mirror of
https://github.com/postgres/postgres.git
synced 2025-04-20 00:42:27 +03:00
No members of the buildfarm are using this version of Visual Studio, resulting in all the code cleaned up here as being mostly dead, and VS2017 is the oldest version still supported. More versions could be cut, but the gain would be minimal, while removing only VS2013 has the advantage to remove from the core code all the dependencies on the value defined by _MSC_VER, where compatibility tweaks have accumulated across the years mostly around locales and strtof(), so that's a nice isolated cleanup. Note that this commit additionally allows a revert of 3154e16. The versions of Visual Studio now supported range from 2015 to 2022. Author: Michael Paquier Reviewed-by: Juan José Santamaría Flecha, Tom Lane, Thomas Munro, Justin Pryzby Discussion: https://postgr.es/m/YoH2IMtxcS3ncWn+@paquier.xyz
4071 lines
92 KiB
C
4071 lines
92 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* float.c
|
|
* Functions for the built-in floating-point types.
|
|
*
|
|
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/adt/float.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "common/int.h"
|
|
#include "common/pg_prng.h"
|
|
#include "common/shortest_dec.h"
|
|
#include "libpq/pqformat.h"
|
|
#include "miscadmin.h"
|
|
#include "utils/array.h"
|
|
#include "utils/float.h"
|
|
#include "utils/fmgrprotos.h"
|
|
#include "utils/sortsupport.h"
|
|
#include "utils/timestamp.h"
|
|
|
|
|
|
/*
|
|
* Configurable GUC parameter
|
|
*
|
|
* If >0, use shortest-decimal format for output; this is both the default and
|
|
* allows for compatibility with clients that explicitly set a value here to
|
|
* get round-trip-accurate results. If 0 or less, then use the old, slow,
|
|
* decimal rounding method.
|
|
*/
|
|
int extra_float_digits = 1;
|
|
|
|
/* Cached constants for degree-based trig functions */
|
|
static bool degree_consts_set = false;
|
|
static float8 sin_30 = 0;
|
|
static float8 one_minus_cos_60 = 0;
|
|
static float8 asin_0_5 = 0;
|
|
static float8 acos_0_5 = 0;
|
|
static float8 atan_1_0 = 0;
|
|
static float8 tan_45 = 0;
|
|
static float8 cot_45 = 0;
|
|
|
|
/*
|
|
* These are intentionally not static; don't "fix" them. They will never
|
|
* be referenced by other files, much less changed; but we don't want the
|
|
* compiler to know that, else it might try to precompute expressions
|
|
* involving them. See comments for init_degree_constants().
|
|
*/
|
|
float8 degree_c_thirty = 30.0;
|
|
float8 degree_c_forty_five = 45.0;
|
|
float8 degree_c_sixty = 60.0;
|
|
float8 degree_c_one_half = 0.5;
|
|
float8 degree_c_one = 1.0;
|
|
|
|
/* State for drandom() and setseed() */
|
|
static bool drandom_seed_set = false;
|
|
static pg_prng_state drandom_seed;
|
|
|
|
/* Local function prototypes */
|
|
static double sind_q1(double x);
|
|
static double cosd_q1(double x);
|
|
static void init_degree_constants(void);
|
|
|
|
|
|
/*
|
|
* We use these out-of-line ereport() calls to report float overflow,
|
|
* underflow, and zero-divide, because following our usual practice of
|
|
* repeating them at each call site would lead to a lot of code bloat.
|
|
*
|
|
* This does mean that you don't get a useful error location indicator.
|
|
*/
|
|
pg_noinline void
|
|
float_overflow_error(void)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("value out of range: overflow")));
|
|
}
|
|
|
|
pg_noinline void
|
|
float_underflow_error(void)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("value out of range: underflow")));
|
|
}
|
|
|
|
pg_noinline void
|
|
float_zero_divide_error(void)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns -1 if 'val' represents negative infinity, 1 if 'val'
|
|
* represents (positive) infinity, and 0 otherwise. On some platforms,
|
|
* this is equivalent to the isinf() macro, but not everywhere: C99
|
|
* does not specify that isinf() needs to distinguish between positive
|
|
* and negative infinity.
|
|
*/
|
|
int
|
|
is_infinite(double val)
|
|
{
|
|
int inf = isinf(val);
|
|
|
|
if (inf == 0)
|
|
return 0;
|
|
else if (val > 0)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* ========== USER I/O ROUTINES ========== */
|
|
|
|
|
|
/*
|
|
* float4in - converts "num" to float4
|
|
*
|
|
* Note that this code now uses strtof(), where it used to use strtod().
|
|
*
|
|
* The motivation for using strtof() is to avoid a double-rounding problem:
|
|
* for certain decimal inputs, if you round the input correctly to a double,
|
|
* and then round the double to a float, the result is incorrect in that it
|
|
* does not match the result of rounding the decimal value to float directly.
|
|
*
|
|
* One of the best examples is 7.038531e-26:
|
|
*
|
|
* 0xAE43FDp-107 = 7.03853069185120912085...e-26
|
|
* midpoint 7.03853100000000022281...e-26
|
|
* 0xAE43FEp-107 = 7.03853130814879132477...e-26
|
|
*
|
|
* making 0xAE43FDp-107 the correct float result, but if you do the conversion
|
|
* via a double, you get
|
|
*
|
|
* 0xAE43FD.7FFFFFF8p-107 = 7.03853099999999907487...e-26
|
|
* midpoint 7.03853099999999964884...e-26
|
|
* 0xAE43FD.80000000p-107 = 7.03853100000000022281...e-26
|
|
* 0xAE43FD.80000008p-107 = 7.03853100000000137076...e-26
|
|
*
|
|
* so the value rounds to the double exactly on the midpoint between the two
|
|
* nearest floats, and then rounding again to a float gives the incorrect
|
|
* result of 0xAE43FEp-107.
|
|
*
|
|
*/
|
|
Datum
|
|
float4in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
char *orig_num;
|
|
float val;
|
|
char *endptr;
|
|
|
|
/*
|
|
* endptr points to the first character _after_ the sequence we recognized
|
|
* as a valid floating point number. orig_num points to the original input
|
|
* string.
|
|
*/
|
|
orig_num = num;
|
|
|
|
/* skip leading whitespace */
|
|
while (*num != '\0' && isspace((unsigned char) *num))
|
|
num++;
|
|
|
|
/*
|
|
* Check for an empty-string input to begin with, to avoid the vagaries of
|
|
* strtod() on different platforms.
|
|
*/
|
|
if (*num == '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s: \"%s\"",
|
|
"real", orig_num)));
|
|
|
|
errno = 0;
|
|
val = strtof(num, &endptr);
|
|
|
|
/* did we not see anything that looks like a double? */
|
|
if (endptr == num || errno != 0)
|
|
{
|
|
int save_errno = errno;
|
|
|
|
/*
|
|
* C99 requires that strtof() accept NaN, [+-]Infinity, and [+-]Inf,
|
|
* but not all platforms support all of these (and some accept them
|
|
* but set ERANGE anyway...) Therefore, we check for these inputs
|
|
* ourselves if strtof() fails.
|
|
*
|
|
* Note: C99 also requires hexadecimal input as well as some extended
|
|
* forms of NaN, but we consider these forms unportable and don't try
|
|
* to support them. You can use 'em if your strtof() takes 'em.
|
|
*/
|
|
if (pg_strncasecmp(num, "NaN", 3) == 0)
|
|
{
|
|
val = get_float4_nan();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "Infinity", 8) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 8;
|
|
}
|
|
else if (pg_strncasecmp(num, "+Infinity", 9) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
|
|
{
|
|
val = -get_float4_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "inf", 3) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "+inf", 4) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (pg_strncasecmp(num, "-inf", 4) == 0)
|
|
{
|
|
val = -get_float4_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (save_errno == ERANGE)
|
|
{
|
|
/*
|
|
* Some platforms return ERANGE for denormalized numbers (those
|
|
* that are not zero, but are too close to zero to have full
|
|
* precision). We'd prefer not to throw error for that, so try to
|
|
* detect whether it's a "real" out-of-range condition by checking
|
|
* to see if the result is zero or huge.
|
|
*/
|
|
if (val == 0.0 ||
|
|
#if !defined(HUGE_VALF)
|
|
isinf(val)
|
|
#else
|
|
(val >= HUGE_VALF || val <= -HUGE_VALF)
|
|
#endif
|
|
)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("\"%s\" is out of range for type real",
|
|
orig_num)));
|
|
}
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s: \"%s\"",
|
|
"real", orig_num)));
|
|
}
|
|
|
|
/* skip trailing whitespace */
|
|
while (*endptr != '\0' && isspace((unsigned char) *endptr))
|
|
endptr++;
|
|
|
|
/* if there is any junk left at the end of the string, bail out */
|
|
if (*endptr != '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s: \"%s\"",
|
|
"real", orig_num)));
|
|
|
|
PG_RETURN_FLOAT4(val);
|
|
}
|
|
|
|
/*
|
|
* float4out - converts a float4 number to a string
|
|
* using a standard output format
|
|
*/
|
|
Datum
|
|
float4out(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
char *ascii = (char *) palloc(32);
|
|
int ndig = FLT_DIG + extra_float_digits;
|
|
|
|
if (extra_float_digits > 0)
|
|
{
|
|
float_to_shortest_decimal_buf(num, ascii);
|
|
PG_RETURN_CSTRING(ascii);
|
|
}
|
|
|
|
(void) pg_strfromd(ascii, 32, ndig, num);
|
|
PG_RETURN_CSTRING(ascii);
|
|
}
|
|
|
|
/*
|
|
* float4recv - converts external binary format to float4
|
|
*/
|
|
Datum
|
|
float4recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_FLOAT4(pq_getmsgfloat4(buf));
|
|
}
|
|
|
|
/*
|
|
* float4send - converts float4 to binary format
|
|
*/
|
|
Datum
|
|
float4send(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat4(&buf, num);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
/*
|
|
* float8in - converts "num" to float8
|
|
*/
|
|
Datum
|
|
float8in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
|
|
PG_RETURN_FLOAT8(float8in_internal(num, NULL, "double precision", num));
|
|
}
|
|
|
|
/* Convenience macro: set *have_error flag (if provided) or throw error */
|
|
#define RETURN_ERROR(throw_error, have_error) \
|
|
do { \
|
|
if (have_error) { \
|
|
*have_error = true; \
|
|
return 0.0; \
|
|
} else { \
|
|
throw_error; \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* float8in_internal_opt_error - guts of float8in()
|
|
*
|
|
* This is exposed for use by functions that want a reasonably
|
|
* platform-independent way of inputting doubles. The behavior is
|
|
* essentially like strtod + ereport on error, but note the following
|
|
* differences:
|
|
* 1. Both leading and trailing whitespace are skipped.
|
|
* 2. If endptr_p is NULL, we throw error if there's trailing junk.
|
|
* Otherwise, it's up to the caller to complain about trailing junk.
|
|
* 3. In event of a syntax error, the report mentions the given type_name
|
|
* and prints orig_string as the input; this is meant to support use of
|
|
* this function with types such as "box" and "point", where what we are
|
|
* parsing here is just a substring of orig_string.
|
|
*
|
|
* "num" could validly be declared "const char *", but that results in an
|
|
* unreasonable amount of extra casting both here and in callers, so we don't.
|
|
*
|
|
* When "*have_error" flag is provided, it's set instead of throwing an
|
|
* error. This is helpful when caller need to handle errors by itself.
|
|
*/
|
|
double
|
|
float8in_internal_opt_error(char *num, char **endptr_p,
|
|
const char *type_name, const char *orig_string,
|
|
bool *have_error)
|
|
{
|
|
double val;
|
|
char *endptr;
|
|
|
|
if (have_error)
|
|
*have_error = false;
|
|
|
|
/* skip leading whitespace */
|
|
while (*num != '\0' && isspace((unsigned char) *num))
|
|
num++;
|
|
|
|
/*
|
|
* Check for an empty-string input to begin with, to avoid the vagaries of
|
|
* strtod() on different platforms.
|
|
*/
|
|
if (*num == '\0')
|
|
RETURN_ERROR(ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s: \"%s\"",
|
|
type_name, orig_string))),
|
|
have_error);
|
|
|
|
errno = 0;
|
|
val = strtod(num, &endptr);
|
|
|
|
/* did we not see anything that looks like a double? */
|
|
if (endptr == num || errno != 0)
|
|
{
|
|
int save_errno = errno;
|
|
|
|
/*
|
|
* C99 requires that strtod() accept NaN, [+-]Infinity, and [+-]Inf,
|
|
* but not all platforms support all of these (and some accept them
|
|
* but set ERANGE anyway...) Therefore, we check for these inputs
|
|
* ourselves if strtod() fails.
|
|
*
|
|
* Note: C99 also requires hexadecimal input as well as some extended
|
|
* forms of NaN, but we consider these forms unportable and don't try
|
|
* to support them. You can use 'em if your strtod() takes 'em.
|
|
*/
|
|
if (pg_strncasecmp(num, "NaN", 3) == 0)
|
|
{
|
|
val = get_float8_nan();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "Infinity", 8) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 8;
|
|
}
|
|
else if (pg_strncasecmp(num, "+Infinity", 9) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
|
|
{
|
|
val = -get_float8_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "inf", 3) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "+inf", 4) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (pg_strncasecmp(num, "-inf", 4) == 0)
|
|
{
|
|
val = -get_float8_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (save_errno == ERANGE)
|
|
{
|
|
/*
|
|
* Some platforms return ERANGE for denormalized numbers (those
|
|
* that are not zero, but are too close to zero to have full
|
|
* precision). We'd prefer not to throw error for that, so try to
|
|
* detect whether it's a "real" out-of-range condition by checking
|
|
* to see if the result is zero or huge.
|
|
*
|
|
* On error, we intentionally complain about double precision not
|
|
* the given type name, and we print only the part of the string
|
|
* that is the current number.
|
|
*/
|
|
if (val == 0.0 || val >= HUGE_VAL || val <= -HUGE_VAL)
|
|
{
|
|
char *errnumber = pstrdup(num);
|
|
|
|
errnumber[endptr - num] = '\0';
|
|
RETURN_ERROR(ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("\"%s\" is out of range for type double precision",
|
|
errnumber))),
|
|
have_error);
|
|
}
|
|
}
|
|
else
|
|
RETURN_ERROR(ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type "
|
|
"%s: \"%s\"",
|
|
type_name, orig_string))),
|
|
have_error);
|
|
}
|
|
|
|
/* skip trailing whitespace */
|
|
while (*endptr != '\0' && isspace((unsigned char) *endptr))
|
|
endptr++;
|
|
|
|
/* report stopping point if wanted, else complain if not end of string */
|
|
if (endptr_p)
|
|
*endptr_p = endptr;
|
|
else if (*endptr != '\0')
|
|
RETURN_ERROR(ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type "
|
|
"%s: \"%s\"",
|
|
type_name, orig_string))),
|
|
have_error);
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Interface to float8in_internal_opt_error() without "have_error" argument.
|
|
*/
|
|
double
|
|
float8in_internal(char *num, char **endptr_p,
|
|
const char *type_name, const char *orig_string)
|
|
{
|
|
return float8in_internal_opt_error(num, endptr_p, type_name,
|
|
orig_string, NULL);
|
|
}
|
|
|
|
|
|
/*
|
|
* float8out - converts float8 number to a string
|
|
* using a standard output format
|
|
*/
|
|
Datum
|
|
float8out(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_CSTRING(float8out_internal(num));
|
|
}
|
|
|
|
/*
|
|
* float8out_internal - guts of float8out()
|
|
*
|
|
* This is exposed for use by functions that want a reasonably
|
|
* platform-independent way of outputting doubles.
|
|
* The result is always palloc'd.
|
|
*/
|
|
char *
|
|
float8out_internal(double num)
|
|
{
|
|
char *ascii = (char *) palloc(32);
|
|
int ndig = DBL_DIG + extra_float_digits;
|
|
|
|
if (extra_float_digits > 0)
|
|
{
|
|
double_to_shortest_decimal_buf(num, ascii);
|
|
return ascii;
|
|
}
|
|
|
|
(void) pg_strfromd(ascii, 32, ndig, num);
|
|
return ascii;
|
|
}
|
|
|
|
/*
|
|
* float8recv - converts external binary format to float8
|
|
*/
|
|
Datum
|
|
float8recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_FLOAT8(pq_getmsgfloat8(buf));
|
|
}
|
|
|
|
/*
|
|
* float8send - converts float8 to binary format
|
|
*/
|
|
Datum
|
|
float8send(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat8(&buf, num);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/* ========== PUBLIC ROUTINES ========== */
|
|
|
|
|
|
/*
|
|
* ======================
|
|
* FLOAT4 BASE OPERATIONS
|
|
* ======================
|
|
*/
|
|
|
|
/*
|
|
* float4abs - returns |arg1| (absolute value)
|
|
*/
|
|
Datum
|
|
float4abs(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) fabs(arg1));
|
|
}
|
|
|
|
/*
|
|
* float4um - returns -arg1 (unary minus)
|
|
*/
|
|
Datum
|
|
float4um(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 result;
|
|
|
|
result = -arg1;
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4up(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT4(arg);
|
|
}
|
|
|
|
Datum
|
|
float4larger(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
if (float4_gt(arg1, arg2))
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
if (float4_lt(arg1, arg2))
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
/*
|
|
* ======================
|
|
* FLOAT8 BASE OPERATIONS
|
|
* ======================
|
|
*/
|
|
|
|
/*
|
|
* float8abs - returns |arg1| (absolute value)
|
|
*/
|
|
Datum
|
|
float8abs(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(fabs(arg1));
|
|
}
|
|
|
|
|
|
/*
|
|
* float8um - returns -arg1 (unary minus)
|
|
*/
|
|
Datum
|
|
float8um(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = -arg1;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8up(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(arg);
|
|
}
|
|
|
|
Datum
|
|
float8larger(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (float8_gt(arg1, arg2))
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (float8_lt(arg1, arg2))
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================
|
|
* ARITHMETIC OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float4pl - returns arg1 + arg2
|
|
* float4mi - returns arg1 - arg2
|
|
* float4mul - returns arg1 * arg2
|
|
* float4div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float4pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_FLOAT4(float4_pl(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float4mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_FLOAT4(float4_mi(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float4mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_FLOAT4(float4_mul(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float4div(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_FLOAT4(float4_div(arg1, arg2));
|
|
}
|
|
|
|
/*
|
|
* float8pl - returns arg1 + arg2
|
|
* float8mi - returns arg1 - arg2
|
|
* float8mul - returns arg1 * arg2
|
|
* float8div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float8pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_pl(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float8mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_mi(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float8mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_mul(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float8div(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_div(arg1, arg2));
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================
|
|
* COMPARISON OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float4{eq,ne,lt,le,gt,ge} - float4/float4 comparison operations
|
|
*/
|
|
int
|
|
float4_cmp_internal(float4 a, float4 b)
|
|
{
|
|
if (float4_gt(a, b))
|
|
return 1;
|
|
if (float4_lt(a, b))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
Datum
|
|
float4eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_eq(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float4ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_ne(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float4lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_lt(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float4le(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_le(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float4gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_gt(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float4ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_ge(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
btfloat4cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_INT32(float4_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
static int
|
|
btfloat4fastcmp(Datum x, Datum y, SortSupport ssup)
|
|
{
|
|
float4 arg1 = DatumGetFloat4(x);
|
|
float4 arg2 = DatumGetFloat4(y);
|
|
|
|
return float4_cmp_internal(arg1, arg2);
|
|
}
|
|
|
|
Datum
|
|
btfloat4sortsupport(PG_FUNCTION_ARGS)
|
|
{
|
|
SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
|
|
|
|
ssup->comparator = btfloat4fastcmp;
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
/*
|
|
* float8{eq,ne,lt,le,gt,ge} - float8/float8 comparison operations
|
|
*/
|
|
int
|
|
float8_cmp_internal(float8 a, float8 b)
|
|
{
|
|
if (float8_gt(a, b))
|
|
return 1;
|
|
if (float8_lt(a, b))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
Datum
|
|
float8eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_eq(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float8ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_ne(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float8lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_lt(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float8le(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_le(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float8gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_gt(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float8ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_ge(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
btfloat8cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
static int
|
|
btfloat8fastcmp(Datum x, Datum y, SortSupport ssup)
|
|
{
|
|
float8 arg1 = DatumGetFloat8(x);
|
|
float8 arg2 = DatumGetFloat8(y);
|
|
|
|
return float8_cmp_internal(arg1, arg2);
|
|
}
|
|
|
|
Datum
|
|
btfloat8sortsupport(PG_FUNCTION_ARGS)
|
|
{
|
|
SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
|
|
|
|
ssup->comparator = btfloat8fastcmp;
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
Datum
|
|
btfloat48cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
/* widen float4 to float8 and then compare */
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
btfloat84cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
/* widen float4 to float8 and then compare */
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
/*
|
|
* in_range support function for float8.
|
|
*
|
|
* Note: we needn't supply a float8_float4 variant, as implicit coercion
|
|
* of the offset value takes care of that scenario just as well.
|
|
*/
|
|
Datum
|
|
in_range_float8_float8(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 val = PG_GETARG_FLOAT8(0);
|
|
float8 base = PG_GETARG_FLOAT8(1);
|
|
float8 offset = PG_GETARG_FLOAT8(2);
|
|
bool sub = PG_GETARG_BOOL(3);
|
|
bool less = PG_GETARG_BOOL(4);
|
|
float8 sum;
|
|
|
|
/*
|
|
* Reject negative or NaN offset. Negative is per spec, and NaN is
|
|
* because appropriate semantics for that seem non-obvious.
|
|
*/
|
|
if (isnan(offset) || offset < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
|
|
errmsg("invalid preceding or following size in window function")));
|
|
|
|
/*
|
|
* Deal with cases where val and/or base is NaN, following the rule that
|
|
* NaN sorts after non-NaN (cf float8_cmp_internal). The offset cannot
|
|
* affect the conclusion.
|
|
*/
|
|
if (isnan(val))
|
|
{
|
|
if (isnan(base))
|
|
PG_RETURN_BOOL(true); /* NAN = NAN */
|
|
else
|
|
PG_RETURN_BOOL(!less); /* NAN > non-NAN */
|
|
}
|
|
else if (isnan(base))
|
|
{
|
|
PG_RETURN_BOOL(less); /* non-NAN < NAN */
|
|
}
|
|
|
|
/*
|
|
* Deal with cases where both base and offset are infinite, and computing
|
|
* base +/- offset would produce NaN. This corresponds to a window frame
|
|
* whose boundary infinitely precedes +inf or infinitely follows -inf,
|
|
* which is not well-defined. For consistency with other cases involving
|
|
* infinities, such as the fact that +inf infinitely follows +inf, we
|
|
* choose to assume that +inf infinitely precedes +inf and -inf infinitely
|
|
* follows -inf, and therefore that all finite and infinite values are in
|
|
* such a window frame.
|
|
*
|
|
* offset is known positive, so we need only check the sign of base in
|
|
* this test.
|
|
*/
|
|
if (isinf(offset) && isinf(base) &&
|
|
(sub ? base > 0 : base < 0))
|
|
PG_RETURN_BOOL(true);
|
|
|
|
/*
|
|
* Otherwise it should be safe to compute base +/- offset. We trust the
|
|
* FPU to cope if an input is +/-inf or the true sum would overflow, and
|
|
* produce a suitably signed infinity, which will compare properly against
|
|
* val whether or not that's infinity.
|
|
*/
|
|
if (sub)
|
|
sum = base - offset;
|
|
else
|
|
sum = base + offset;
|
|
|
|
if (less)
|
|
PG_RETURN_BOOL(val <= sum);
|
|
else
|
|
PG_RETURN_BOOL(val >= sum);
|
|
}
|
|
|
|
/*
|
|
* in_range support function for float4.
|
|
*
|
|
* We would need a float4_float8 variant in any case, so we supply that and
|
|
* let implicit coercion take care of the float4_float4 case.
|
|
*/
|
|
Datum
|
|
in_range_float4_float8(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 val = PG_GETARG_FLOAT4(0);
|
|
float4 base = PG_GETARG_FLOAT4(1);
|
|
float8 offset = PG_GETARG_FLOAT8(2);
|
|
bool sub = PG_GETARG_BOOL(3);
|
|
bool less = PG_GETARG_BOOL(4);
|
|
float8 sum;
|
|
|
|
/*
|
|
* Reject negative or NaN offset. Negative is per spec, and NaN is
|
|
* because appropriate semantics for that seem non-obvious.
|
|
*/
|
|
if (isnan(offset) || offset < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
|
|
errmsg("invalid preceding or following size in window function")));
|
|
|
|
/*
|
|
* Deal with cases where val and/or base is NaN, following the rule that
|
|
* NaN sorts after non-NaN (cf float8_cmp_internal). The offset cannot
|
|
* affect the conclusion.
|
|
*/
|
|
if (isnan(val))
|
|
{
|
|
if (isnan(base))
|
|
PG_RETURN_BOOL(true); /* NAN = NAN */
|
|
else
|
|
PG_RETURN_BOOL(!less); /* NAN > non-NAN */
|
|
}
|
|
else if (isnan(base))
|
|
{
|
|
PG_RETURN_BOOL(less); /* non-NAN < NAN */
|
|
}
|
|
|
|
/*
|
|
* Deal with cases where both base and offset are infinite, and computing
|
|
* base +/- offset would produce NaN. This corresponds to a window frame
|
|
* whose boundary infinitely precedes +inf or infinitely follows -inf,
|
|
* which is not well-defined. For consistency with other cases involving
|
|
* infinities, such as the fact that +inf infinitely follows +inf, we
|
|
* choose to assume that +inf infinitely precedes +inf and -inf infinitely
|
|
* follows -inf, and therefore that all finite and infinite values are in
|
|
* such a window frame.
|
|
*
|
|
* offset is known positive, so we need only check the sign of base in
|
|
* this test.
|
|
*/
|
|
if (isinf(offset) && isinf(base) &&
|
|
(sub ? base > 0 : base < 0))
|
|
PG_RETURN_BOOL(true);
|
|
|
|
/*
|
|
* Otherwise it should be safe to compute base +/- offset. We trust the
|
|
* FPU to cope if an input is +/-inf or the true sum would overflow, and
|
|
* produce a suitably signed infinity, which will compare properly against
|
|
* val whether or not that's infinity.
|
|
*/
|
|
if (sub)
|
|
sum = base - offset;
|
|
else
|
|
sum = base + offset;
|
|
|
|
if (less)
|
|
PG_RETURN_BOOL(val <= sum);
|
|
else
|
|
PG_RETURN_BOOL(val >= sum);
|
|
}
|
|
|
|
|
|
/*
|
|
* ===================
|
|
* CONVERSION ROUTINES
|
|
* ===================
|
|
*/
|
|
|
|
/*
|
|
* ftod - converts a float4 number to a float8 number
|
|
*/
|
|
Datum
|
|
ftod(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtof - converts a float8 number to a float4 number
|
|
*/
|
|
Datum
|
|
dtof(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
float4 result;
|
|
|
|
result = (float4) num;
|
|
if (unlikely(isinf(result)) && !isinf(num))
|
|
float_overflow_error();
|
|
if (unlikely(result == 0.0f) && num != 0.0)
|
|
float_underflow_error();
|
|
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtoi4 - converts a float8 number to an int4 number
|
|
*/
|
|
Datum
|
|
dtoi4(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
|
|
/*
|
|
* Get rid of any fractional part in the input. This is so we don't fail
|
|
* on just-out-of-range values that would round into range. Note
|
|
* assumption that rint() will pass through a NaN or Inf unchanged.
|
|
*/
|
|
num = rint(num);
|
|
|
|
/* Range check */
|
|
if (unlikely(isnan(num) || !FLOAT8_FITS_IN_INT32(num)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
PG_RETURN_INT32((int32) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtoi2 - converts a float8 number to an int2 number
|
|
*/
|
|
Datum
|
|
dtoi2(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
|
|
/*
|
|
* Get rid of any fractional part in the input. This is so we don't fail
|
|
* on just-out-of-range values that would round into range. Note
|
|
* assumption that rint() will pass through a NaN or Inf unchanged.
|
|
*/
|
|
num = rint(num);
|
|
|
|
/* Range check */
|
|
if (unlikely(isnan(num) || !FLOAT8_FITS_IN_INT16(num)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* i4tod - converts an int4 number to a float8 number
|
|
*/
|
|
Datum
|
|
i4tod(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 num = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* i2tod - converts an int2 number to a float8 number
|
|
*/
|
|
Datum
|
|
i2tod(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 num = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* ftoi4 - converts a float4 number to an int4 number
|
|
*/
|
|
Datum
|
|
ftoi4(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
/*
|
|
* Get rid of any fractional part in the input. This is so we don't fail
|
|
* on just-out-of-range values that would round into range. Note
|
|
* assumption that rint() will pass through a NaN or Inf unchanged.
|
|
*/
|
|
num = rint(num);
|
|
|
|
/* Range check */
|
|
if (unlikely(isnan(num) || !FLOAT4_FITS_IN_INT32(num)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
PG_RETURN_INT32((int32) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* ftoi2 - converts a float4 number to an int2 number
|
|
*/
|
|
Datum
|
|
ftoi2(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
/*
|
|
* Get rid of any fractional part in the input. This is so we don't fail
|
|
* on just-out-of-range values that would round into range. Note
|
|
* assumption that rint() will pass through a NaN or Inf unchanged.
|
|
*/
|
|
num = rint(num);
|
|
|
|
/* Range check */
|
|
if (unlikely(isnan(num) || !FLOAT4_FITS_IN_INT16(num)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* i4tof - converts an int4 number to a float4 number
|
|
*/
|
|
Datum
|
|
i4tof(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 num = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* i2tof - converts an int2 number to a float4 number
|
|
*/
|
|
Datum
|
|
i2tof(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 num = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* =======================
|
|
* RANDOM FLOAT8 OPERATORS
|
|
* =======================
|
|
*/
|
|
|
|
/*
|
|
* dround - returns ROUND(arg1)
|
|
*/
|
|
Datum
|
|
dround(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(rint(arg1));
|
|
}
|
|
|
|
/*
|
|
* dceil - returns the smallest integer greater than or
|
|
* equal to the specified float
|
|
*/
|
|
Datum
|
|
dceil(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(ceil(arg1));
|
|
}
|
|
|
|
/*
|
|
* dfloor - returns the largest integer lesser than or
|
|
* equal to the specified float
|
|
*/
|
|
Datum
|
|
dfloor(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(floor(arg1));
|
|
}
|
|
|
|
/*
|
|
* dsign - returns -1 if the argument is less than 0, 0
|
|
* if the argument is equal to 0, and 1 if the
|
|
* argument is greater than zero.
|
|
*/
|
|
Datum
|
|
dsign(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 > 0)
|
|
result = 1.0;
|
|
else if (arg1 < 0)
|
|
result = -1.0;
|
|
else
|
|
result = 0.0;
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* dtrunc - returns truncation-towards-zero of arg1,
|
|
* arg1 >= 0 ... the greatest integer less
|
|
* than or equal to arg1
|
|
* arg1 < 0 ... the least integer greater
|
|
* than or equal to arg1
|
|
*/
|
|
Datum
|
|
dtrunc(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 >= 0)
|
|
result = floor(arg1);
|
|
else
|
|
result = -floor(-arg1);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dsqrt - returns square root of arg1
|
|
*/
|
|
Datum
|
|
dsqrt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("cannot take square root of a negative number")));
|
|
|
|
result = sqrt(arg1);
|
|
if (unlikely(isinf(result)) && !isinf(arg1))
|
|
float_overflow_error();
|
|
if (unlikely(result == 0.0) && arg1 != 0.0)
|
|
float_underflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcbrt - returns cube root of arg1
|
|
*/
|
|
Datum
|
|
dcbrt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = cbrt(arg1);
|
|
if (unlikely(isinf(result)) && !isinf(arg1))
|
|
float_overflow_error();
|
|
if (unlikely(result == 0.0) && arg1 != 0.0)
|
|
float_underflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dpow - returns pow(arg1,arg2)
|
|
*/
|
|
Datum
|
|
dpow(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
/*
|
|
* The POSIX spec says that NaN ^ 0 = 1, and 1 ^ NaN = 1, while all other
|
|
* cases with NaN inputs yield NaN (with no error). Many older platforms
|
|
* get one or more of these cases wrong, so deal with them via explicit
|
|
* logic rather than trusting pow(3).
|
|
*/
|
|
if (isnan(arg1))
|
|
{
|
|
if (isnan(arg2) || arg2 != 0.0)
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
PG_RETURN_FLOAT8(1.0);
|
|
}
|
|
if (isnan(arg2))
|
|
{
|
|
if (arg1 != 1.0)
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
PG_RETURN_FLOAT8(1.0);
|
|
}
|
|
|
|
/*
|
|
* The SQL spec requires that we emit a particular SQLSTATE error code for
|
|
* certain error conditions. Specifically, we don't return a
|
|
* divide-by-zero error code for 0 ^ -1.
|
|
*/
|
|
if (arg1 == 0 && arg2 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("zero raised to a negative power is undefined")));
|
|
if (arg1 < 0 && floor(arg2) != arg2)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("a negative number raised to a non-integer power yields a complex result")));
|
|
|
|
/*
|
|
* We don't trust the platform's pow() to handle infinity cases per POSIX
|
|
* spec either, so deal with those explicitly too. It's easier to handle
|
|
* infinite y first, so that it doesn't matter if x is also infinite.
|
|
*/
|
|
if (isinf(arg2))
|
|
{
|
|
float8 absx = fabs(arg1);
|
|
|
|
if (absx == 1.0)
|
|
result = 1.0;
|
|
else if (arg2 > 0.0) /* y = +Inf */
|
|
{
|
|
if (absx > 1.0)
|
|
result = arg2;
|
|
else
|
|
result = 0.0;
|
|
}
|
|
else /* y = -Inf */
|
|
{
|
|
if (absx > 1.0)
|
|
result = 0.0;
|
|
else
|
|
result = -arg2;
|
|
}
|
|
}
|
|
else if (isinf(arg1))
|
|
{
|
|
if (arg2 == 0.0)
|
|
result = 1.0;
|
|
else if (arg1 > 0.0) /* x = +Inf */
|
|
{
|
|
if (arg2 > 0.0)
|
|
result = arg1;
|
|
else
|
|
result = 0.0;
|
|
}
|
|
else /* x = -Inf */
|
|
{
|
|
/*
|
|
* Per POSIX, the sign of the result depends on whether y is an
|
|
* odd integer. Since x < 0, we already know from the previous
|
|
* domain check that y is an integer. It is odd if y/2 is not
|
|
* also an integer.
|
|
*/
|
|
float8 halfy = arg2 / 2; /* should be computed exactly */
|
|
bool yisoddinteger = (floor(halfy) != halfy);
|
|
|
|
if (arg2 > 0.0)
|
|
result = yisoddinteger ? arg1 : -arg1;
|
|
else
|
|
result = yisoddinteger ? -0.0 : 0.0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* pow() sets errno on only some platforms, depending on whether it
|
|
* follows _IEEE_, _POSIX_, _XOPEN_, or _SVID_, so we must check both
|
|
* errno and invalid output values. (We can't rely on just the
|
|
* latter, either; some old platforms return a large-but-finite
|
|
* HUGE_VAL when reporting overflow.)
|
|
*/
|
|
errno = 0;
|
|
result = pow(arg1, arg2);
|
|
if (errno == EDOM || isnan(result))
|
|
{
|
|
/*
|
|
* We handled all possible domain errors above, so this should be
|
|
* impossible. However, old glibc versions on x86 have a bug that
|
|
* causes them to fail this way for abs(y) greater than 2^63:
|
|
*
|
|
* https://sourceware.org/bugzilla/show_bug.cgi?id=3866
|
|
*
|
|
* Hence, if we get here, assume y is finite but large (large
|
|
* enough to be certainly even). The result should be 0 if x == 0,
|
|
* 1.0 if abs(x) == 1.0, otherwise an overflow or underflow error.
|
|
*/
|
|
if (arg1 == 0.0)
|
|
result = 0.0; /* we already verified y is positive */
|
|
else
|
|
{
|
|
float8 absx = fabs(arg1);
|
|
|
|
if (absx == 1.0)
|
|
result = 1.0;
|
|
else if (arg2 >= 0.0 ? (absx > 1.0) : (absx < 1.0))
|
|
float_overflow_error();
|
|
else
|
|
float_underflow_error();
|
|
}
|
|
}
|
|
else if (errno == ERANGE)
|
|
{
|
|
if (result != 0.0)
|
|
float_overflow_error();
|
|
else
|
|
float_underflow_error();
|
|
}
|
|
else
|
|
{
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
if (unlikely(result == 0.0) && arg1 != 0.0)
|
|
float_underflow_error();
|
|
}
|
|
}
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dexp - returns the exponential function of arg1
|
|
*/
|
|
Datum
|
|
dexp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* Handle NaN and Inf cases explicitly. This avoids needing to assume
|
|
* that the platform's exp() conforms to POSIX for these cases, and it
|
|
* removes some edge cases for the overflow checks below.
|
|
*/
|
|
if (isnan(arg1))
|
|
result = arg1;
|
|
else if (isinf(arg1))
|
|
{
|
|
/* Per POSIX, exp(-Inf) is 0 */
|
|
result = (arg1 > 0.0) ? arg1 : 0;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* On some platforms, exp() will not set errno but just return Inf or
|
|
* zero to report overflow/underflow; therefore, test both cases.
|
|
*/
|
|
errno = 0;
|
|
result = exp(arg1);
|
|
if (unlikely(errno == ERANGE))
|
|
{
|
|
if (result != 0.0)
|
|
float_overflow_error();
|
|
else
|
|
float_underflow_error();
|
|
}
|
|
else if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
else if (unlikely(result == 0.0))
|
|
float_underflow_error();
|
|
}
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dlog1 - returns the natural logarithm of arg1
|
|
*/
|
|
Datum
|
|
dlog1(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* Emit particular SQLSTATE error codes for ln(). This is required by the
|
|
* SQL standard.
|
|
*/
|
|
if (arg1 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of zero")));
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of a negative number")));
|
|
|
|
result = log(arg1);
|
|
if (unlikely(isinf(result)) && !isinf(arg1))
|
|
float_overflow_error();
|
|
if (unlikely(result == 0.0) && arg1 != 1.0)
|
|
float_underflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dlog10 - returns the base 10 logarithm of arg1
|
|
*/
|
|
Datum
|
|
dlog10(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* Emit particular SQLSTATE error codes for log(). The SQL spec doesn't
|
|
* define log(), but it does define ln(), so it makes sense to emit the
|
|
* same error code for an analogous error condition.
|
|
*/
|
|
if (arg1 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of zero")));
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of a negative number")));
|
|
|
|
result = log10(arg1);
|
|
if (unlikely(isinf(result)) && !isinf(arg1))
|
|
float_overflow_error();
|
|
if (unlikely(result == 0.0) && arg1 != 1.0)
|
|
float_underflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dacos - returns the arccos of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dacos(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* The principal branch of the inverse cosine function maps values in the
|
|
* range [-1, 1] to values in the range [0, Pi], so we should reject any
|
|
* inputs outside that range and the result will always be finite.
|
|
*/
|
|
if (arg1 < -1.0 || arg1 > 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
result = acos(arg1);
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dasin - returns the arcsin of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dasin(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* The principal branch of the inverse sine function maps values in the
|
|
* range [-1, 1] to values in the range [-Pi/2, Pi/2], so we should reject
|
|
* any inputs outside that range and the result will always be finite.
|
|
*/
|
|
if (arg1 < -1.0 || arg1 > 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
result = asin(arg1);
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* datan - returns the arctan of arg1 (radians)
|
|
*/
|
|
Datum
|
|
datan(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* The principal branch of the inverse tangent function maps all inputs to
|
|
* values in the range [-Pi/2, Pi/2], so the result should always be
|
|
* finite, even if the input is infinite.
|
|
*/
|
|
result = atan(arg1);
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* atan2 - returns the arctan of arg1/arg2 (radians)
|
|
*/
|
|
Datum
|
|
datan2(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if either input is NaN */
|
|
if (isnan(arg1) || isnan(arg2))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* atan2 maps all inputs to values in the range [-Pi, Pi], so the result
|
|
* should always be finite, even if the inputs are infinite.
|
|
*/
|
|
result = atan2(arg1, arg2);
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcos - returns the cosine of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dcos(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* cos() is periodic and so theoretically can work for all finite inputs,
|
|
* but some implementations may choose to throw error if the input is so
|
|
* large that there are no significant digits in the result. So we should
|
|
* check for errors. POSIX allows an error to be reported either via
|
|
* errno or via fetestexcept(), but currently we only support checking
|
|
* errno. (fetestexcept() is rumored to report underflow unreasonably
|
|
* early on some platforms, so it's not clear that believing it would be a
|
|
* net improvement anyway.)
|
|
*
|
|
* For infinite inputs, POSIX specifies that the trigonometric functions
|
|
* should return a domain error; but we won't notice that unless the
|
|
* platform reports via errno, so also explicitly test for infinite
|
|
* inputs.
|
|
*/
|
|
errno = 0;
|
|
result = cos(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcot - returns the cotangent of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dcot(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/* Be sure to throw an error if the input is infinite --- see dcos() */
|
|
errno = 0;
|
|
result = tan(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
result = 1.0 / result;
|
|
/* Not checking for overflow because cot(0) == Inf */
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dsin - returns the sine of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dsin(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/* Be sure to throw an error if the input is infinite --- see dcos() */
|
|
errno = 0;
|
|
result = sin(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtan - returns the tangent of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dtan(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/* Be sure to throw an error if the input is infinite --- see dcos() */
|
|
errno = 0;
|
|
result = tan(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
/* Not checking for overflow because tan(pi/2) == Inf */
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/* ========== DEGREE-BASED TRIGONOMETRIC FUNCTIONS ========== */
|
|
|
|
|
|
/*
|
|
* Initialize the cached constants declared at the head of this file
|
|
* (sin_30 etc). The fact that we need those at all, let alone need this
|
|
* Rube-Goldberg-worthy method of initializing them, is because there are
|
|
* compilers out there that will precompute expressions such as sin(constant)
|
|
* using a sin() function different from what will be used at runtime. If we
|
|
* want exact results, we must ensure that none of the scaling constants used
|
|
* in the degree-based trig functions are computed that way. To do so, we
|
|
* compute them from the variables degree_c_thirty etc, which are also really
|
|
* constants, but the compiler cannot assume that.
|
|
*
|
|
* Other hazards we are trying to forestall with this kluge include the
|
|
* possibility that compilers will rearrange the expressions, or compute
|
|
* some intermediate results in registers wider than a standard double.
|
|
*
|
|
* In the places where we use these constants, the typical pattern is like
|
|
* volatile float8 sin_x = sin(x * RADIANS_PER_DEGREE);
|
|
* return (sin_x / sin_30);
|
|
* where we hope to get a value of exactly 1.0 from the division when x = 30.
|
|
* The volatile temporary variable is needed on machines with wide float
|
|
* registers, to ensure that the result of sin(x) is rounded to double width
|
|
* the same as the value of sin_30 has been. Experimentation with gcc shows
|
|
* that marking the temp variable volatile is necessary to make the store and
|
|
* reload actually happen; hopefully the same trick works for other compilers.
|
|
* (gcc's documentation suggests using the -ffloat-store compiler switch to
|
|
* ensure this, but that is compiler-specific and it also pessimizes code in
|
|
* many places where we don't care about this.)
|
|
*/
|
|
static void
|
|
init_degree_constants(void)
|
|
{
|
|
sin_30 = sin(degree_c_thirty * RADIANS_PER_DEGREE);
|
|
one_minus_cos_60 = 1.0 - cos(degree_c_sixty * RADIANS_PER_DEGREE);
|
|
asin_0_5 = asin(degree_c_one_half);
|
|
acos_0_5 = acos(degree_c_one_half);
|
|
atan_1_0 = atan(degree_c_one);
|
|
tan_45 = sind_q1(degree_c_forty_five) / cosd_q1(degree_c_forty_five);
|
|
cot_45 = cosd_q1(degree_c_forty_five) / sind_q1(degree_c_forty_five);
|
|
degree_consts_set = true;
|
|
}
|
|
|
|
#define INIT_DEGREE_CONSTANTS() \
|
|
do { \
|
|
if (!degree_consts_set) \
|
|
init_degree_constants(); \
|
|
} while(0)
|
|
|
|
|
|
/*
|
|
* asind_q1 - returns the inverse sine of x in degrees, for x in
|
|
* the range [0, 1]. The result is an angle in the
|
|
* first quadrant --- [0, 90] degrees.
|
|
*
|
|
* For the 3 special case inputs (0, 0.5 and 1), this
|
|
* function will return exact values (0, 30 and 90
|
|
* degrees respectively).
|
|
*/
|
|
static double
|
|
asind_q1(double x)
|
|
{
|
|
/*
|
|
* Stitch together inverse sine and cosine functions for the ranges [0,
|
|
* 0.5] and (0.5, 1]. Each expression below is guaranteed to return
|
|
* exactly 30 for x=0.5, so the result is a continuous monotonic function
|
|
* over the full range.
|
|
*/
|
|
if (x <= 0.5)
|
|
{
|
|
volatile float8 asin_x = asin(x);
|
|
|
|
return (asin_x / asin_0_5) * 30.0;
|
|
}
|
|
else
|
|
{
|
|
volatile float8 acos_x = acos(x);
|
|
|
|
return 90.0 - (acos_x / acos_0_5) * 60.0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* acosd_q1 - returns the inverse cosine of x in degrees, for x in
|
|
* the range [0, 1]. The result is an angle in the
|
|
* first quadrant --- [0, 90] degrees.
|
|
*
|
|
* For the 3 special case inputs (0, 0.5 and 1), this
|
|
* function will return exact values (0, 60 and 90
|
|
* degrees respectively).
|
|
*/
|
|
static double
|
|
acosd_q1(double x)
|
|
{
|
|
/*
|
|
* Stitch together inverse sine and cosine functions for the ranges [0,
|
|
* 0.5] and (0.5, 1]. Each expression below is guaranteed to return
|
|
* exactly 60 for x=0.5, so the result is a continuous monotonic function
|
|
* over the full range.
|
|
*/
|
|
if (x <= 0.5)
|
|
{
|
|
volatile float8 asin_x = asin(x);
|
|
|
|
return 90.0 - (asin_x / asin_0_5) * 30.0;
|
|
}
|
|
else
|
|
{
|
|
volatile float8 acos_x = acos(x);
|
|
|
|
return (acos_x / acos_0_5) * 60.0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* dacosd - returns the arccos of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dacosd(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/*
|
|
* The principal branch of the inverse cosine function maps values in the
|
|
* range [-1, 1] to values in the range [0, 180], so we should reject any
|
|
* inputs outside that range and the result will always be finite.
|
|
*/
|
|
if (arg1 < -1.0 || arg1 > 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
if (arg1 >= 0.0)
|
|
result = acosd_q1(arg1);
|
|
else
|
|
result = 90.0 + asind_q1(-arg1);
|
|
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dasind - returns the arcsin of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dasind(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/*
|
|
* The principal branch of the inverse sine function maps values in the
|
|
* range [-1, 1] to values in the range [-90, 90], so we should reject any
|
|
* inputs outside that range and the result will always be finite.
|
|
*/
|
|
if (arg1 < -1.0 || arg1 > 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
if (arg1 >= 0.0)
|
|
result = asind_q1(arg1);
|
|
else
|
|
result = -asind_q1(-arg1);
|
|
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* datand - returns the arctan of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
datand(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
volatile float8 atan_arg1;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/*
|
|
* The principal branch of the inverse tangent function maps all inputs to
|
|
* values in the range [-90, 90], so the result should always be finite,
|
|
* even if the input is infinite. Additionally, we take care to ensure
|
|
* than when arg1 is 1, the result is exactly 45.
|
|
*/
|
|
atan_arg1 = atan(arg1);
|
|
result = (atan_arg1 / atan_1_0) * 45.0;
|
|
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* atan2d - returns the arctan of arg1/arg2 (degrees)
|
|
*/
|
|
Datum
|
|
datan2d(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
volatile float8 atan2_arg1_arg2;
|
|
|
|
/* Per the POSIX spec, return NaN if either input is NaN */
|
|
if (isnan(arg1) || isnan(arg2))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/*
|
|
* atan2d maps all inputs to values in the range [-180, 180], so the
|
|
* result should always be finite, even if the inputs are infinite.
|
|
*
|
|
* Note: this coding assumes that atan(1.0) is a suitable scaling constant
|
|
* to get an exact result from atan2(). This might well fail on us at
|
|
* some point, requiring us to decide exactly what inputs we think we're
|
|
* going to guarantee an exact result for.
|
|
*/
|
|
atan2_arg1_arg2 = atan2(arg1, arg2);
|
|
result = (atan2_arg1_arg2 / atan_1_0) * 45.0;
|
|
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* sind_0_to_30 - returns the sine of an angle that lies between 0 and
|
|
* 30 degrees. This will return exactly 0 when x is 0,
|
|
* and exactly 0.5 when x is 30 degrees.
|
|
*/
|
|
static double
|
|
sind_0_to_30(double x)
|
|
{
|
|
volatile float8 sin_x = sin(x * RADIANS_PER_DEGREE);
|
|
|
|
return (sin_x / sin_30) / 2.0;
|
|
}
|
|
|
|
|
|
/*
|
|
* cosd_0_to_60 - returns the cosine of an angle that lies between 0
|
|
* and 60 degrees. This will return exactly 1 when x
|
|
* is 0, and exactly 0.5 when x is 60 degrees.
|
|
*/
|
|
static double
|
|
cosd_0_to_60(double x)
|
|
{
|
|
volatile float8 one_minus_cos_x = 1.0 - cos(x * RADIANS_PER_DEGREE);
|
|
|
|
return 1.0 - (one_minus_cos_x / one_minus_cos_60) / 2.0;
|
|
}
|
|
|
|
|
|
/*
|
|
* sind_q1 - returns the sine of an angle in the first quadrant
|
|
* (0 to 90 degrees).
|
|
*/
|
|
static double
|
|
sind_q1(double x)
|
|
{
|
|
/*
|
|
* Stitch together the sine and cosine functions for the ranges [0, 30]
|
|
* and (30, 90]. These guarantee to return exact answers at their
|
|
* endpoints, so the overall result is a continuous monotonic function
|
|
* that gives exact results when x = 0, 30 and 90 degrees.
|
|
*/
|
|
if (x <= 30.0)
|
|
return sind_0_to_30(x);
|
|
else
|
|
return cosd_0_to_60(90.0 - x);
|
|
}
|
|
|
|
|
|
/*
|
|
* cosd_q1 - returns the cosine of an angle in the first quadrant
|
|
* (0 to 90 degrees).
|
|
*/
|
|
static double
|
|
cosd_q1(double x)
|
|
{
|
|
/*
|
|
* Stitch together the sine and cosine functions for the ranges [0, 60]
|
|
* and (60, 90]. These guarantee to return exact answers at their
|
|
* endpoints, so the overall result is a continuous monotonic function
|
|
* that gives exact results when x = 0, 60 and 90 degrees.
|
|
*/
|
|
if (x <= 60.0)
|
|
return cosd_0_to_60(x);
|
|
else
|
|
return sind_0_to_30(90.0 - x);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcosd - returns the cosine of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dcosd(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
int sign = 1;
|
|
|
|
/*
|
|
* Per the POSIX spec, return NaN if the input is NaN and throw an error
|
|
* if the input is infinite.
|
|
*/
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
if (isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/* Reduce the range of the input to [0,90] degrees */
|
|
arg1 = fmod(arg1, 360.0);
|
|
|
|
if (arg1 < 0.0)
|
|
{
|
|
/* cosd(-x) = cosd(x) */
|
|
arg1 = -arg1;
|
|
}
|
|
|
|
if (arg1 > 180.0)
|
|
{
|
|
/* cosd(360-x) = cosd(x) */
|
|
arg1 = 360.0 - arg1;
|
|
}
|
|
|
|
if (arg1 > 90.0)
|
|
{
|
|
/* cosd(180-x) = -cosd(x) */
|
|
arg1 = 180.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
result = sign * cosd_q1(arg1);
|
|
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcotd - returns the cotangent of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dcotd(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
volatile float8 cot_arg1;
|
|
int sign = 1;
|
|
|
|
/*
|
|
* Per the POSIX spec, return NaN if the input is NaN and throw an error
|
|
* if the input is infinite.
|
|
*/
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
if (isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/* Reduce the range of the input to [0,90] degrees */
|
|
arg1 = fmod(arg1, 360.0);
|
|
|
|
if (arg1 < 0.0)
|
|
{
|
|
/* cotd(-x) = -cotd(x) */
|
|
arg1 = -arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 180.0)
|
|
{
|
|
/* cotd(360-x) = -cotd(x) */
|
|
arg1 = 360.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 90.0)
|
|
{
|
|
/* cotd(180-x) = -cotd(x) */
|
|
arg1 = 180.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
cot_arg1 = cosd_q1(arg1) / sind_q1(arg1);
|
|
result = sign * (cot_arg1 / cot_45);
|
|
|
|
/*
|
|
* On some machines we get cotd(270) = minus zero, but this isn't always
|
|
* true. For portability, and because the user constituency for this
|
|
* function probably doesn't want minus zero, force it to plain zero.
|
|
*/
|
|
if (result == 0.0)
|
|
result = 0.0;
|
|
|
|
/* Not checking for overflow because cotd(0) == Inf */
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dsind - returns the sine of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dsind(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
int sign = 1;
|
|
|
|
/*
|
|
* Per the POSIX spec, return NaN if the input is NaN and throw an error
|
|
* if the input is infinite.
|
|
*/
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
if (isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/* Reduce the range of the input to [0,90] degrees */
|
|
arg1 = fmod(arg1, 360.0);
|
|
|
|
if (arg1 < 0.0)
|
|
{
|
|
/* sind(-x) = -sind(x) */
|
|
arg1 = -arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 180.0)
|
|
{
|
|
/* sind(360-x) = -sind(x) */
|
|
arg1 = 360.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 90.0)
|
|
{
|
|
/* sind(180-x) = sind(x) */
|
|
arg1 = 180.0 - arg1;
|
|
}
|
|
|
|
result = sign * sind_q1(arg1);
|
|
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtand - returns the tangent of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dtand(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
volatile float8 tan_arg1;
|
|
int sign = 1;
|
|
|
|
/*
|
|
* Per the POSIX spec, return NaN if the input is NaN and throw an error
|
|
* if the input is infinite.
|
|
*/
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
if (isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/* Reduce the range of the input to [0,90] degrees */
|
|
arg1 = fmod(arg1, 360.0);
|
|
|
|
if (arg1 < 0.0)
|
|
{
|
|
/* tand(-x) = -tand(x) */
|
|
arg1 = -arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 180.0)
|
|
{
|
|
/* tand(360-x) = -tand(x) */
|
|
arg1 = 360.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 90.0)
|
|
{
|
|
/* tand(180-x) = -tand(x) */
|
|
arg1 = 180.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
tan_arg1 = sind_q1(arg1) / cosd_q1(arg1);
|
|
result = sign * (tan_arg1 / tan_45);
|
|
|
|
/*
|
|
* On some machines we get tand(180) = minus zero, but this isn't always
|
|
* true. For portability, and because the user constituency for this
|
|
* function probably doesn't want minus zero, force it to plain zero.
|
|
*/
|
|
if (result == 0.0)
|
|
result = 0.0;
|
|
|
|
/* Not checking for overflow because tand(90) == Inf */
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* degrees - returns degrees converted from radians
|
|
*/
|
|
Datum
|
|
degrees(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(float8_div(arg1, RADIANS_PER_DEGREE));
|
|
}
|
|
|
|
|
|
/*
|
|
* dpi - returns the constant PI
|
|
*/
|
|
Datum
|
|
dpi(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(M_PI);
|
|
}
|
|
|
|
|
|
/*
|
|
* radians - returns radians converted from degrees
|
|
*/
|
|
Datum
|
|
radians(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(float8_mul(arg1, RADIANS_PER_DEGREE));
|
|
}
|
|
|
|
|
|
/* ========== HYPERBOLIC FUNCTIONS ========== */
|
|
|
|
|
|
/*
|
|
* dsinh - returns the hyperbolic sine of arg1
|
|
*/
|
|
Datum
|
|
dsinh(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = sinh(arg1);
|
|
|
|
/*
|
|
* if an ERANGE error occurs, it means there is an overflow. For sinh,
|
|
* the result should be either -infinity or infinity, depending on the
|
|
* sign of arg1.
|
|
*/
|
|
if (errno == ERANGE)
|
|
{
|
|
if (arg1 < 0)
|
|
result = -get_float8_infinity();
|
|
else
|
|
result = get_float8_infinity();
|
|
}
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcosh - returns the hyperbolic cosine of arg1
|
|
*/
|
|
Datum
|
|
dcosh(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = cosh(arg1);
|
|
|
|
/*
|
|
* if an ERANGE error occurs, it means there is an overflow. As cosh is
|
|
* always positive, it always means the result is positive infinity.
|
|
*/
|
|
if (errno == ERANGE)
|
|
result = get_float8_infinity();
|
|
|
|
if (unlikely(result == 0.0))
|
|
float_underflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* dtanh - returns the hyperbolic tangent of arg1
|
|
*/
|
|
Datum
|
|
dtanh(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* For tanh, we don't need an errno check because it never overflows.
|
|
*/
|
|
result = tanh(arg1);
|
|
|
|
if (unlikely(isinf(result)))
|
|
float_overflow_error();
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* dasinh - returns the inverse hyperbolic sine of arg1
|
|
*/
|
|
Datum
|
|
dasinh(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* For asinh, we don't need an errno check because it never overflows.
|
|
*/
|
|
result = asinh(arg1);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* dacosh - returns the inverse hyperbolic cosine of arg1
|
|
*/
|
|
Datum
|
|
dacosh(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* acosh is only defined for inputs >= 1.0. By checking this ourselves,
|
|
* we need not worry about checking for an EDOM error, which is a good
|
|
* thing because some implementations will report that for NaN. Otherwise,
|
|
* no error is possible.
|
|
*/
|
|
if (arg1 < 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
result = acosh(arg1);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* datanh - returns the inverse hyperbolic tangent of arg1
|
|
*/
|
|
Datum
|
|
datanh(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* atanh is only defined for inputs between -1 and 1. By checking this
|
|
* ourselves, we need not worry about checking for an EDOM error, which is
|
|
* a good thing because some implementations will report that for NaN.
|
|
*/
|
|
if (arg1 < -1.0 || arg1 > 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
/*
|
|
* Also handle the infinity cases ourselves; this is helpful because old
|
|
* glibc versions may produce the wrong errno for this. All other inputs
|
|
* cannot produce an error.
|
|
*/
|
|
if (arg1 == -1.0)
|
|
result = -get_float8_infinity();
|
|
else if (arg1 == 1.0)
|
|
result = get_float8_infinity();
|
|
else
|
|
result = atanh(arg1);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* drandom - returns a random number
|
|
*/
|
|
Datum
|
|
drandom(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 result;
|
|
|
|
/* Initialize random seed, if not done yet in this process */
|
|
if (unlikely(!drandom_seed_set))
|
|
{
|
|
/*
|
|
* If possible, initialize the seed using high-quality random bits.
|
|
* Should that fail for some reason, we fall back on a lower-quality
|
|
* seed based on current time and PID.
|
|
*/
|
|
if (unlikely(!pg_prng_strong_seed(&drandom_seed)))
|
|
{
|
|
TimestampTz now = GetCurrentTimestamp();
|
|
uint64 iseed;
|
|
|
|
/* Mix the PID with the most predictable bits of the timestamp */
|
|
iseed = (uint64) now ^ ((uint64) MyProcPid << 32);
|
|
pg_prng_seed(&drandom_seed, iseed);
|
|
}
|
|
drandom_seed_set = true;
|
|
}
|
|
|
|
/* pg_prng_double produces desired result range [0.0 - 1.0) */
|
|
result = pg_prng_double(&drandom_seed);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* setseed - set seed for the random number generator
|
|
*/
|
|
Datum
|
|
setseed(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 seed = PG_GETARG_FLOAT8(0);
|
|
|
|
if (seed < -1 || seed > 1 || isnan(seed))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("setseed parameter %g is out of allowed range [-1,1]",
|
|
seed)));
|
|
|
|
pg_prng_fseed(&drandom_seed, seed);
|
|
drandom_seed_set = true;
|
|
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* =========================
|
|
* FLOAT AGGREGATE OPERATORS
|
|
* =========================
|
|
*
|
|
* float8_accum - accumulate for AVG(), variance aggregates, etc.
|
|
* float4_accum - same, but input data is float4
|
|
* float8_avg - produce final result for float AVG()
|
|
* float8_var_samp - produce final result for float VAR_SAMP()
|
|
* float8_var_pop - produce final result for float VAR_POP()
|
|
* float8_stddev_samp - produce final result for float STDDEV_SAMP()
|
|
* float8_stddev_pop - produce final result for float STDDEV_POP()
|
|
*
|
|
* The naive schoolbook implementation of these aggregates works by
|
|
* accumulating sum(X) and sum(X^2). However, this approach suffers from
|
|
* large rounding errors in the final computation of quantities like the
|
|
* population variance (N*sum(X^2) - sum(X)^2) / N^2, since each of the
|
|
* intermediate terms is potentially very large, while the difference is often
|
|
* quite small.
|
|
*
|
|
* Instead we use the Youngs-Cramer algorithm [1] which works by accumulating
|
|
* Sx=sum(X) and Sxx=sum((X-Sx/N)^2), using a numerically stable algorithm to
|
|
* incrementally update those quantities. The final computations of each of
|
|
* the aggregate values is then trivial and gives more accurate results (for
|
|
* example, the population variance is just Sxx/N). This algorithm is also
|
|
* fairly easy to generalize to allow parallel execution without loss of
|
|
* precision (see, for example, [2]). For more details, and a comparison of
|
|
* this with other algorithms, see [3].
|
|
*
|
|
* The transition datatype for all these aggregates is a 3-element array
|
|
* of float8, holding the values N, Sx, Sxx in that order.
|
|
*
|
|
* Note that we represent N as a float to avoid having to build a special
|
|
* datatype. Given a reasonable floating-point implementation, there should
|
|
* be no accuracy loss unless N exceeds 2 ^ 52 or so (by which time the
|
|
* user will have doubtless lost interest anyway...)
|
|
*
|
|
* [1] Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms,
|
|
* E. A. Youngs and E. M. Cramer, Technometrics Vol 13, No 3, August 1971.
|
|
*
|
|
* [2] Updating Formulae and a Pairwise Algorithm for Computing Sample
|
|
* Variances, T. F. Chan, G. H. Golub & R. J. LeVeque, COMPSTAT 1982.
|
|
*
|
|
* [3] Numerically Stable Parallel Computation of (Co-)Variance, Erich
|
|
* Schubert and Michael Gertz, Proceedings of the 30th International
|
|
* Conference on Scientific and Statistical Database Management, 2018.
|
|
*/
|
|
|
|
static float8 *
|
|
check_float8_array(ArrayType *transarray, const char *caller, int n)
|
|
{
|
|
/*
|
|
* We expect the input to be an N-element float array; verify that. We
|
|
* don't need to use deconstruct_array() since the array data is just
|
|
* going to look like a C array of N float8 values.
|
|
*/
|
|
if (ARR_NDIM(transarray) != 1 ||
|
|
ARR_DIMS(transarray)[0] != n ||
|
|
ARR_HASNULL(transarray) ||
|
|
ARR_ELEMTYPE(transarray) != FLOAT8OID)
|
|
elog(ERROR, "%s: expected %d-element float8 array", caller, n);
|
|
return (float8 *) ARR_DATA_PTR(transarray);
|
|
}
|
|
|
|
/*
|
|
* float8_combine
|
|
*
|
|
* An aggregate combine function used to combine two 3 fields
|
|
* aggregate transition data into a single transition data.
|
|
* This function is used only in two stage aggregation and
|
|
* shouldn't be called outside aggregate context.
|
|
*/
|
|
Datum
|
|
float8_combine(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0);
|
|
ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1);
|
|
float8 *transvalues1;
|
|
float8 *transvalues2;
|
|
float8 N1,
|
|
Sx1,
|
|
Sxx1,
|
|
N2,
|
|
Sx2,
|
|
Sxx2,
|
|
tmp,
|
|
N,
|
|
Sx,
|
|
Sxx;
|
|
|
|
transvalues1 = check_float8_array(transarray1, "float8_combine", 3);
|
|
transvalues2 = check_float8_array(transarray2, "float8_combine", 3);
|
|
|
|
N1 = transvalues1[0];
|
|
Sx1 = transvalues1[1];
|
|
Sxx1 = transvalues1[2];
|
|
|
|
N2 = transvalues2[0];
|
|
Sx2 = transvalues2[1];
|
|
Sxx2 = transvalues2[2];
|
|
|
|
/*--------------------
|
|
* The transition values combine using a generalization of the
|
|
* Youngs-Cramer algorithm as follows:
|
|
*
|
|
* N = N1 + N2
|
|
* Sx = Sx1 + Sx2
|
|
* Sxx = Sxx1 + Sxx2 + N1 * N2 * (Sx1/N1 - Sx2/N2)^2 / N;
|
|
*
|
|
* It's worth handling the special cases N1 = 0 and N2 = 0 separately
|
|
* since those cases are trivial, and we then don't need to worry about
|
|
* division-by-zero errors in the general case.
|
|
*--------------------
|
|
*/
|
|
if (N1 == 0.0)
|
|
{
|
|
N = N2;
|
|
Sx = Sx2;
|
|
Sxx = Sxx2;
|
|
}
|
|
else if (N2 == 0.0)
|
|
{
|
|
N = N1;
|
|
Sx = Sx1;
|
|
Sxx = Sxx1;
|
|
}
|
|
else
|
|
{
|
|
N = N1 + N2;
|
|
Sx = float8_pl(Sx1, Sx2);
|
|
tmp = Sx1 / N1 - Sx2 / N2;
|
|
Sxx = Sxx1 + Sxx2 + N1 * N2 * tmp * tmp / N;
|
|
if (unlikely(isinf(Sxx)) && !isinf(Sxx1) && !isinf(Sxx2))
|
|
float_overflow_error();
|
|
}
|
|
|
|
/*
|
|
* If we're invoked as an aggregate, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
transvalues1[0] = N;
|
|
transvalues1[1] = Sx;
|
|
transvalues1[2] = Sxx;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray1);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[3];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(Sx);
|
|
transdatums[2] = Float8GetDatumFast(Sxx);
|
|
|
|
result = construct_array(transdatums, 3,
|
|
FLOAT8OID,
|
|
sizeof(float8), FLOAT8PASSBYVAL, TYPALIGN_DOUBLE);
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float8_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 newval = PG_GETARG_FLOAT8(1);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sx,
|
|
Sxx,
|
|
tmp;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_accum", 3);
|
|
N = transvalues[0];
|
|
Sx = transvalues[1];
|
|
Sxx = transvalues[2];
|
|
|
|
/*
|
|
* Use the Youngs-Cramer algorithm to incorporate the new value into the
|
|
* transition values.
|
|
*/
|
|
N += 1.0;
|
|
Sx += newval;
|
|
if (transvalues[0] > 0.0)
|
|
{
|
|
tmp = newval * N - Sx;
|
|
Sxx += tmp * tmp / (N * transvalues[0]);
|
|
|
|
/*
|
|
* Overflow check. We only report an overflow error when finite
|
|
* inputs lead to infinite results. Note also that Sxx should be NaN
|
|
* if any of the inputs are infinite, so we intentionally prevent Sxx
|
|
* from becoming infinite.
|
|
*/
|
|
if (isinf(Sx) || isinf(Sxx))
|
|
{
|
|
if (!isinf(transvalues[1]) && !isinf(newval))
|
|
float_overflow_error();
|
|
|
|
Sxx = get_float8_nan();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* At the first input, we normally can leave Sxx as 0. However, if
|
|
* the first input is Inf or NaN, we'd better force Sxx to NaN;
|
|
* otherwise we will falsely report variance zero when there are no
|
|
* more inputs.
|
|
*/
|
|
if (isnan(newval) || isinf(newval))
|
|
Sxx = get_float8_nan();
|
|
}
|
|
|
|
/*
|
|
* If we're invoked as an aggregate, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = Sx;
|
|
transvalues[2] = Sxx;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[3];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(Sx);
|
|
transdatums[2] = Float8GetDatumFast(Sxx);
|
|
|
|
result = construct_array(transdatums, 3,
|
|
FLOAT8OID,
|
|
sizeof(float8), FLOAT8PASSBYVAL, TYPALIGN_DOUBLE);
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float4_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
|
|
/* do computations as float8 */
|
|
float8 newval = PG_GETARG_FLOAT4(1);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sx,
|
|
Sxx,
|
|
tmp;
|
|
|
|
transvalues = check_float8_array(transarray, "float4_accum", 3);
|
|
N = transvalues[0];
|
|
Sx = transvalues[1];
|
|
Sxx = transvalues[2];
|
|
|
|
/*
|
|
* Use the Youngs-Cramer algorithm to incorporate the new value into the
|
|
* transition values.
|
|
*/
|
|
N += 1.0;
|
|
Sx += newval;
|
|
if (transvalues[0] > 0.0)
|
|
{
|
|
tmp = newval * N - Sx;
|
|
Sxx += tmp * tmp / (N * transvalues[0]);
|
|
|
|
/*
|
|
* Overflow check. We only report an overflow error when finite
|
|
* inputs lead to infinite results. Note also that Sxx should be NaN
|
|
* if any of the inputs are infinite, so we intentionally prevent Sxx
|
|
* from becoming infinite.
|
|
*/
|
|
if (isinf(Sx) || isinf(Sxx))
|
|
{
|
|
if (!isinf(transvalues[1]) && !isinf(newval))
|
|
float_overflow_error();
|
|
|
|
Sxx = get_float8_nan();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* At the first input, we normally can leave Sxx as 0. However, if
|
|
* the first input is Inf or NaN, we'd better force Sxx to NaN;
|
|
* otherwise we will falsely report variance zero when there are no
|
|
* more inputs.
|
|
*/
|
|
if (isnan(newval) || isinf(newval))
|
|
Sxx = get_float8_nan();
|
|
}
|
|
|
|
/*
|
|
* If we're invoked as an aggregate, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = Sx;
|
|
transvalues[2] = Sxx;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[3];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(Sx);
|
|
transdatums[2] = Float8GetDatumFast(Sxx);
|
|
|
|
result = construct_array(transdatums, 3,
|
|
FLOAT8OID,
|
|
sizeof(float8), FLOAT8PASSBYVAL, TYPALIGN_DOUBLE);
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float8_avg(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sx;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_avg", 3);
|
|
N = transvalues[0];
|
|
Sx = transvalues[1];
|
|
/* ignore Sxx */
|
|
|
|
/* SQL defines AVG of no values to be NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(Sx / N);
|
|
}
|
|
|
|
Datum
|
|
float8_var_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sxx;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_var_pop", 3);
|
|
N = transvalues[0];
|
|
/* ignore Sx */
|
|
Sxx = transvalues[2];
|
|
|
|
/* Population variance is undefined when N is 0, so return NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Note that Sxx is guaranteed to be non-negative */
|
|
|
|
PG_RETURN_FLOAT8(Sxx / N);
|
|
}
|
|
|
|
Datum
|
|
float8_var_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sxx;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_var_samp", 3);
|
|
N = transvalues[0];
|
|
/* ignore Sx */
|
|
Sxx = transvalues[2];
|
|
|
|
/* Sample variance is undefined when N is 0 or 1, so return NULL */
|
|
if (N <= 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Note that Sxx is guaranteed to be non-negative */
|
|
|
|
PG_RETURN_FLOAT8(Sxx / (N - 1.0));
|
|
}
|
|
|
|
Datum
|
|
float8_stddev_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sxx;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_stddev_pop", 3);
|
|
N = transvalues[0];
|
|
/* ignore Sx */
|
|
Sxx = transvalues[2];
|
|
|
|
/* Population stddev is undefined when N is 0, so return NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Note that Sxx is guaranteed to be non-negative */
|
|
|
|
PG_RETURN_FLOAT8(sqrt(Sxx / N));
|
|
}
|
|
|
|
Datum
|
|
float8_stddev_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sxx;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_stddev_samp", 3);
|
|
N = transvalues[0];
|
|
/* ignore Sx */
|
|
Sxx = transvalues[2];
|
|
|
|
/* Sample stddev is undefined when N is 0 or 1, so return NULL */
|
|
if (N <= 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Note that Sxx is guaranteed to be non-negative */
|
|
|
|
PG_RETURN_FLOAT8(sqrt(Sxx / (N - 1.0)));
|
|
}
|
|
|
|
/*
|
|
* =========================
|
|
* SQL2003 BINARY AGGREGATES
|
|
* =========================
|
|
*
|
|
* As with the preceding aggregates, we use the Youngs-Cramer algorithm to
|
|
* reduce rounding errors in the aggregate final functions.
|
|
*
|
|
* The transition datatype for all these aggregates is a 6-element array of
|
|
* float8, holding the values N, Sx=sum(X), Sxx=sum((X-Sx/N)^2), Sy=sum(Y),
|
|
* Syy=sum((Y-Sy/N)^2), Sxy=sum((X-Sx/N)*(Y-Sy/N)) in that order.
|
|
*
|
|
* Note that Y is the first argument to all these aggregates!
|
|
*
|
|
* It might seem attractive to optimize this by having multiple accumulator
|
|
* functions that only calculate the sums actually needed. But on most
|
|
* modern machines, a couple of extra floating-point multiplies will be
|
|
* insignificant compared to the other per-tuple overhead, so I've chosen
|
|
* to minimize code space instead.
|
|
*/
|
|
|
|
Datum
|
|
float8_regr_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 newvalY = PG_GETARG_FLOAT8(1);
|
|
float8 newvalX = PG_GETARG_FLOAT8(2);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sx,
|
|
Sxx,
|
|
Sy,
|
|
Syy,
|
|
Sxy,
|
|
tmpX,
|
|
tmpY,
|
|
scale;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_accum", 6);
|
|
N = transvalues[0];
|
|
Sx = transvalues[1];
|
|
Sxx = transvalues[2];
|
|
Sy = transvalues[3];
|
|
Syy = transvalues[4];
|
|
Sxy = transvalues[5];
|
|
|
|
/*
|
|
* Use the Youngs-Cramer algorithm to incorporate the new values into the
|
|
* transition values.
|
|
*/
|
|
N += 1.0;
|
|
Sx += newvalX;
|
|
Sy += newvalY;
|
|
if (transvalues[0] > 0.0)
|
|
{
|
|
tmpX = newvalX * N - Sx;
|
|
tmpY = newvalY * N - Sy;
|
|
scale = 1.0 / (N * transvalues[0]);
|
|
Sxx += tmpX * tmpX * scale;
|
|
Syy += tmpY * tmpY * scale;
|
|
Sxy += tmpX * tmpY * scale;
|
|
|
|
/*
|
|
* Overflow check. We only report an overflow error when finite
|
|
* inputs lead to infinite results. Note also that Sxx, Syy and Sxy
|
|
* should be NaN if any of the relevant inputs are infinite, so we
|
|
* intentionally prevent them from becoming infinite.
|
|
*/
|
|
if (isinf(Sx) || isinf(Sxx) || isinf(Sy) || isinf(Syy) || isinf(Sxy))
|
|
{
|
|
if (((isinf(Sx) || isinf(Sxx)) &&
|
|
!isinf(transvalues[1]) && !isinf(newvalX)) ||
|
|
((isinf(Sy) || isinf(Syy)) &&
|
|
!isinf(transvalues[3]) && !isinf(newvalY)) ||
|
|
(isinf(Sxy) &&
|
|
!isinf(transvalues[1]) && !isinf(newvalX) &&
|
|
!isinf(transvalues[3]) && !isinf(newvalY)))
|
|
float_overflow_error();
|
|
|
|
if (isinf(Sxx))
|
|
Sxx = get_float8_nan();
|
|
if (isinf(Syy))
|
|
Syy = get_float8_nan();
|
|
if (isinf(Sxy))
|
|
Sxy = get_float8_nan();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* At the first input, we normally can leave Sxx et al as 0. However,
|
|
* if the first input is Inf or NaN, we'd better force the dependent
|
|
* sums to NaN; otherwise we will falsely report variance zero when
|
|
* there are no more inputs.
|
|
*/
|
|
if (isnan(newvalX) || isinf(newvalX))
|
|
Sxx = Sxy = get_float8_nan();
|
|
if (isnan(newvalY) || isinf(newvalY))
|
|
Syy = Sxy = get_float8_nan();
|
|
}
|
|
|
|
/*
|
|
* If we're invoked as an aggregate, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = Sx;
|
|
transvalues[2] = Sxx;
|
|
transvalues[3] = Sy;
|
|
transvalues[4] = Syy;
|
|
transvalues[5] = Sxy;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[6];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(Sx);
|
|
transdatums[2] = Float8GetDatumFast(Sxx);
|
|
transdatums[3] = Float8GetDatumFast(Sy);
|
|
transdatums[4] = Float8GetDatumFast(Syy);
|
|
transdatums[5] = Float8GetDatumFast(Sxy);
|
|
|
|
result = construct_array(transdatums, 6,
|
|
FLOAT8OID,
|
|
sizeof(float8), FLOAT8PASSBYVAL, TYPALIGN_DOUBLE);
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* float8_regr_combine
|
|
*
|
|
* An aggregate combine function used to combine two 6 fields
|
|
* aggregate transition data into a single transition data.
|
|
* This function is used only in two stage aggregation and
|
|
* shouldn't be called outside aggregate context.
|
|
*/
|
|
Datum
|
|
float8_regr_combine(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0);
|
|
ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1);
|
|
float8 *transvalues1;
|
|
float8 *transvalues2;
|
|
float8 N1,
|
|
Sx1,
|
|
Sxx1,
|
|
Sy1,
|
|
Syy1,
|
|
Sxy1,
|
|
N2,
|
|
Sx2,
|
|
Sxx2,
|
|
Sy2,
|
|
Syy2,
|
|
Sxy2,
|
|
tmp1,
|
|
tmp2,
|
|
N,
|
|
Sx,
|
|
Sxx,
|
|
Sy,
|
|
Syy,
|
|
Sxy;
|
|
|
|
transvalues1 = check_float8_array(transarray1, "float8_regr_combine", 6);
|
|
transvalues2 = check_float8_array(transarray2, "float8_regr_combine", 6);
|
|
|
|
N1 = transvalues1[0];
|
|
Sx1 = transvalues1[1];
|
|
Sxx1 = transvalues1[2];
|
|
Sy1 = transvalues1[3];
|
|
Syy1 = transvalues1[4];
|
|
Sxy1 = transvalues1[5];
|
|
|
|
N2 = transvalues2[0];
|
|
Sx2 = transvalues2[1];
|
|
Sxx2 = transvalues2[2];
|
|
Sy2 = transvalues2[3];
|
|
Syy2 = transvalues2[4];
|
|
Sxy2 = transvalues2[5];
|
|
|
|
/*--------------------
|
|
* The transition values combine using a generalization of the
|
|
* Youngs-Cramer algorithm as follows:
|
|
*
|
|
* N = N1 + N2
|
|
* Sx = Sx1 + Sx2
|
|
* Sxx = Sxx1 + Sxx2 + N1 * N2 * (Sx1/N1 - Sx2/N2)^2 / N
|
|
* Sy = Sy1 + Sy2
|
|
* Syy = Syy1 + Syy2 + N1 * N2 * (Sy1/N1 - Sy2/N2)^2 / N
|
|
* Sxy = Sxy1 + Sxy2 + N1 * N2 * (Sx1/N1 - Sx2/N2) * (Sy1/N1 - Sy2/N2) / N
|
|
*
|
|
* It's worth handling the special cases N1 = 0 and N2 = 0 separately
|
|
* since those cases are trivial, and we then don't need to worry about
|
|
* division-by-zero errors in the general case.
|
|
*--------------------
|
|
*/
|
|
if (N1 == 0.0)
|
|
{
|
|
N = N2;
|
|
Sx = Sx2;
|
|
Sxx = Sxx2;
|
|
Sy = Sy2;
|
|
Syy = Syy2;
|
|
Sxy = Sxy2;
|
|
}
|
|
else if (N2 == 0.0)
|
|
{
|
|
N = N1;
|
|
Sx = Sx1;
|
|
Sxx = Sxx1;
|
|
Sy = Sy1;
|
|
Syy = Syy1;
|
|
Sxy = Sxy1;
|
|
}
|
|
else
|
|
{
|
|
N = N1 + N2;
|
|
Sx = float8_pl(Sx1, Sx2);
|
|
tmp1 = Sx1 / N1 - Sx2 / N2;
|
|
Sxx = Sxx1 + Sxx2 + N1 * N2 * tmp1 * tmp1 / N;
|
|
if (unlikely(isinf(Sxx)) && !isinf(Sxx1) && !isinf(Sxx2))
|
|
float_overflow_error();
|
|
Sy = float8_pl(Sy1, Sy2);
|
|
tmp2 = Sy1 / N1 - Sy2 / N2;
|
|
Syy = Syy1 + Syy2 + N1 * N2 * tmp2 * tmp2 / N;
|
|
if (unlikely(isinf(Syy)) && !isinf(Syy1) && !isinf(Syy2))
|
|
float_overflow_error();
|
|
Sxy = Sxy1 + Sxy2 + N1 * N2 * tmp1 * tmp2 / N;
|
|
if (unlikely(isinf(Sxy)) && !isinf(Sxy1) && !isinf(Sxy2))
|
|
float_overflow_error();
|
|
}
|
|
|
|
/*
|
|
* If we're invoked as an aggregate, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
transvalues1[0] = N;
|
|
transvalues1[1] = Sx;
|
|
transvalues1[2] = Sxx;
|
|
transvalues1[3] = Sy;
|
|
transvalues1[4] = Syy;
|
|
transvalues1[5] = Sxy;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray1);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[6];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(Sx);
|
|
transdatums[2] = Float8GetDatumFast(Sxx);
|
|
transdatums[3] = Float8GetDatumFast(Sy);
|
|
transdatums[4] = Float8GetDatumFast(Syy);
|
|
transdatums[5] = Float8GetDatumFast(Sxy);
|
|
|
|
result = construct_array(transdatums, 6,
|
|
FLOAT8OID,
|
|
sizeof(float8), FLOAT8PASSBYVAL, TYPALIGN_DOUBLE);
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
|
|
Datum
|
|
float8_regr_sxx(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sxx;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_sxx", 6);
|
|
N = transvalues[0];
|
|
Sxx = transvalues[2];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Note that Sxx is guaranteed to be non-negative */
|
|
|
|
PG_RETURN_FLOAT8(Sxx);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_syy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Syy;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_syy", 6);
|
|
N = transvalues[0];
|
|
Syy = transvalues[4];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Note that Syy is guaranteed to be non-negative */
|
|
|
|
PG_RETURN_FLOAT8(Syy);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_sxy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sxy;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_sxy", 6);
|
|
N = transvalues[0];
|
|
Sxy = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* A negative result is valid here */
|
|
|
|
PG_RETURN_FLOAT8(Sxy);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_avgx(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sx;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_avgx", 6);
|
|
N = transvalues[0];
|
|
Sx = transvalues[1];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(Sx / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_avgy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sy;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_avgy", 6);
|
|
N = transvalues[0];
|
|
Sy = transvalues[3];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(Sy / N);
|
|
}
|
|
|
|
Datum
|
|
float8_covar_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sxy;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_covar_pop", 6);
|
|
N = transvalues[0];
|
|
Sxy = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(Sxy / N);
|
|
}
|
|
|
|
Datum
|
|
float8_covar_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sxy;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_covar_samp", 6);
|
|
N = transvalues[0];
|
|
Sxy = transvalues[5];
|
|
|
|
/* if N is <= 1 we should return NULL */
|
|
if (N < 2.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(Sxy / (N - 1.0));
|
|
}
|
|
|
|
Datum
|
|
float8_corr(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sxx,
|
|
Syy,
|
|
Sxy;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_corr", 6);
|
|
N = transvalues[0];
|
|
Sxx = transvalues[2];
|
|
Syy = transvalues[4];
|
|
Sxy = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Note that Sxx and Syy are guaranteed to be non-negative */
|
|
|
|
/* per spec, return NULL for horizontal and vertical lines */
|
|
if (Sxx == 0 || Syy == 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(Sxy / sqrt(Sxx * Syy));
|
|
}
|
|
|
|
Datum
|
|
float8_regr_r2(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sxx,
|
|
Syy,
|
|
Sxy;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_r2", 6);
|
|
N = transvalues[0];
|
|
Sxx = transvalues[2];
|
|
Syy = transvalues[4];
|
|
Sxy = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Note that Sxx and Syy are guaranteed to be non-negative */
|
|
|
|
/* per spec, return NULL for a vertical line */
|
|
if (Sxx == 0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* per spec, return 1.0 for a horizontal line */
|
|
if (Syy == 0)
|
|
PG_RETURN_FLOAT8(1.0);
|
|
|
|
PG_RETURN_FLOAT8((Sxy * Sxy) / (Sxx * Syy));
|
|
}
|
|
|
|
Datum
|
|
float8_regr_slope(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sxx,
|
|
Sxy;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_slope", 6);
|
|
N = transvalues[0];
|
|
Sxx = transvalues[2];
|
|
Sxy = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Note that Sxx is guaranteed to be non-negative */
|
|
|
|
/* per spec, return NULL for a vertical line */
|
|
if (Sxx == 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(Sxy / Sxx);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_intercept(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
Sx,
|
|
Sxx,
|
|
Sy,
|
|
Sxy;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_intercept", 6);
|
|
N = transvalues[0];
|
|
Sx = transvalues[1];
|
|
Sxx = transvalues[2];
|
|
Sy = transvalues[3];
|
|
Sxy = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Note that Sxx is guaranteed to be non-negative */
|
|
|
|
/* per spec, return NULL for a vertical line */
|
|
if (Sxx == 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8((Sy - Sx * Sxy / Sxx) / N);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================================
|
|
* MIXED-PRECISION ARITHMETIC OPERATORS
|
|
* ====================================
|
|
*/
|
|
|
|
/*
|
|
* float48pl - returns arg1 + arg2
|
|
* float48mi - returns arg1 - arg2
|
|
* float48mul - returns arg1 * arg2
|
|
* float48div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float48pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_pl((float8) arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float48mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_mi((float8) arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float48mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_mul((float8) arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float48div(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_div((float8) arg1, arg2));
|
|
}
|
|
|
|
/*
|
|
* float84pl - returns arg1 + arg2
|
|
* float84mi - returns arg1 - arg2
|
|
* float84mul - returns arg1 * arg2
|
|
* float84div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float84pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_pl(arg1, (float8) arg2));
|
|
}
|
|
|
|
Datum
|
|
float84mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_mi(arg1, (float8) arg2));
|
|
}
|
|
|
|
Datum
|
|
float84mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_mul(arg1, (float8) arg2));
|
|
}
|
|
|
|
Datum
|
|
float84div(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_FLOAT8(float8_div(arg1, (float8) arg2));
|
|
}
|
|
|
|
/*
|
|
* ====================
|
|
* COMPARISON OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float48{eq,ne,lt,le,gt,ge} - float4/float8 comparison operations
|
|
*/
|
|
Datum
|
|
float48eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_eq((float8) arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float48ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_ne((float8) arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float48lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_lt((float8) arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float48le(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_le((float8) arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float48gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_gt((float8) arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
float48ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_ge((float8) arg1, arg2));
|
|
}
|
|
|
|
/*
|
|
* float84{eq,ne,lt,le,gt,ge} - float8/float4 comparison operations
|
|
*/
|
|
Datum
|
|
float84eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_eq(arg1, (float8) arg2));
|
|
}
|
|
|
|
Datum
|
|
float84ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_ne(arg1, (float8) arg2));
|
|
}
|
|
|
|
Datum
|
|
float84lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_lt(arg1, (float8) arg2));
|
|
}
|
|
|
|
Datum
|
|
float84le(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_le(arg1, (float8) arg2));
|
|
}
|
|
|
|
Datum
|
|
float84gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_gt(arg1, (float8) arg2));
|
|
}
|
|
|
|
Datum
|
|
float84ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_ge(arg1, (float8) arg2));
|
|
}
|
|
|
|
/*
|
|
* Implements the float8 version of the width_bucket() function
|
|
* defined by SQL2003. See also width_bucket_numeric().
|
|
*
|
|
* 'bound1' and 'bound2' are the lower and upper bounds of the
|
|
* histogram's range, respectively. 'count' is the number of buckets
|
|
* in the histogram. width_bucket() returns an integer indicating the
|
|
* bucket number that 'operand' belongs to in an equiwidth histogram
|
|
* with the specified characteristics. An operand smaller than the
|
|
* lower bound is assigned to bucket 0. An operand greater than the
|
|
* upper bound is assigned to an additional bucket (with number
|
|
* count+1). We don't allow "NaN" for any of the float8 inputs, and we
|
|
* don't allow either of the histogram bounds to be +/- infinity.
|
|
*/
|
|
Datum
|
|
width_bucket_float8(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 operand = PG_GETARG_FLOAT8(0);
|
|
float8 bound1 = PG_GETARG_FLOAT8(1);
|
|
float8 bound2 = PG_GETARG_FLOAT8(2);
|
|
int32 count = PG_GETARG_INT32(3);
|
|
int32 result;
|
|
|
|
if (count <= 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("count must be greater than zero")));
|
|
|
|
if (isnan(operand) || isnan(bound1) || isnan(bound2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("operand, lower bound, and upper bound cannot be NaN")));
|
|
|
|
/* Note that we allow "operand" to be infinite */
|
|
if (isinf(bound1) || isinf(bound2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("lower and upper bounds must be finite")));
|
|
|
|
if (bound1 < bound2)
|
|
{
|
|
if (operand < bound1)
|
|
result = 0;
|
|
else if (operand >= bound2)
|
|
{
|
|
if (pg_add_s32_overflow(count, 1, &result))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
}
|
|
else
|
|
result = ((float8) count * (operand - bound1) / (bound2 - bound1)) + 1;
|
|
}
|
|
else if (bound1 > bound2)
|
|
{
|
|
if (operand > bound1)
|
|
result = 0;
|
|
else if (operand <= bound2)
|
|
{
|
|
if (pg_add_s32_overflow(count, 1, &result))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
}
|
|
else
|
|
result = ((float8) count * (bound1 - operand) / (bound1 - bound2)) + 1;
|
|
}
|
|
else
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("lower bound cannot equal upper bound")));
|
|
result = 0; /* keep the compiler quiet */
|
|
}
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|