could make incorrect
decisions about whether, say, a clause is safe to use as a hash clause.

Some (many?) of these places are safe as-is, either because they are
never reached while considering a parameterized path, or because there
are additional checks that would reject a pushed-down clause anyway.
However, it seems smarter to just code them all the same way rather
than rely on easily-broken reasoning of that sort.

In support of that, invent a new macro RINFO_IS_PUSHED_DOWN that should
be used in place of direct tests on the is_pushed_down flag.

Like the previous patch, back-patch to all supported branches.

Discussion: https://postgr.es/m/f8128b11-c5bf-3539-48cd-234178b2314d@proxel.se
2018-04-20 15:19:17 -04:00

577 lines
18 KiB
C

/*-------------------------------------------------------------------------
*
* restrictinfo.c
* RestrictInfo node manipulation routines.
*
* Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/util/restrictinfo.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "optimizer/clauses.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/var.h"
static RestrictInfo *make_restrictinfo_internal(Expr *clause,
Expr *orclause,
bool is_pushed_down,
bool outerjoin_delayed,
bool pseudoconstant,
Relids required_relids,
Relids outer_relids,
Relids nullable_relids);
static Expr *make_sub_restrictinfos(Expr *clause,
bool is_pushed_down,
bool outerjoin_delayed,
bool pseudoconstant,
Relids required_relids,
Relids outer_relids,
Relids nullable_relids);
/*
* make_restrictinfo
*
* Build a RestrictInfo node containing the given subexpression.
*
* The is_pushed_down, outerjoin_delayed, and pseudoconstant flags for the
* RestrictInfo must be supplied by the caller, as well as the correct values
* for outer_relids and nullable_relids.
* required_relids can be NULL, in which case it defaults to the actual clause
* contents (i.e., clause_relids).
*
* We initialize fields that depend only on the given subexpression, leaving
* others that depend on context (or may never be needed at all) to be filled
* later.
*/
RestrictInfo *
make_restrictinfo(Expr *clause,
bool is_pushed_down,
bool outerjoin_delayed,
bool pseudoconstant,
Relids required_relids,
Relids outer_relids,
Relids nullable_relids)
{
/*
* If it's an OR clause, build a modified copy with RestrictInfos inserted
* above each subclause of the top-level AND/OR structure.
*/
if (or_clause((Node *) clause))
return (RestrictInfo *) make_sub_restrictinfos(clause,
is_pushed_down,
outerjoin_delayed,
pseudoconstant,
required_relids,
outer_relids,
nullable_relids);
/* Shouldn't be an AND clause, else AND/OR flattening messed up */
Assert(!and_clause((Node *) clause));
return make_restrictinfo_internal(clause,
NULL,
is_pushed_down,
outerjoin_delayed,
pseudoconstant,
required_relids,
outer_relids,
nullable_relids);
}
/*
* make_restrictinfos_from_actual_clauses
*
* Given a list of implicitly-ANDed restriction clauses, produce a list
* of RestrictInfo nodes. This is used to reconstitute the RestrictInfo
* representation after doing transformations of a list of clauses.
*
* We assume that the clauses are relation-level restrictions and therefore
* we don't have to worry about is_pushed_down, outerjoin_delayed,
* outer_relids, and nullable_relids (these can be assumed true, false,
* NULL, and NULL, respectively).
* We do take care to recognize pseudoconstant clauses properly.
*/
List *
make_restrictinfos_from_actual_clauses(PlannerInfo *root,
List *clause_list)
{
List *result = NIL;
ListCell *l;
foreach(l, clause_list)
{
Expr *clause = (Expr *) lfirst(l);
bool pseudoconstant;
RestrictInfo *rinfo;
/*
* It's pseudoconstant if it contains no Vars and no volatile
* functions. We probably can't see any sublinks here, so
* contain_var_clause() would likely be enough, but for safety use
* contain_vars_of_level() instead.
*/
pseudoconstant =
!contain_vars_of_level((Node *) clause, 0) &&
!contain_volatile_functions((Node *) clause);
if (pseudoconstant)
{
/* tell createplan.c to check for gating quals */
root->hasPseudoConstantQuals = true;
}
rinfo = make_restrictinfo(clause,
true,
false,
pseudoconstant,
NULL,
NULL,
NULL);
result = lappend(result, rinfo);
}
return result;
}
/*
* make_restrictinfo_internal
*
* Common code for the main entry points and the recursive cases.
*/
static RestrictInfo *
make_restrictinfo_internal(Expr *clause,
Expr *orclause,
bool is_pushed_down,
bool outerjoin_delayed,
bool pseudoconstant,
Relids required_relids,
Relids outer_relids,
Relids nullable_relids)
{
RestrictInfo *restrictinfo = makeNode(RestrictInfo);
restrictinfo->clause = clause;
restrictinfo->orclause = orclause;
restrictinfo->is_pushed_down = is_pushed_down;
restrictinfo->outerjoin_delayed = outerjoin_delayed;
restrictinfo->pseudoconstant = pseudoconstant;
restrictinfo->can_join = false; /* may get set below */
restrictinfo->outer_relids = outer_relids;
restrictinfo->nullable_relids = nullable_relids;
/*
* If it's a binary opclause, set up left/right relids info. In any case
* set up the total clause relids info.
*/
if (is_opclause(clause) && list_length(((OpExpr *) clause)->args) == 2)
{
restrictinfo->left_relids = pull_varnos(get_leftop(clause));
restrictinfo->right_relids = pull_varnos(get_rightop(clause));
restrictinfo->clause_relids = bms_union(restrictinfo->left_relids,
restrictinfo->right_relids);
/*
* Does it look like a normal join clause, i.e., a binary operator
* relating expressions that come from distinct relations? If so we
* might be able to use it in a join algorithm. Note that this is a
* purely syntactic test that is made regardless of context.
*/
if (!bms_is_empty(restrictinfo->left_relids) &&
!bms_is_empty(restrictinfo->right_relids) &&
!bms_overlap(restrictinfo->left_relids,
restrictinfo->right_relids))
{
restrictinfo->can_join = true;
/* pseudoconstant should certainly not be true */
Assert(!restrictinfo->pseudoconstant);
}
}
else
{
/* Not a binary opclause, so mark left/right relid sets as empty */
restrictinfo->left_relids = NULL;
restrictinfo->right_relids = NULL;
/* and get the total relid set the hard way */
restrictinfo->clause_relids = pull_varnos((Node *) clause);
}
/* required_relids defaults to clause_relids */
if (required_relids != NULL)
restrictinfo->required_relids = required_relids;
else
restrictinfo->required_relids = restrictinfo->clause_relids;
/*
* Fill in all the cacheable fields with "not yet set" markers. None of
* these will be computed until/unless needed. Note in particular that we
* don't mark a binary opclause as mergejoinable or hashjoinable here;
* that happens only if it appears in the right context (top level of a
* joinclause list).
*/
restrictinfo->parent_ec = NULL;
restrictinfo->eval_cost.startup = -1;
restrictinfo->norm_selec = -1;
restrictinfo->outer_selec = -1;
restrictinfo->mergeopfamilies = NIL;
restrictinfo->left_ec = NULL;
restrictinfo->right_ec = NULL;
restrictinfo->left_em = NULL;
restrictinfo->right_em = NULL;
restrictinfo->scansel_cache = NIL;
restrictinfo->outer_is_left = false;
restrictinfo->hashjoinoperator = InvalidOid;
restrictinfo->left_bucketsize = -1;
restrictinfo->right_bucketsize = -1;
return restrictinfo;
}
/*
* Recursively insert sub-RestrictInfo nodes into a boolean expression.
*
* We put RestrictInfos above simple (non-AND/OR) clauses and above
* sub-OR clauses, but not above sub-AND clauses, because there's no need.
* This may seem odd but it is closely related to the fact that we use
* implicit-AND lists at top level of RestrictInfo lists. Only ORs and
* simple clauses are valid RestrictInfos.
*
* The same is_pushed_down, outerjoin_delayed, and pseudoconstant flag
* values can be applied to all RestrictInfo nodes in the result. Likewise
* for outer_relids and nullable_relids.
*
* The given required_relids are attached to our top-level output,
* but any OR-clause constituents are allowed to default to just the
* contained rels.
*/
static Expr *
make_sub_restrictinfos(Expr *clause,
bool is_pushed_down,
bool outerjoin_delayed,
bool pseudoconstant,
Relids required_relids,
Relids outer_relids,
Relids nullable_relids)
{
if (or_clause((Node *) clause))
{
List *orlist = NIL;
ListCell *temp;
foreach(temp, ((BoolExpr *) clause)->args)
orlist = lappend(orlist,
make_sub_restrictinfos(lfirst(temp),
is_pushed_down,
outerjoin_delayed,
pseudoconstant,
NULL,
outer_relids,
nullable_relids));
return (Expr *) make_restrictinfo_internal(clause,
make_orclause(orlist),
is_pushed_down,
outerjoin_delayed,
pseudoconstant,
required_relids,
outer_relids,
nullable_relids);
}
else if (and_clause((Node *) clause))
{
List *andlist = NIL;
ListCell *temp;
foreach(temp, ((BoolExpr *) clause)->args)
andlist = lappend(andlist,
make_sub_restrictinfos(lfirst(temp),
is_pushed_down,
outerjoin_delayed,
pseudoconstant,
required_relids,
outer_relids,
nullable_relids));
return make_andclause(andlist);
}
else
return (Expr *) make_restrictinfo_internal(clause,
NULL,
is_pushed_down,
outerjoin_delayed,
pseudoconstant,
required_relids,
outer_relids,
nullable_relids);
}
/*
* restriction_is_or_clause
*
* Returns t iff the restrictinfo node contains an 'or' clause.
*/
bool
restriction_is_or_clause(RestrictInfo *restrictinfo)
{
if (restrictinfo->orclause != NULL)
return true;
else
return false;
}
/*
* get_actual_clauses
*
* Returns a list containing the bare clauses from 'restrictinfo_list'.
*
* This is only to be used in cases where none of the RestrictInfos can
* be pseudoconstant clauses (for instance, it's OK on indexqual lists).
*/
List *
get_actual_clauses(List *restrictinfo_list)
{
List *result = NIL;
ListCell *l;
foreach(l, restrictinfo_list)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
Assert(IsA(rinfo, RestrictInfo));
Assert(!rinfo->pseudoconstant);
result = lappend(result, rinfo->clause);
}
return result;
}
/*
* get_all_actual_clauses
*
* Returns a list containing the bare clauses from 'restrictinfo_list'.
*
* This loses the distinction between regular and pseudoconstant clauses,
* so be careful what you use it for.
*/
List *
get_all_actual_clauses(List *restrictinfo_list)
{
List *result = NIL;
ListCell *l;
foreach(l, restrictinfo_list)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
Assert(IsA(rinfo, RestrictInfo));
result = lappend(result, rinfo->clause);
}
return result;
}
/*
* extract_actual_clauses
*
* Extract bare clauses from 'restrictinfo_list', returning either the
* regular ones or the pseudoconstant ones per 'pseudoconstant'.
*/
List *
extract_actual_clauses(List *restrictinfo_list,
bool pseudoconstant)
{
List *result = NIL;
ListCell *l;
foreach(l, restrictinfo_list)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
Assert(IsA(rinfo, RestrictInfo));
if (rinfo->pseudoconstant == pseudoconstant)
result = lappend(result, rinfo->clause);
}
return result;
}
/*
* extract_actual_join_clauses
*
* Extract bare clauses from 'restrictinfo_list', separating those that
* semantically match the join level from those that were pushed down.
* Pseudoconstant clauses are excluded from the results.
*
* This is only used at outer joins, since for plain joins we don't care
* about pushed-down-ness.
*/
void
extract_actual_join_clauses(List *restrictinfo_list,
Relids joinrelids,
List **joinquals,
List **otherquals)
{
ListCell *l;
*joinquals = NIL;
*otherquals = NIL;
foreach(l, restrictinfo_list)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
Assert(IsA(rinfo, RestrictInfo));
if (RINFO_IS_PUSHED_DOWN(rinfo, joinrelids))
{
if (!rinfo->pseudoconstant)
*otherquals = lappend(*otherquals, rinfo->clause);
}
else
{
/* joinquals shouldn't have been marked pseudoconstant */
Assert(!rinfo->pseudoconstant);
*joinquals = lappend(*joinquals, rinfo->clause);
}
}
}
/*
* join_clause_is_movable_to
* Test whether a join clause is a safe candidate for parameterization
* of a scan on the specified base relation.
*
* A movable join clause is one that can safely be evaluated at a rel below
* its normal semantic level (ie, its required_relids), if the values of
* variables that it would need from other rels are provided.
*
* We insist that the clause actually reference the target relation; this
* prevents undesirable movement of degenerate join clauses, and ensures
* that there is a unique place that a clause can be moved down to.
*
* We cannot move an outer-join clause into the non-nullable side of its
* outer join, as that would change the results (rows would be suppressed
* rather than being null-extended).
*
* Also there must not be an outer join below the clause that would null the
* Vars coming from the target relation. Otherwise the clause might give
* results different from what it would give at its normal semantic level.
*
* Also, the join clause must not use any relations that have LATERAL
* references to the target relation, since we could not put such rels on
* the outer side of a nestloop with the target relation.
*/
bool
join_clause_is_movable_to(RestrictInfo *rinfo, RelOptInfo *baserel)
{
/* Clause must physically reference target rel */
if (!bms_is_member(baserel->relid, rinfo->clause_relids))
return false;
/* Cannot move an outer-join clause into the join's outer side */
if (bms_is_member(baserel->relid, rinfo->outer_relids))
return false;
/* Target rel must not be nullable below the clause */
if (bms_is_member(baserel->relid, rinfo->nullable_relids))
return false;
/* Clause must not use any rels with LATERAL references to this rel */
if (bms_overlap(baserel->lateral_referencers, rinfo->clause_relids))
return false;
return true;
}
/*
* join_clause_is_movable_into
* Test whether a join clause is movable and can be evaluated within
* the current join context.
*
* currentrelids: the relids of the proposed evaluation location
* current_and_outer: the union of currentrelids and the required_outer
* relids (parameterization's outer relations)
*
* The API would be a bit clearer if we passed the current relids and the
* outer relids separately and did bms_union internally; but since most
* callers need to apply this function to multiple clauses, we make the
* caller perform the union.
*
* Obviously, the clause must only refer to Vars available from the current
* relation plus the outer rels. We also check that it does reference at
* least one current Var, ensuring that the clause will be pushed down to
* a unique place in a parameterized join tree. And we check that we're
* not pushing the clause into its outer-join outer side, nor down into
* a lower outer join's inner side.
*
* The check about pushing a clause down into a lower outer join's inner side
* is only approximate; it sometimes returns "false" when actually it would
* be safe to use the clause here because we're still above the outer join
* in question. This is okay as long as the answers at different join levels
* are consistent: it just means we might sometimes fail to push a clause as
* far down as it could safely be pushed. It's unclear whether it would be
* worthwhile to do this more precisely. (But if it's ever fixed to be
* exactly accurate, there's an Assert in get_joinrel_parampathinfo() that
* should be re-enabled.)
*
* There's no check here equivalent to join_clause_is_movable_to's test on
* lateral_referencers. We assume the caller wouldn't be inquiring unless
* it'd verified that the proposed outer rels don't have lateral references
* to the current rel(s). (If we are considering join paths with the outer
* rels on the outside and the current rels on the inside, then this should
* have been checked at the outset of such consideration; see join_is_legal
* and the path parameterization checks in joinpath.c.) On the other hand,
* in join_clause_is_movable_to we are asking whether the clause could be
* moved for some valid set of outer rels, so we don't have the benefit of
* relying on prior checks for lateral-reference validity.
*
* Note: if this returns true, it means that the clause could be moved to
* this join relation, but that doesn't mean that this is the lowest join
* it could be moved to. Caller may need to make additional calls to verify
* that this doesn't succeed on either of the inputs of a proposed join.
*
* Note: get_joinrel_parampathinfo depends on the fact that if
* current_and_outer is NULL, this function will always return false
* (since one or the other of the first two tests must fail).
*/
bool
join_clause_is_movable_into(RestrictInfo *rinfo,
Relids currentrelids,
Relids current_and_outer)
{
/* Clause must be evaluable given available context */
if (!bms_is_subset(rinfo->clause_relids, current_and_outer))
return false;
/* Clause must physically reference at least one target rel */
if (!bms_overlap(currentrelids, rinfo->clause_relids))
return false;
/* Cannot move an outer-join clause into the join's outer side */
if (bms_overlap(currentrelids, rinfo->outer_relids))
return false;
/*
* Target rel(s) must not be nullable below the clause. This is
* approximate, in the safe direction, because the current join might be
* above the join where the nulling would happen, in which case the clause
* would work correctly here. But we don't have enough info to be sure.
*/
if (bms_overlap(currentrelids, rinfo->nullable_relids))
return false;
return true;
}