mirror of
				https://github.com/postgres/postgres.git
				synced 2025-11-03 09:13:20 +03:00 
			
		
		
		
	regression tests for the GiST changes ... this should be integrated into the regular regression tests similar to Vadim's SPI contrib stuff ...
		
			
				
	
	
		
			843 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			843 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/******************************************************************************
 | 
						|
  This file contains routines that can be bound to a Postgres backend and
 | 
						|
  called by the backend in the process of processing queries.  The calling
 | 
						|
  format for these routines is dictated by Postgres architecture.
 | 
						|
******************************************************************************/
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <float.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include "postgres.h"
 | 
						|
#include "access/gist.h"
 | 
						|
#include "access/itup.h"
 | 
						|
#include "access/rtree.h"
 | 
						|
#include "utils/elog.h"
 | 
						|
#include "utils/palloc.h"
 | 
						|
#include "utils/array.h"
 | 
						|
#include "utils/builtins.h"
 | 
						|
#include "storage/bufpage.h"
 | 
						|
 | 
						|
#define MAXNUMRANGE 100 
 | 
						|
 | 
						|
#define max(a,b)        ((a) >  (b) ? (a) : (b))
 | 
						|
#define min(a,b)        ((a) <= (b) ? (a) : (b))
 | 
						|
#define abs(a)          ((a) <  (0) ? (-a) : (a))
 | 
						|
 | 
						|
#define ARRPTR(x)  ( (int4 *) ARR_DATA_PTR(x) )
 | 
						|
#ifdef PGSQL71
 | 
						|
#define ARRSIZE(x)  ArrayGetNItems( ARR_NDIM(x), ARR_DIMS(x))
 | 
						|
#else
 | 
						|
#define ARRSIZE(x)  getNitems( ARR_NDIM(x), ARR_DIMS(x))
 | 
						|
#endif
 | 
						|
 | 
						|
#define NDIM 1
 | 
						|
#define ARRISNULL(x) ( (x) ? ( ( ARR_NDIM(x) == NDIM ) ? ( ( ARRSIZE( x ) ) ? 0 : 1 ) : 1  ) : 1 )
 | 
						|
#define SORT(x) if ( ARRSIZE( x ) > 1 ) isort( (void*)ARRPTR( x ), ARRSIZE( x ) );
 | 
						|
#define PREPAREARR(x) \
 | 
						|
	if ( ARRSIZE( x ) > 1 ) {\
 | 
						|
		if ( isort( (void*)ARRPTR( x ), ARRSIZE( x ) ) )\
 | 
						|
			x = _int_unique( x );\
 | 
						|
	}
 | 
						|
/*
 | 
						|
#define GIST_DEBUG
 | 
						|
#define GIST_QUERY_DEBUG 
 | 
						|
*/
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
static void printarr ( ArrayType * a, int num ) {
 | 
						|
	char bbb[16384];
 | 
						|
	char *cur;
 | 
						|
	int l;
 | 
						|
	int *d;
 | 
						|
	d = ARRPTR( a );
 | 
						|
	*bbb = '\0';
 | 
						|
	cur = bbb;
 | 
						|
	for(l=0; l<min( num, ARRSIZE( a ));l++) {
 | 
						|
		sprintf(cur,"%d ", d[l] );
 | 
						|
		cur = strchr( cur, '\0' ) ;
 | 
						|
	}
 | 
						|
	elog(NOTICE, "\t\t%s", bbb);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** usefull function
 | 
						|
*/
 | 
						|
bool isort( int *a, const int len );
 | 
						|
ArrayType * new_intArrayType( int num );
 | 
						|
ArrayType * copy_intArrayType( ArrayType * a );
 | 
						|
ArrayType * resize_intArrayType( ArrayType * a, int num );
 | 
						|
int internal_size( int *a, int len );
 | 
						|
ArrayType * _int_unique( ArrayType * a );
 | 
						|
 | 
						|
/* 
 | 
						|
** GiST support methods
 | 
						|
*/
 | 
						|
bool             g_int_consistent(GISTENTRY *entry, ArrayType *query, StrategyNumber strategy);
 | 
						|
GISTENTRY *      g_int_compress(GISTENTRY *entry);
 | 
						|
GISTENTRY *      g_int_decompress(GISTENTRY *entry);
 | 
						|
float *          g_int_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
 | 
						|
GIST_SPLITVEC *  g_int_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
 | 
						|
bool             g_int_internal_consistent(ArrayType *key, ArrayType *query, StrategyNumber strategy);
 | 
						|
ArrayType *            g_int_union(bytea *entryvec, int *sizep);
 | 
						|
bool *           g_int_same(ArrayType *b1, ArrayType *b2, bool *result);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** R-tree suport functions
 | 
						|
*/
 | 
						|
bool     inner_int_contains(ArrayType *a, ArrayType *b);
 | 
						|
bool     inner_int_overlap(ArrayType *a, ArrayType *b);
 | 
						|
ArrayType *    inner_int_union(ArrayType *a, ArrayType *b);
 | 
						|
ArrayType *    inner_int_inter(ArrayType *a, ArrayType *b);
 | 
						|
 | 
						|
bool     _int_different(ArrayType *a, ArrayType *b);
 | 
						|
bool     _int_same(ArrayType *a, ArrayType *b);
 | 
						|
bool     _int_contains(ArrayType *a, ArrayType *b);
 | 
						|
bool     _int_contained(ArrayType *a, ArrayType *b);
 | 
						|
bool     _int_overlap(ArrayType *a, ArrayType *b);
 | 
						|
ArrayType *    _int_union(ArrayType *a, ArrayType *b);
 | 
						|
ArrayType *    _int_inter(ArrayType *a, ArrayType *b);
 | 
						|
void     rt__int_size(ArrayType *a, float* sz);
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 *                         GiST functions
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Consistent method for _intments
 | 
						|
** Should return false if for all data items x below entry,
 | 
						|
** the predicate x op query == FALSE, where op is the oper
 | 
						|
** corresponding to strategy in the pg_amop table.
 | 
						|
*/
 | 
						|
bool 
 | 
						|
g_int_consistent(GISTENTRY *entry,
 | 
						|
	       ArrayType *query,
 | 
						|
	       StrategyNumber strategy)
 | 
						|
{
 | 
						|
   
 | 
						|
    /* sort query for fast search, key is already sorted */
 | 
						|
    if ( ARRISNULL( query ) ) return FALSE; 
 | 
						|
    PREPAREARR( query );    
 | 
						|
    /*
 | 
						|
    ** if entry is not leaf, use g_int_internal_consistent,
 | 
						|
    ** else use g_int_leaf_consistent
 | 
						|
    */
 | 
						|
    return(g_int_internal_consistent((ArrayType *)(entry->pred), query, strategy));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Union method for _intments
 | 
						|
** returns the minimal set that encloses all the entries in entryvec
 | 
						|
*/
 | 
						|
ArrayType *
 | 
						|
g_int_union(bytea *entryvec, int *sizep)
 | 
						|
{
 | 
						|
    int numranges, i;
 | 
						|
    ArrayType *out = (ArrayType *)NULL;
 | 
						|
    ArrayType *tmp;
 | 
						|
 | 
						|
    numranges = (VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY); 
 | 
						|
    tmp = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[0]).pred;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    elog(NOTICE, "union %d", numranges);
 | 
						|
#endif
 | 
						|
 | 
						|
    for (i = 1; i < numranges; i++) {
 | 
						|
	out = inner_int_union(tmp, (ArrayType *)
 | 
						|
				 (((GISTENTRY *)(VARDATA(entryvec)))[i]).pred);
 | 
						|
	if (i > 1 && tmp) pfree(tmp);
 | 
						|
	tmp = out;
 | 
						|
    }
 | 
						|
 | 
						|
    *sizep = VARSIZE( out );
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    elog(NOTICE, "\t ENDunion %d %d", *sizep, ARRSIZE( out ) );
 | 
						|
#endif
 | 
						|
    if ( *sizep == 0 ) {
 | 
						|
	pfree( out );
 | 
						|
	return NULL;
 | 
						|
    }
 | 
						|
    return(out);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** GiST Compress and Decompress methods
 | 
						|
*/
 | 
						|
GISTENTRY *
 | 
						|
g_int_compress(GISTENTRY *entry)
 | 
						|
{
 | 
						|
    GISTENTRY *retval;
 | 
						|
    ArrayType * r;
 | 
						|
    int len;
 | 
						|
    int *dr;
 | 
						|
    int i,min,cand;
 | 
						|
 | 
						|
    retval = palloc(sizeof(GISTENTRY));
 | 
						|
    if ( ! retval ) 
 | 
						|
	elog(ERROR,"Can't allocate memory for compression");
 | 
						|
 | 
						|
    if ( ARRISNULL( (ArrayType *) entry->pred ) )  {
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
	elog(NOTICE,"COMP IN: NULL"); 
 | 
						|
#endif
 | 
						|
    	gistentryinit(*retval, (char *)NULL, entry->rel, entry->page, entry->offset, 
 | 
						|
		0, FALSE);
 | 
						|
	return( retval ); 
 | 
						|
    }
 | 
						|
 | 
						|
    r = copy_intArrayType( (ArrayType *) entry->pred ); 
 | 
						|
    if ( entry->leafkey ) PREPAREARR( r );
 | 
						|
    len = ARRSIZE( r );
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    elog(NOTICE, "COMP IN: %d leaf; %d rel; %d page; %d offset; %d bytes; %d elems", entry->leafkey, (int)entry->rel, (int)entry->page, (int)entry->offset, (int)entry->bytes, len);
 | 
						|
    //printarr( r, len );
 | 
						|
#endif
 | 
						|
 | 
						|
    if ( len >= 2*MAXNUMRANGE ) {  /*compress*/
 | 
						|
    	r = resize_intArrayType( r, 2*( len ) );
 | 
						|
   
 | 
						|
    	dr = ARRPTR( r );
 | 
						|
 | 
						|
    	for(i=len-1; i>=0;i--)
 | 
						|
    		dr[2*i] = dr[2*i+1] = dr[i];
 | 
						|
    
 | 
						|
    	len *= 2;
 | 
						|
    	cand = 1;
 | 
						|
    	while( len > MAXNUMRANGE * 2 ) {
 | 
						|
		min = 0x7fffffff;
 | 
						|
		for( i=2; i<len;i+=2 )
 | 
						|
			if ( min > (dr[i] - dr[i-1]) ) {
 | 
						|
				min = (dr[i] - dr[i-1]);
 | 
						|
				cand = i;
 | 
						|
			}
 | 
						|
		memmove( (void*)&dr[cand-1], (void*)&dr[cand+1], (len - cand - 1)*sizeof(int) );
 | 
						|
		len -= 2;
 | 
						|
	}
 | 
						|
    	r = resize_intArrayType(r, len );
 | 
						|
    }
 | 
						|
 | 
						|
    gistentryinit(*retval, (char *)r, entry->rel, entry->page, entry->offset, VARSIZE( r ), FALSE);
 | 
						|
 | 
						|
    return(retval);
 | 
						|
}
 | 
						|
 | 
						|
GISTENTRY *
 | 
						|
g_int_decompress(GISTENTRY *entry)
 | 
						|
{
 | 
						|
    GISTENTRY *retval;
 | 
						|
    ArrayType * r; 
 | 
						|
    int *dr, lenr;
 | 
						|
    ArrayType * in; 
 | 
						|
    int lenin;
 | 
						|
    int *din;
 | 
						|
    int i,j;
 | 
						|
 | 
						|
    if ( entry->bytes < ARR_OVERHEAD( NDIM ) || ARRISNULL( (ArrayType *) entry->pred ) ) { 
 | 
						|
    	retval = palloc(sizeof(GISTENTRY));
 | 
						|
    	if ( ! retval ) 
 | 
						|
		elog(ERROR,"Can't allocate memory for decompression");
 | 
						|
    	gistentryinit(*retval, (char *)NULL, entry->rel, entry->page, entry->offset, 0, FALSE);
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
	elog(NOTICE,"DECOMP IN: NULL"); 
 | 
						|
#endif
 | 
						|
	return( retval ); 
 | 
						|
    }
 | 
						|
    
 | 
						|
 | 
						|
    in = (ArrayType *) entry->pred; 
 | 
						|
    lenin = ARRSIZE(in);
 | 
						|
    din = ARRPTR(in);
 | 
						|
 | 
						|
    if ( lenin < 2*MAXNUMRANGE ) { /*not comressed value*/
 | 
						|
	/* sometimes strange bytesize */
 | 
						|
    	gistentryinit(*entry, (char *)in, entry->rel, entry->page, entry->offset, VARSIZE( in ), FALSE);
 | 
						|
	return (entry);
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    elog(NOTICE, "DECOMP IN: %d leaf; %d rel; %d page; %d offset; %d bytes; %d elems", entry->leafkey, (int)entry->rel, (int)entry->page, (int)entry->offset, (int)entry->bytes, lenin);
 | 
						|
    //printarr( in, lenin );
 | 
						|
#endif
 | 
						|
 | 
						|
    lenr = internal_size(din, lenin);
 | 
						|
 | 
						|
    r = new_intArrayType( lenr );
 | 
						|
    dr = ARRPTR( r );
 | 
						|
 | 
						|
    for(i=0;i<lenin;i+=2)
 | 
						|
	for(j=din[i]; j<=din[i+1]; j++)
 | 
						|
		if ( (!i) || *(dr-1) != j )
 | 
						|
			*dr++ = j;
 | 
						|
 | 
						|
    retval = palloc(sizeof(GISTENTRY));
 | 
						|
    if ( ! retval ) 
 | 
						|
	elog(ERROR,"Can't allocate memory for decompression");
 | 
						|
    gistentryinit(*retval, (char *)r, entry->rel, entry->page, entry->offset, VARSIZE( r ), FALSE);
 | 
						|
 | 
						|
    return(retval);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST Penalty method for _intments
 | 
						|
*/
 | 
						|
float *
 | 
						|
g_int_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
 | 
						|
{
 | 
						|
    Datum ud;
 | 
						|
    float tmp1, tmp2;
 | 
						|
    
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    elog(NOTICE, "penalty");
 | 
						|
#endif
 | 
						|
    ud = (Datum)inner_int_union((ArrayType *)(origentry->pred), (ArrayType *)(newentry->pred));
 | 
						|
    rt__int_size((ArrayType *)ud, &tmp1);
 | 
						|
    rt__int_size((ArrayType *)(origentry->pred), &tmp2);
 | 
						|
    *result = tmp1 - tmp2;
 | 
						|
    pfree((char *)ud);
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    elog(NOTICE, "--penalty\t%g", *result);
 | 
						|
#endif
 | 
						|
 | 
						|
    return(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** The GiST PickSplit method for _intments
 | 
						|
** We use Guttman's poly time split algorithm 
 | 
						|
*/
 | 
						|
GIST_SPLITVEC *
 | 
						|
g_int_picksplit(bytea *entryvec,
 | 
						|
	      GIST_SPLITVEC *v)
 | 
						|
{
 | 
						|
    OffsetNumber i, j;
 | 
						|
    ArrayType *datum_alpha, *datum_beta;
 | 
						|
    ArrayType *datum_l, *datum_r;
 | 
						|
    ArrayType *union_d, *union_dl, *union_dr;
 | 
						|
    ArrayType *inter_d;
 | 
						|
    bool firsttime;
 | 
						|
    float size_alpha, size_beta, size_union, size_inter;
 | 
						|
    float size_waste, waste;
 | 
						|
    float size_l, size_r;
 | 
						|
    int nbytes;
 | 
						|
    OffsetNumber seed_1 = 0, seed_2 = 0;
 | 
						|
    OffsetNumber *left, *right;
 | 
						|
    OffsetNumber maxoff;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    elog(NOTICE, "--------picksplit %d",(VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY));
 | 
						|
#endif
 | 
						|
 | 
						|
    maxoff = ((VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY)) - 2;
 | 
						|
    nbytes =  (maxoff + 2) * sizeof(OffsetNumber);
 | 
						|
    v->spl_left = (OffsetNumber *) palloc(nbytes);
 | 
						|
    v->spl_right = (OffsetNumber *) palloc(nbytes);
 | 
						|
    
 | 
						|
    firsttime = true;
 | 
						|
    waste = 0.0;
 | 
						|
    
 | 
						|
    for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) {
 | 
						|
	datum_alpha = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
 | 
						|
	for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) {
 | 
						|
	    datum_beta = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[j].pred);
 | 
						|
	    
 | 
						|
	    /* compute the wasted space by unioning these guys */
 | 
						|
	    /* size_waste = size_union - size_inter; */
 | 
						|
	    union_d = (ArrayType *)inner_int_union(datum_alpha, datum_beta);
 | 
						|
	    rt__int_size(union_d, &size_union);
 | 
						|
	    inter_d = (ArrayType *)inner_int_inter(datum_alpha, datum_beta);
 | 
						|
	    rt__int_size(inter_d, &size_inter);
 | 
						|
	    size_waste = size_union - size_inter;
 | 
						|
	    
 | 
						|
	    pfree(union_d);
 | 
						|
	    
 | 
						|
	    if (inter_d != (ArrayType *) NULL)
 | 
						|
		pfree(inter_d);
 | 
						|
	    
 | 
						|
	    /*
 | 
						|
	     *  are these a more promising split that what we've
 | 
						|
	     *  already seen?
 | 
						|
	     */
 | 
						|
	    
 | 
						|
	    if (size_waste > waste || firsttime) {
 | 
						|
		waste = size_waste;
 | 
						|
		seed_1 = i;
 | 
						|
		seed_2 = j;
 | 
						|
		firsttime = false;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
   
 | 
						|
    left = v->spl_left;
 | 
						|
    v->spl_nleft = 0;
 | 
						|
    right = v->spl_right;
 | 
						|
    v->spl_nright = 0;
 | 
						|
  
 | 
						|
    datum_alpha = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_1].pred);
 | 
						|
    datum_l     = copy_intArrayType( datum_alpha ); 
 | 
						|
    rt__int_size((ArrayType *)datum_l, &size_l);
 | 
						|
    datum_beta  = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_2].pred);
 | 
						|
    datum_r     = copy_intArrayType( datum_beta  ); 
 | 
						|
    rt__int_size((ArrayType *)datum_r, &size_r);
 | 
						|
    
 | 
						|
    /*
 | 
						|
     *  Now split up the regions between the two seeds.  An important
 | 
						|
     *  property of this split algorithm is that the split vector v
 | 
						|
     *  has the indices of items to be split in order in its left and
 | 
						|
     *  right vectors.  We exploit this property by doing a merge in
 | 
						|
     *  the code that actually splits the page.
 | 
						|
     *
 | 
						|
     *  For efficiency, we also place the new index tuple in this loop.
 | 
						|
     *  This is handled at the very end, when we have placed all the
 | 
						|
     *  existing tuples and i == maxoff + 1.
 | 
						|
     */
 | 
						|
    
 | 
						|
    maxoff = OffsetNumberNext(maxoff);
 | 
						|
    for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) {
 | 
						|
 | 
						|
	
 | 
						|
	/*
 | 
						|
	 *  If we've already decided where to place this item, just
 | 
						|
	 *  put it on the right list.  Otherwise, we need to figure
 | 
						|
	 *  out which page needs the least enlargement in order to
 | 
						|
	 *  store the item.
 | 
						|
	 */
 | 
						|
	
 | 
						|
	if (i == seed_1) {
 | 
						|
	    *left++ = i;
 | 
						|
	    v->spl_nleft++;
 | 
						|
	    continue;
 | 
						|
	} else if (i == seed_2) {
 | 
						|
	    *right++ = i;
 | 
						|
	    v->spl_nright++;
 | 
						|
	    continue;
 | 
						|
	}
 | 
						|
	
 | 
						|
	/* okay, which page needs least enlargement? */ 
 | 
						|
	datum_alpha = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
 | 
						|
	union_dl = (ArrayType *)inner_int_union(datum_l, datum_alpha);
 | 
						|
	union_dr = (ArrayType *)inner_int_union(datum_r, datum_alpha);
 | 
						|
	rt__int_size((ArrayType *)union_dl, &size_alpha);
 | 
						|
	rt__int_size((ArrayType *)union_dr, &size_beta);
 | 
						|
 | 
						|
	/* pick which page to add it to */
 | 
						|
	if (size_alpha - size_l < size_beta - size_r) {
 | 
						|
	    if ( datum_l ) pfree(datum_l);
 | 
						|
	    if ( union_dr ) pfree(union_dr);
 | 
						|
	    datum_l = union_dl;
 | 
						|
	    size_l = size_alpha;
 | 
						|
	    *left++ = i;
 | 
						|
	    v->spl_nleft++;
 | 
						|
	} else {
 | 
						|
	    if ( datum_r ) pfree(datum_r);
 | 
						|
	    if ( union_dl ) pfree(union_dl);
 | 
						|
	    datum_r = union_dr;
 | 
						|
	    size_r = size_beta;
 | 
						|
	    *right++ = i;
 | 
						|
	    v->spl_nright++;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    /**left = *right = FirstOffsetNumber;*/  /* sentinel value, see dosplit() */
 | 
						|
 | 
						|
    if ( *(left-1) > *(right-1) ) { 
 | 
						|
        *right = FirstOffsetNumber;
 | 
						|
        *(left-1) = InvalidOffsetNumber;
 | 
						|
    } else {
 | 
						|
        *left = FirstOffsetNumber;
 | 
						|
        *(right-1) = InvalidOffsetNumber;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    v->spl_ldatum = (char *)datum_l;
 | 
						|
    v->spl_rdatum = (char *)datum_r;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    elog(NOTICE, "--------ENDpicksplit %d %d",v->spl_nleft, v->spl_nright);
 | 
						|
#endif
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Equality methods
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
bool *
 | 
						|
g_int_same(ArrayType *b1, ArrayType *b2, bool *result)
 | 
						|
{
 | 
						|
  if (_int_same(b1, b2))
 | 
						|
    *result = TRUE;
 | 
						|
  else *result = FALSE;
 | 
						|
 | 
						|
  return(result);
 | 
						|
}
 | 
						|
 | 
						|
bool 
 | 
						|
g_int_internal_consistent(ArrayType *key,
 | 
						|
			ArrayType *query,
 | 
						|
			StrategyNumber strategy)
 | 
						|
{
 | 
						|
    bool retval;
 | 
						|
 | 
						|
#ifdef GIST_QUERY_DEBUG
 | 
						|
  elog(NOTICE, "internal_consistent, %d", strategy);
 | 
						|
#endif
 | 
						|
 | 
						|
    switch(strategy) {
 | 
						|
    case RTOverlapStrategyNumber:
 | 
						|
      retval = (bool)inner_int_overlap(key, query);
 | 
						|
      break;
 | 
						|
    case RTSameStrategyNumber:
 | 
						|
    case RTContainsStrategyNumber:
 | 
						|
      retval = (bool)inner_int_contains(key, query);
 | 
						|
      break;
 | 
						|
    case RTContainedByStrategyNumber:
 | 
						|
      retval = (bool)inner_int_overlap(key, query);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      retval = FALSE;
 | 
						|
    }
 | 
						|
    return(retval);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
_int_contained(ArrayType *a, ArrayType *b)
 | 
						|
{
 | 
						|
  return ( _int_contains(b, a) );
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
_int_contains ( ArrayType *a, ArrayType *b ) {
 | 
						|
	bool res;
 | 
						|
	ArrayType *an, *bn;
 | 
						|
	if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
 | 
						|
 | 
						|
	an = copy_intArrayType( a );
 | 
						|
	bn = copy_intArrayType( b );
 | 
						|
 | 
						|
	PREPAREARR(an);
 | 
						|
	PREPAREARR(bn);
 | 
						|
 | 
						|
        res = inner_int_contains( an, bn );
 | 
						|
	pfree( an ); pfree( bn );
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
bool 
 | 
						|
inner_int_contains ( ArrayType *a, ArrayType *b ) {
 | 
						|
	int na, nb;
 | 
						|
	int i,j, n;
 | 
						|
	int *da, *db;
 | 
						|
  
 | 
						|
        if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
 | 
						|
 | 
						|
        na = ARRSIZE( a );
 | 
						|
	nb = ARRSIZE( b );	
 | 
						|
	da = ARRPTR( a );
 | 
						|
	db = ARRPTR( b );
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    elog(NOTICE, "contains %d %d", na, nb);
 | 
						|
#endif
 | 
						|
 | 
						|
	i = j = n = 0;
 | 
						|
	while( i<na && j<nb )
 | 
						|
		if ( da[i] < db[j] )
 | 
						|
			i++;
 | 
						|
		else if ( da[i] == db[j] ) {
 | 
						|
			n++; i++; j++;
 | 
						|
		} else 
 | 
						|
			j++;
 | 
						|
	
 | 
						|
	return ( n == nb ) ? TRUE : FALSE;
 | 
						|
}
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 * Operator class for R-tree indexing
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
bool
 | 
						|
_int_different(ArrayType *a, ArrayType *b)
 | 
						|
{
 | 
						|
  return ( !_int_same( a, b ) );
 | 
						|
}
 | 
						|
 | 
						|
bool 
 | 
						|
_int_same ( ArrayType *a, ArrayType *b ) {
 | 
						|
        int na , nb ;
 | 
						|
        int n; 
 | 
						|
        int *da, *db;
 | 
						|
	bool anull = ARRISNULL( a );
 | 
						|
	bool bnull = ARRISNULL( b );
 | 
						|
 | 
						|
	if ( anull || bnull ) 
 | 
						|
		return ( anull && bnull ) ? TRUE : FALSE; 
 | 
						|
	
 | 
						|
	SORT( a );
 | 
						|
	SORT( b );		
 | 
						|
	na = ARRSIZE( a );
 | 
						|
	nb = ARRSIZE( b );
 | 
						|
	da = ARRPTR( a );
 | 
						|
	db = ARRPTR( b );
 | 
						|
 | 
						|
        if ( na != nb ) return FALSE;
 | 
						|
 | 
						|
        n = 0;
 | 
						|
        for(n=0; n<na; n++)
 | 
						|
                if ( da[n] != db[n] )
 | 
						|
                        return FALSE;
 | 
						|
 | 
						|
        return TRUE; 
 | 
						|
}
 | 
						|
 | 
						|
/*  _int_overlap -- does a overlap b?
 | 
						|
 */
 | 
						|
bool 
 | 
						|
_int_overlap ( ArrayType *a, ArrayType *b ) {
 | 
						|
	if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
 | 
						|
	
 | 
						|
	SORT(a);
 | 
						|
	SORT(b);
 | 
						|
 | 
						|
        return inner_int_overlap( a, b );
 | 
						|
}
 | 
						|
 | 
						|
bool 
 | 
						|
inner_int_overlap ( ArrayType *a, ArrayType *b ) {
 | 
						|
	int na , nb ;
 | 
						|
	int i,j;
 | 
						|
	int *da, *db;
 | 
						|
 | 
						|
	if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
 | 
						|
	
 | 
						|
	na = ARRSIZE( a );
 | 
						|
	nb = ARRSIZE( b );
 | 
						|
	da = ARRPTR( a );
 | 
						|
	db = ARRPTR( b );
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    elog(NOTICE, "g_int_overlap");
 | 
						|
#endif
 | 
						|
 | 
						|
	i = j = 0;
 | 
						|
	while( i<na && j<nb )
 | 
						|
		if ( da[i] < db[j] )
 | 
						|
			i++;
 | 
						|
		else if ( da[i] == db[j] )
 | 
						|
			return TRUE; 
 | 
						|
		else 
 | 
						|
			j++;
 | 
						|
	
 | 
						|
	return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
ArrayType * 
 | 
						|
_int_union ( ArrayType *a, ArrayType *b ) {
 | 
						|
	if ( ! ARRISNULL( a ) ) SORT(a);
 | 
						|
	if ( ! ARRISNULL( b ) ) SORT(b);
 | 
						|
 | 
						|
        return inner_int_union( a, b );
 | 
						|
}
 | 
						|
 | 
						|
ArrayType * 
 | 
						|
inner_int_union ( ArrayType *a, ArrayType *b ) {
 | 
						|
	ArrayType * r = NULL;
 | 
						|
	int na , nb;
 | 
						|
	int *da, *db, *dr;
 | 
						|
	int i,j;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    //elog(NOTICE, "inner_union %d %d", ARRISNULL( a ) , ARRISNULL( b ) );
 | 
						|
#endif
 | 
						|
 | 
						|
	if ( ARRISNULL( a ) && ARRISNULL( b ) ) return new_intArrayType(0);
 | 
						|
	if ( ARRISNULL( a ) ) r = copy_intArrayType( b ); 
 | 
						|
	if ( ARRISNULL( b ) ) r = copy_intArrayType( a ); 
 | 
						|
 | 
						|
	if ( r ) { 
 | 
						|
		dr = ARRPTR( r );
 | 
						|
	} else {
 | 
						|
		na = ARRSIZE( a );
 | 
						|
		nb = ARRSIZE( b );
 | 
						|
		da = ARRPTR( a );
 | 
						|
		db = ARRPTR( b );
 | 
						|
 | 
						|
		r = new_intArrayType( na + nb ); 
 | 
						|
		dr = ARRPTR( r );
 | 
						|
 | 
						|
		/* union */	
 | 
						|
		i = j = 0;
 | 
						|
		while( i<na && j<nb ) 
 | 
						|
			if ( da[i] < db[j] )
 | 
						|
				*dr++ = da[i++];
 | 
						|
			else
 | 
						|
				*dr++ = db[j++];
 | 
						|
	
 | 
						|
		while( i<na ) *dr++ = da[i++];
 | 
						|
		while( j<nb ) *dr++ = db[j++];
 | 
						|
 | 
						|
	}	
 | 
						|
 | 
						|
	if ( ARRSIZE(r) > 1 ) 
 | 
						|
		r = _int_unique( r );
 | 
						|
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ArrayType * 
 | 
						|
_int_inter ( ArrayType *a, ArrayType *b ) {
 | 
						|
	if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
 | 
						|
	
 | 
						|
	SORT(a);
 | 
						|
	SORT(b);
 | 
						|
 | 
						|
        return inner_int_inter( a, b );
 | 
						|
}
 | 
						|
 | 
						|
ArrayType * 
 | 
						|
inner_int_inter ( ArrayType *a, ArrayType *b ) {
 | 
						|
	ArrayType * r;
 | 
						|
	int na , nb ;
 | 
						|
	int *da, *db, *dr;
 | 
						|
	int i,j;
 | 
						|
 | 
						|
#ifdef GIST_DEBUG
 | 
						|
    //elog(NOTICE, "inner_inter %d %d", ARRISNULL( a ), ARRISNULL( b ) );
 | 
						|
#endif
 | 
						|
 | 
						|
	if ( ARRISNULL( a ) || ARRISNULL( b ) ) return NULL;
 | 
						|
 | 
						|
	na = ARRSIZE( a );
 | 
						|
	nb = ARRSIZE( b );
 | 
						|
	da = ARRPTR( a );
 | 
						|
	db = ARRPTR( b );
 | 
						|
	r = new_intArrayType( min(na, nb) ); 
 | 
						|
	dr = ARRPTR( r );
 | 
						|
	
 | 
						|
	i = j = 0;
 | 
						|
	while( i<na && j<nb ) 
 | 
						|
		if ( da[i] < db[j] )
 | 
						|
			i++;
 | 
						|
		else if ( da[i] == db[j] ) { 
 | 
						|
			if ( i+j == 0 || ( i+j>0 && *(dr-1) != db[j] ) )  
 | 
						|
				*dr++ = db[j];
 | 
						|
			i++; j++;
 | 
						|
		} else 
 | 
						|
			j++;
 | 
						|
 | 
						|
	if ( (dr - ARRPTR(r)) == 0 ) {
 | 
						|
		pfree( r );
 | 
						|
		return NULL;
 | 
						|
	} else 
 | 
						|
		return resize_intArrayType(r, dr - ARRPTR(r) );
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rt__int_size(ArrayType *a, float *size)
 | 
						|
{
 | 
						|
  if ( ARRISNULL( a ) )
 | 
						|
    *size = 0.0;
 | 
						|
  else
 | 
						|
    *size = (float)ARRSIZE( a );
 | 
						|
  
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
 *                 Miscellaneous operators and functions
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
/* len >= 2 */
 | 
						|
bool isort ( int *a, int len ) {
 | 
						|
        int tmp, index;
 | 
						|
        int *cur, *end;
 | 
						|
	bool r = FALSE;
 | 
						|
        end = a + len;
 | 
						|
        do {
 | 
						|
                index = 0;
 | 
						|
                cur = a + 1;
 | 
						|
                while( cur < end ) {
 | 
						|
                        if( *(cur-1) > *cur ) {
 | 
						|
                                tmp=*(cur-1); *(cur-1) = *cur; *cur=tmp;
 | 
						|
                                index = 1;
 | 
						|
                        } else if ( ! r && *(cur-1) == *cur )
 | 
						|
				r = TRUE;
 | 
						|
                        cur++;
 | 
						|
                }
 | 
						|
        } while( index );
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
ArrayType * new_intArrayType( int num ) {
 | 
						|
	ArrayType * r;
 | 
						|
	int nbytes = ARR_OVERHEAD( NDIM ) + sizeof(int)*num;
 | 
						|
	
 | 
						|
	r = (ArrayType *) palloc( nbytes );
 | 
						|
	if ( ! r )
 | 
						|
		elog(ERROR, "Can't allocate memory for new array");
 | 
						|
	MemSet(r, 0, nbytes);
 | 
						|
	r->size = nbytes;
 | 
						|
	r->ndim = NDIM;
 | 
						|
#ifndef PGSQL71
 | 
						|
	SET_LO_FLAG(false, r);
 | 
						|
#endif
 | 
						|
	*( (int*)ARR_DIMS(r) ) = num;
 | 
						|
	*( (int*)ARR_LBOUND(r) ) = 1;
 | 
						|
	
 | 
						|
	return r;	
 | 
						|
} 
 | 
						|
 | 
						|
ArrayType * resize_intArrayType( ArrayType * a, int num ) {
 | 
						|
	int nbytes = ARR_OVERHEAD( NDIM ) + sizeof(int)*num;
 | 
						|
 | 
						|
	if ( num == ARRSIZE(a) ) return a;
 | 
						|
 | 
						|
	a = (ArrayType *) repalloc( a, nbytes );
 | 
						|
	if ( ! a )
 | 
						|
		elog(ERROR, "Can't reallocate memory for new array");
 | 
						|
	
 | 
						|
	a->size = nbytes;
 | 
						|
	*( (int*)ARR_DIMS(a) ) = num; 
 | 
						|
	return a;
 | 
						|
}
 | 
						|
 | 
						|
ArrayType * copy_intArrayType( ArrayType * a ) {
 | 
						|
	ArrayType * r;
 | 
						|
	if ( ! a ) return NULL;
 | 
						|
	r = new_intArrayType( ARRSIZE(a) );
 | 
						|
	memmove(r,a,VARSIZE(a));
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
/* num for compressed key */
 | 
						|
int internal_size (int *a, int len ) {
 | 
						|
        int i,size=0;
 | 
						|
 | 
						|
        for(i=0;i<len;i+=2)
 | 
						|
                if ( ! i || a[i] != a[i-1]  ) /* do not count repeated range */
 | 
						|
                        size += a[i+1] - a[i] + 1;
 | 
						|
 | 
						|
        return size;
 | 
						|
}
 | 
						|
 | 
						|
/* r is sorted and size of r > 1 */
 | 
						|
ArrayType * _int_unique( ArrayType * r ) {
 | 
						|
	int *tmp, *dr, *data;
 | 
						|
	int num = ARRSIZE(r);
 | 
						|
	data = tmp = dr = ARRPTR( r );
 | 
						|
	while( tmp - data < num ) 
 | 
						|
		if ( *tmp != *dr ) 
 | 
						|
			*(++dr) = *tmp++;
 | 
						|
		else 
 | 
						|
			tmp++; 
 | 
						|
	return resize_intArrayType(r, dr + 1 - ARRPTR(r) );
 | 
						|
}	
 |