mirror of
https://github.com/postgres/postgres.git
synced 2025-05-05 09:19:17 +03:00
output is not of the same type that's needed for the IN comparison (ie, where the parser inserted an implicit coercion above the subselect result). We should record the coerced expression, not just a raw Var referencing the subselect output, as the quantity that needs to be unique-ified if we choose to implement the IN as Unique followed by a plain join. As of 8.3 this error was causing crashes, as seen in bug #4113 from Javier Hernandez, because the executor was being told to hash or sort the raw subselect output column using operators appropriate to the coerced type. In prior versions there was no crash because the executor chose the hash or sort operators for itself based on the column type it saw. However, that's still not really right, because what's unique for one data type might not be unique for another. In corner cases we could get multiple outputs of a row that should appear only once, as demonstrated by the regression test case included in this commit. However, this patch doesn't apply cleanly to 8.2 or before, and the code involved has shifted enough over time that I'm hesitant to try to back-patch. Given the lack of complaints from the field about such corner cases, I think the bug may not be important enough to risk breaking other things with a back-patch.
1442 lines
41 KiB
C
1442 lines
41 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* subselect.c
|
|
* Planning routines for subselects and parameters.
|
|
*
|
|
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/optimizer/plan/subselect.c,v 1.129.2.1 2008/04/21 20:54:24 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "catalog/pg_operator.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "miscadmin.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/cost.h"
|
|
#include "optimizer/planmain.h"
|
|
#include "optimizer/planner.h"
|
|
#include "optimizer/subselect.h"
|
|
#include "optimizer/var.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_relation.h"
|
|
#include "parser/parsetree.h"
|
|
#include "rewrite/rewriteManip.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
|
|
|
|
typedef struct convert_testexpr_context
|
|
{
|
|
PlannerInfo *root;
|
|
List *subst_nodes; /* Nodes to substitute for Params */
|
|
} convert_testexpr_context;
|
|
|
|
typedef struct process_sublinks_context
|
|
{
|
|
PlannerInfo *root;
|
|
bool isTopQual;
|
|
} process_sublinks_context;
|
|
|
|
typedef struct finalize_primnode_context
|
|
{
|
|
PlannerInfo *root;
|
|
Bitmapset *paramids; /* Set of PARAM_EXEC paramids found */
|
|
Bitmapset *outer_params; /* Set of accessible outer paramids */
|
|
} finalize_primnode_context;
|
|
|
|
|
|
static List *generate_subquery_params(PlannerInfo *root, List *tlist,
|
|
List **paramIds);
|
|
static List *generate_subquery_vars(PlannerInfo *root, List *tlist,
|
|
Index varno);
|
|
static Node *convert_testexpr(PlannerInfo *root,
|
|
Node *testexpr,
|
|
List *subst_nodes);
|
|
static Node *convert_testexpr_mutator(Node *node,
|
|
convert_testexpr_context *context);
|
|
static bool subplan_is_hashable(SubLink *slink, SubPlan *node, Plan *plan);
|
|
static bool hash_ok_operator(OpExpr *expr);
|
|
static Node *replace_correlation_vars_mutator(Node *node, PlannerInfo *root);
|
|
static Node *process_sublinks_mutator(Node *node,
|
|
process_sublinks_context *context);
|
|
static Bitmapset *finalize_plan(PlannerInfo *root,
|
|
Plan *plan,
|
|
Bitmapset *outer_params,
|
|
Bitmapset *valid_params);
|
|
static bool finalize_primnode(Node *node, finalize_primnode_context *context);
|
|
|
|
|
|
/*
|
|
* Generate a Param node to replace the given Var,
|
|
* which is expected to have varlevelsup > 0 (ie, it is not local).
|
|
*/
|
|
static Param *
|
|
replace_outer_var(PlannerInfo *root, Var *var)
|
|
{
|
|
Param *retval;
|
|
ListCell *ppl;
|
|
PlannerParamItem *pitem;
|
|
Index abslevel;
|
|
int i;
|
|
|
|
Assert(var->varlevelsup > 0 && var->varlevelsup < root->query_level);
|
|
abslevel = root->query_level - var->varlevelsup;
|
|
|
|
/*
|
|
* If there's already a paramlist entry for this same Var, just use it.
|
|
* NOTE: in sufficiently complex querytrees, it is possible for the same
|
|
* varno/abslevel to refer to different RTEs in different parts of the
|
|
* parsetree, so that different fields might end up sharing the same Param
|
|
* number. As long as we check the vartype as well, I believe that this
|
|
* sort of aliasing will cause no trouble. The correct field should get
|
|
* stored into the Param slot at execution in each part of the tree.
|
|
*
|
|
* We also need to demand a match on vartypmod. This does not matter for
|
|
* the Param itself, since those are not typmod-dependent, but it does
|
|
* matter when make_subplan() instantiates a modified copy of the Var for
|
|
* a subplan's args list.
|
|
*/
|
|
i = 0;
|
|
foreach(ppl, root->glob->paramlist)
|
|
{
|
|
pitem = (PlannerParamItem *) lfirst(ppl);
|
|
if (pitem->abslevel == abslevel && IsA(pitem->item, Var))
|
|
{
|
|
Var *pvar = (Var *) pitem->item;
|
|
|
|
if (pvar->varno == var->varno &&
|
|
pvar->varattno == var->varattno &&
|
|
pvar->vartype == var->vartype &&
|
|
pvar->vartypmod == var->vartypmod)
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
if (!ppl)
|
|
{
|
|
/* Nope, so make a new one */
|
|
var = (Var *) copyObject(var);
|
|
var->varlevelsup = 0;
|
|
|
|
pitem = makeNode(PlannerParamItem);
|
|
pitem->item = (Node *) var;
|
|
pitem->abslevel = abslevel;
|
|
|
|
root->glob->paramlist = lappend(root->glob->paramlist, pitem);
|
|
/* i is already the correct index for the new item */
|
|
}
|
|
|
|
retval = makeNode(Param);
|
|
retval->paramkind = PARAM_EXEC;
|
|
retval->paramid = i;
|
|
retval->paramtype = var->vartype;
|
|
retval->paramtypmod = var->vartypmod;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Generate a Param node to replace the given Aggref
|
|
* which is expected to have agglevelsup > 0 (ie, it is not local).
|
|
*/
|
|
static Param *
|
|
replace_outer_agg(PlannerInfo *root, Aggref *agg)
|
|
{
|
|
Param *retval;
|
|
PlannerParamItem *pitem;
|
|
Index abslevel;
|
|
int i;
|
|
|
|
Assert(agg->agglevelsup > 0 && agg->agglevelsup < root->query_level);
|
|
abslevel = root->query_level - agg->agglevelsup;
|
|
|
|
/*
|
|
* It does not seem worthwhile to try to match duplicate outer aggs. Just
|
|
* make a new slot every time.
|
|
*/
|
|
agg = (Aggref *) copyObject(agg);
|
|
IncrementVarSublevelsUp((Node *) agg, -((int) agg->agglevelsup), 0);
|
|
Assert(agg->agglevelsup == 0);
|
|
|
|
pitem = makeNode(PlannerParamItem);
|
|
pitem->item = (Node *) agg;
|
|
pitem->abslevel = abslevel;
|
|
|
|
root->glob->paramlist = lappend(root->glob->paramlist, pitem);
|
|
i = list_length(root->glob->paramlist) - 1;
|
|
|
|
retval = makeNode(Param);
|
|
retval->paramkind = PARAM_EXEC;
|
|
retval->paramid = i;
|
|
retval->paramtype = agg->aggtype;
|
|
retval->paramtypmod = -1;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Generate a new Param node that will not conflict with any other.
|
|
*
|
|
* This is used to allocate PARAM_EXEC slots for subplan outputs.
|
|
*/
|
|
static Param *
|
|
generate_new_param(PlannerInfo *root, Oid paramtype, int32 paramtypmod)
|
|
{
|
|
Param *retval;
|
|
PlannerParamItem *pitem;
|
|
|
|
retval = makeNode(Param);
|
|
retval->paramkind = PARAM_EXEC;
|
|
retval->paramid = list_length(root->glob->paramlist);
|
|
retval->paramtype = paramtype;
|
|
retval->paramtypmod = paramtypmod;
|
|
|
|
pitem = makeNode(PlannerParamItem);
|
|
pitem->item = (Node *) retval;
|
|
pitem->abslevel = root->query_level;
|
|
|
|
root->glob->paramlist = lappend(root->glob->paramlist, pitem);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Get the datatype of the first column of the plan's output.
|
|
*
|
|
* This is stored for ARRAY_SUBLINK and for exprType(), which doesn't have any
|
|
* way to get at the plan associated with a SubPlan node. We really only need
|
|
* the value for EXPR_SUBLINK and ARRAY_SUBLINK subplans, but for consistency
|
|
* we set it always.
|
|
*/
|
|
static Oid
|
|
get_first_col_type(Plan *plan)
|
|
{
|
|
TargetEntry *tent = (TargetEntry *) linitial(plan->targetlist);
|
|
|
|
Assert(IsA(tent, TargetEntry));
|
|
Assert(!tent->resjunk);
|
|
return exprType((Node *) tent->expr);
|
|
}
|
|
|
|
/*
|
|
* Convert a SubLink (as created by the parser) into a SubPlan.
|
|
*
|
|
* We are given the original SubLink and the already-processed testexpr
|
|
* (use this instead of the SubLink's own field). We are also told if
|
|
* this expression appears at top level of a WHERE/HAVING qual.
|
|
*
|
|
* The result is whatever we need to substitute in place of the SubLink
|
|
* node in the executable expression. This will be either the SubPlan
|
|
* node (if we have to do the subplan as a subplan), or a Param node
|
|
* representing the result of an InitPlan, or a row comparison expression
|
|
* tree containing InitPlan Param nodes.
|
|
*/
|
|
static Node *
|
|
make_subplan(PlannerInfo *root, SubLink *slink, Node *testexpr, bool isTopQual)
|
|
{
|
|
Query *subquery = (Query *) (slink->subselect);
|
|
double tuple_fraction;
|
|
SubPlan *splan;
|
|
Plan *plan;
|
|
PlannerInfo *subroot;
|
|
bool isInitPlan;
|
|
Bitmapset *tmpset;
|
|
int paramid;
|
|
Node *result;
|
|
|
|
/*
|
|
* Copy the source Query node. This is a quick and dirty kluge to resolve
|
|
* the fact that the parser can generate trees with multiple links to the
|
|
* same sub-Query node, but the planner wants to scribble on the Query.
|
|
* Try to clean this up when we do querytree redesign...
|
|
*/
|
|
subquery = (Query *) copyObject(subquery);
|
|
|
|
/*
|
|
* For an EXISTS subplan, tell lower-level planner to expect that only the
|
|
* first tuple will be retrieved. For ALL and ANY subplans, we will be
|
|
* able to stop evaluating if the test condition fails, so very often not
|
|
* all the tuples will be retrieved; for lack of a better idea, specify
|
|
* 50% retrieval. For EXPR and ROWCOMPARE subplans, use default behavior
|
|
* (we're only expecting one row out, anyway).
|
|
*
|
|
* NOTE: if you change these numbers, also change cost_qual_eval_walker()
|
|
* and get_initplan_cost() in path/costsize.c.
|
|
*
|
|
* XXX If an ALL/ANY subplan is uncorrelated, we may decide to hash or
|
|
* materialize its result below. In that case it would've been better to
|
|
* specify full retrieval. At present, however, we can only detect
|
|
* correlation or lack of it after we've made the subplan :-(. Perhaps
|
|
* detection of correlation should be done as a separate step. Meanwhile,
|
|
* we don't want to be too optimistic about the percentage of tuples
|
|
* retrieved, for fear of selecting a plan that's bad for the
|
|
* materialization case.
|
|
*/
|
|
if (slink->subLinkType == EXISTS_SUBLINK)
|
|
tuple_fraction = 1.0; /* just like a LIMIT 1 */
|
|
else if (slink->subLinkType == ALL_SUBLINK ||
|
|
slink->subLinkType == ANY_SUBLINK)
|
|
tuple_fraction = 0.5; /* 50% */
|
|
else
|
|
tuple_fraction = 0.0; /* default behavior */
|
|
|
|
/*
|
|
* Generate the plan for the subquery.
|
|
*/
|
|
plan = subquery_planner(root->glob, subquery,
|
|
root->query_level + 1,
|
|
tuple_fraction,
|
|
&subroot);
|
|
|
|
/*
|
|
* Initialize the SubPlan node. Note plan_id isn't set yet.
|
|
*/
|
|
splan = makeNode(SubPlan);
|
|
splan->subLinkType = slink->subLinkType;
|
|
splan->testexpr = NULL;
|
|
splan->paramIds = NIL;
|
|
splan->firstColType = get_first_col_type(plan);
|
|
splan->useHashTable = false;
|
|
/* At top level of a qual, can treat UNKNOWN the same as FALSE */
|
|
splan->unknownEqFalse = isTopQual;
|
|
splan->setParam = NIL;
|
|
splan->parParam = NIL;
|
|
splan->args = NIL;
|
|
|
|
/*
|
|
* Make parParam list of params that current query level will pass to this
|
|
* child plan.
|
|
*/
|
|
tmpset = bms_copy(plan->extParam);
|
|
while ((paramid = bms_first_member(tmpset)) >= 0)
|
|
{
|
|
PlannerParamItem *pitem = list_nth(root->glob->paramlist, paramid);
|
|
|
|
if (pitem->abslevel == root->query_level)
|
|
splan->parParam = lappend_int(splan->parParam, paramid);
|
|
}
|
|
bms_free(tmpset);
|
|
|
|
/*
|
|
* Un-correlated or undirect correlated plans of EXISTS, EXPR, ARRAY, or
|
|
* ROWCOMPARE types can be used as initPlans. For EXISTS, EXPR, or ARRAY,
|
|
* we just produce a Param referring to the result of evaluating the
|
|
* initPlan. For ROWCOMPARE, we must modify the testexpr tree to contain
|
|
* PARAM_EXEC Params instead of the PARAM_SUBLINK Params emitted by the
|
|
* parser.
|
|
*/
|
|
if (splan->parParam == NIL && slink->subLinkType == EXISTS_SUBLINK)
|
|
{
|
|
Param *prm;
|
|
|
|
prm = generate_new_param(root, BOOLOID, -1);
|
|
splan->setParam = list_make1_int(prm->paramid);
|
|
isInitPlan = true;
|
|
result = (Node *) prm;
|
|
}
|
|
else if (splan->parParam == NIL && slink->subLinkType == EXPR_SUBLINK)
|
|
{
|
|
TargetEntry *te = linitial(plan->targetlist);
|
|
Param *prm;
|
|
|
|
Assert(!te->resjunk);
|
|
prm = generate_new_param(root,
|
|
exprType((Node *) te->expr),
|
|
exprTypmod((Node *) te->expr));
|
|
splan->setParam = list_make1_int(prm->paramid);
|
|
isInitPlan = true;
|
|
result = (Node *) prm;
|
|
}
|
|
else if (splan->parParam == NIL && slink->subLinkType == ARRAY_SUBLINK)
|
|
{
|
|
TargetEntry *te = linitial(plan->targetlist);
|
|
Oid arraytype;
|
|
Param *prm;
|
|
|
|
Assert(!te->resjunk);
|
|
arraytype = get_array_type(exprType((Node *) te->expr));
|
|
if (!OidIsValid(arraytype))
|
|
elog(ERROR, "could not find array type for datatype %s",
|
|
format_type_be(exprType((Node *) te->expr)));
|
|
prm = generate_new_param(root,
|
|
arraytype,
|
|
exprTypmod((Node *) te->expr));
|
|
splan->setParam = list_make1_int(prm->paramid);
|
|
isInitPlan = true;
|
|
result = (Node *) prm;
|
|
}
|
|
else if (splan->parParam == NIL && slink->subLinkType == ROWCOMPARE_SUBLINK)
|
|
{
|
|
/* Adjust the Params */
|
|
List *params;
|
|
|
|
params = generate_subquery_params(root,
|
|
plan->targetlist,
|
|
&splan->paramIds);
|
|
result = convert_testexpr(root,
|
|
testexpr,
|
|
params);
|
|
splan->setParam = list_copy(splan->paramIds);
|
|
isInitPlan = true;
|
|
|
|
/*
|
|
* The executable expression is returned to become part of the outer
|
|
* plan's expression tree; it is not kept in the initplan node.
|
|
*/
|
|
}
|
|
else
|
|
{
|
|
List *params;
|
|
List *args;
|
|
ListCell *l;
|
|
|
|
/* Adjust the Params */
|
|
params = generate_subquery_params(root,
|
|
plan->targetlist,
|
|
&splan->paramIds);
|
|
splan->testexpr = convert_testexpr(root,
|
|
testexpr,
|
|
params);
|
|
|
|
/*
|
|
* We can't convert subplans of ALL_SUBLINK or ANY_SUBLINK types to
|
|
* initPlans, even when they are uncorrelated or undirect correlated,
|
|
* because we need to scan the output of the subplan for each outer
|
|
* tuple. But if it's an IN (= ANY) test, we might be able to use a
|
|
* hashtable to avoid comparing all the tuples.
|
|
*/
|
|
if (subplan_is_hashable(slink, splan, plan))
|
|
splan->useHashTable = true;
|
|
|
|
/*
|
|
* Otherwise, we have the option to tack a MATERIAL node onto the top
|
|
* of the subplan, to reduce the cost of reading it repeatedly. This
|
|
* is pointless for a direct-correlated subplan, since we'd have to
|
|
* recompute its results each time anyway. For uncorrelated/undirect
|
|
* correlated subplans, we add MATERIAL unless the subplan's top plan
|
|
* node would materialize its output anyway.
|
|
*/
|
|
else if (splan->parParam == NIL)
|
|
{
|
|
bool use_material;
|
|
|
|
switch (nodeTag(plan))
|
|
{
|
|
case T_Material:
|
|
case T_FunctionScan:
|
|
case T_Sort:
|
|
use_material = false;
|
|
break;
|
|
default:
|
|
use_material = true;
|
|
break;
|
|
}
|
|
if (use_material)
|
|
plan = materialize_finished_plan(plan);
|
|
}
|
|
|
|
/*
|
|
* Make splan->args from parParam.
|
|
*/
|
|
args = NIL;
|
|
foreach(l, splan->parParam)
|
|
{
|
|
PlannerParamItem *pitem = list_nth(root->glob->paramlist,
|
|
lfirst_int(l));
|
|
|
|
/*
|
|
* The Var or Aggref has already been adjusted to have the correct
|
|
* varlevelsup or agglevelsup. We probably don't even need to
|
|
* copy it again, but be safe.
|
|
*/
|
|
args = lappend(args, copyObject(pitem->item));
|
|
}
|
|
splan->args = args;
|
|
|
|
result = (Node *) splan;
|
|
isInitPlan = false;
|
|
}
|
|
|
|
/*
|
|
* Add the subplan and its rtable to the global lists.
|
|
*/
|
|
root->glob->subplans = lappend(root->glob->subplans,
|
|
plan);
|
|
root->glob->subrtables = lappend(root->glob->subrtables,
|
|
subroot->parse->rtable);
|
|
splan->plan_id = list_length(root->glob->subplans);
|
|
|
|
if (isInitPlan)
|
|
root->init_plans = lappend(root->init_plans, splan);
|
|
|
|
/*
|
|
* A parameterless subplan (not initplan) should be prepared to handle
|
|
* REWIND efficiently. If it has direct parameters then there's no point
|
|
* since it'll be reset on each scan anyway; and if it's an initplan then
|
|
* there's no point since it won't get re-run without parameter changes
|
|
* anyway. The input of a hashed subplan doesn't need REWIND either.
|
|
*/
|
|
if (splan->parParam == NIL && !isInitPlan && !splan->useHashTable)
|
|
root->glob->rewindPlanIDs = bms_add_member(root->glob->rewindPlanIDs,
|
|
splan->plan_id);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* generate_subquery_params: build a list of Params representing the output
|
|
* columns of a sublink's sub-select, given the sub-select's targetlist.
|
|
*
|
|
* We also return an integer list of the paramids of the Params.
|
|
*/
|
|
static List *
|
|
generate_subquery_params(PlannerInfo *root, List *tlist, List **paramIds)
|
|
{
|
|
List *result;
|
|
List *ids;
|
|
ListCell *lc;
|
|
|
|
result = ids = NIL;
|
|
foreach(lc, tlist)
|
|
{
|
|
TargetEntry *tent = (TargetEntry *) lfirst(lc);
|
|
Param *param;
|
|
|
|
if (tent->resjunk)
|
|
continue;
|
|
|
|
param = generate_new_param(root,
|
|
exprType((Node *) tent->expr),
|
|
exprTypmod((Node *) tent->expr));
|
|
result = lappend(result, param);
|
|
ids = lappend_int(ids, param->paramid);
|
|
}
|
|
|
|
*paramIds = ids;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* generate_subquery_vars: build a list of Vars representing the output
|
|
* columns of a sublink's sub-select, given the sub-select's targetlist.
|
|
* The Vars have the specified varno (RTE index).
|
|
*/
|
|
static List *
|
|
generate_subquery_vars(PlannerInfo *root, List *tlist, Index varno)
|
|
{
|
|
List *result;
|
|
ListCell *lc;
|
|
|
|
result = NIL;
|
|
foreach(lc, tlist)
|
|
{
|
|
TargetEntry *tent = (TargetEntry *) lfirst(lc);
|
|
Var *var;
|
|
|
|
if (tent->resjunk)
|
|
continue;
|
|
|
|
var = makeVar(varno,
|
|
tent->resno,
|
|
exprType((Node *) tent->expr),
|
|
exprTypmod((Node *) tent->expr),
|
|
0);
|
|
result = lappend(result, var);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* convert_testexpr: convert the testexpr given by the parser into
|
|
* actually executable form. This entails replacing PARAM_SUBLINK Params
|
|
* with Params or Vars representing the results of the sub-select. The
|
|
* nodes to be substituted are passed in as the List result from
|
|
* generate_subquery_params or generate_subquery_vars.
|
|
*
|
|
* The given testexpr has already been recursively processed by
|
|
* process_sublinks_mutator. Hence it can no longer contain any
|
|
* PARAM_SUBLINK Params for lower SubLink nodes; we can safely assume that
|
|
* any we find are for our own level of SubLink.
|
|
*/
|
|
static Node *
|
|
convert_testexpr(PlannerInfo *root,
|
|
Node *testexpr,
|
|
List *subst_nodes)
|
|
{
|
|
convert_testexpr_context context;
|
|
|
|
context.root = root;
|
|
context.subst_nodes = subst_nodes;
|
|
return convert_testexpr_mutator(testexpr, &context);
|
|
}
|
|
|
|
static Node *
|
|
convert_testexpr_mutator(Node *node,
|
|
convert_testexpr_context *context)
|
|
{
|
|
if (node == NULL)
|
|
return NULL;
|
|
if (IsA(node, Param))
|
|
{
|
|
Param *param = (Param *) node;
|
|
|
|
if (param->paramkind == PARAM_SUBLINK)
|
|
{
|
|
if (param->paramid <= 0 ||
|
|
param->paramid > list_length(context->subst_nodes))
|
|
elog(ERROR, "unexpected PARAM_SUBLINK ID: %d", param->paramid);
|
|
|
|
/*
|
|
* We copy the list item to avoid having doubly-linked
|
|
* substructure in the modified parse tree. This is probably
|
|
* unnecessary when it's a Param, but be safe.
|
|
*/
|
|
return (Node *) copyObject(list_nth(context->subst_nodes,
|
|
param->paramid - 1));
|
|
}
|
|
}
|
|
return expression_tree_mutator(node,
|
|
convert_testexpr_mutator,
|
|
(void *) context);
|
|
}
|
|
|
|
/*
|
|
* subplan_is_hashable: decide whether we can implement a subplan by hashing
|
|
*
|
|
* Caution: the SubPlan node is not completely filled in yet. We can rely
|
|
* on its plan and parParam fields, however.
|
|
*/
|
|
static bool
|
|
subplan_is_hashable(SubLink *slink, SubPlan *node, Plan *plan)
|
|
{
|
|
double subquery_size;
|
|
ListCell *l;
|
|
|
|
/*
|
|
* The sublink type must be "= ANY" --- that is, an IN operator. We
|
|
* expect that the test expression will be either a single OpExpr, or an
|
|
* AND-clause containing OpExprs. (If it's anything else then the parser
|
|
* must have determined that the operators have non-equality-like
|
|
* semantics. In the OpExpr case we can't be sure what the operator's
|
|
* semantics are like, but the test below for hashability will reject
|
|
* anything that's not equality.)
|
|
*/
|
|
if (slink->subLinkType != ANY_SUBLINK)
|
|
return false;
|
|
if (slink->testexpr == NULL ||
|
|
(!IsA(slink->testexpr, OpExpr) &&
|
|
!and_clause(slink->testexpr)))
|
|
return false;
|
|
|
|
/*
|
|
* The subplan must not have any direct correlation vars --- else we'd
|
|
* have to recompute its output each time, so that the hashtable wouldn't
|
|
* gain anything.
|
|
*/
|
|
if (node->parParam != NIL)
|
|
return false;
|
|
|
|
/*
|
|
* The estimated size of the subquery result must fit in work_mem. (Note:
|
|
* we use sizeof(HeapTupleHeaderData) here even though the tuples will
|
|
* actually be stored as MinimalTuples; this provides some fudge factor
|
|
* for hashtable overhead.)
|
|
*/
|
|
subquery_size = plan->plan_rows *
|
|
(MAXALIGN(plan->plan_width) + MAXALIGN(sizeof(HeapTupleHeaderData)));
|
|
if (subquery_size > work_mem * 1024L)
|
|
return false;
|
|
|
|
/*
|
|
* The combining operators must be hashable and strict. The need for
|
|
* hashability is obvious, since we want to use hashing. Without
|
|
* strictness, behavior in the presence of nulls is too unpredictable. We
|
|
* actually must assume even more than plain strictness: they can't yield
|
|
* NULL for non-null inputs, either (see nodeSubplan.c). However, hash
|
|
* indexes and hash joins assume that too.
|
|
*/
|
|
if (IsA(slink->testexpr, OpExpr))
|
|
{
|
|
if (!hash_ok_operator((OpExpr *) slink->testexpr))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
foreach(l, ((BoolExpr *) slink->testexpr)->args)
|
|
{
|
|
Node *andarg = (Node *) lfirst(l);
|
|
|
|
if (!IsA(andarg, OpExpr))
|
|
return false; /* probably can't happen */
|
|
if (!hash_ok_operator((OpExpr *) andarg))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
hash_ok_operator(OpExpr *expr)
|
|
{
|
|
Oid opid = expr->opno;
|
|
HeapTuple tup;
|
|
Form_pg_operator optup;
|
|
|
|
tup = SearchSysCache(OPEROID,
|
|
ObjectIdGetDatum(opid),
|
|
0, 0, 0);
|
|
if (!HeapTupleIsValid(tup))
|
|
elog(ERROR, "cache lookup failed for operator %u", opid);
|
|
optup = (Form_pg_operator) GETSTRUCT(tup);
|
|
if (!optup->oprcanhash || !func_strict(optup->oprcode))
|
|
{
|
|
ReleaseSysCache(tup);
|
|
return false;
|
|
}
|
|
ReleaseSysCache(tup);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* convert_IN_to_join: can we convert an IN SubLink to join style?
|
|
*
|
|
* The caller has found a SubLink at the top level of WHERE, but has not
|
|
* checked the properties of the SubLink at all. Decide whether it is
|
|
* appropriate to process this SubLink in join style. If not, return NULL.
|
|
* If so, build the qual clause(s) to replace the SubLink, and return them.
|
|
*
|
|
* Side effects of a successful conversion include adding the SubLink's
|
|
* subselect to the query's rangetable and adding an InClauseInfo node to
|
|
* its in_info_list.
|
|
*/
|
|
Node *
|
|
convert_IN_to_join(PlannerInfo *root, SubLink *sublink)
|
|
{
|
|
Query *parse = root->parse;
|
|
Query *subselect = (Query *) sublink->subselect;
|
|
List *in_operators;
|
|
List *left_exprs;
|
|
List *right_exprs;
|
|
Relids left_varnos;
|
|
int rtindex;
|
|
RangeTblEntry *rte;
|
|
RangeTblRef *rtr;
|
|
List *subquery_vars;
|
|
InClauseInfo *ininfo;
|
|
Node *result;
|
|
|
|
/*
|
|
* The sublink type must be "= ANY" --- that is, an IN operator. We
|
|
* expect that the test expression will be either a single OpExpr, or an
|
|
* AND-clause containing OpExprs. (If it's anything else then the parser
|
|
* must have determined that the operators have non-equality-like
|
|
* semantics. In the OpExpr case we can't be sure what the operator's
|
|
* semantics are like, and must check for ourselves.)
|
|
*/
|
|
if (sublink->subLinkType != ANY_SUBLINK)
|
|
return NULL;
|
|
if (sublink->testexpr && IsA(sublink->testexpr, OpExpr))
|
|
{
|
|
OpExpr *op = (OpExpr *) sublink->testexpr;
|
|
Oid opno = op->opno;
|
|
List *opfamilies;
|
|
List *opstrats;
|
|
|
|
if (list_length(op->args) != 2)
|
|
return NULL; /* not binary operator? */
|
|
get_op_btree_interpretation(opno, &opfamilies, &opstrats);
|
|
if (!list_member_int(opstrats, ROWCOMPARE_EQ))
|
|
return NULL;
|
|
in_operators = list_make1_oid(opno);
|
|
left_exprs = list_make1(linitial(op->args));
|
|
right_exprs = list_make1(lsecond(op->args));
|
|
}
|
|
else if (and_clause(sublink->testexpr))
|
|
{
|
|
ListCell *lc;
|
|
|
|
/* OK, but we need to extract the per-column info */
|
|
in_operators = left_exprs = right_exprs = NIL;
|
|
foreach(lc, ((BoolExpr *) sublink->testexpr)->args)
|
|
{
|
|
OpExpr *op = (OpExpr *) lfirst(lc);
|
|
|
|
if (!IsA(op, OpExpr)) /* probably shouldn't happen */
|
|
return NULL;
|
|
if (list_length(op->args) != 2)
|
|
return NULL; /* not binary operator? */
|
|
in_operators = lappend_oid(in_operators, op->opno);
|
|
left_exprs = lappend(left_exprs, linitial(op->args));
|
|
right_exprs = lappend(right_exprs, lsecond(op->args));
|
|
}
|
|
}
|
|
else
|
|
return NULL;
|
|
|
|
/*
|
|
* The sub-select must not refer to any Vars of the parent query. (Vars of
|
|
* higher levels should be okay, though.)
|
|
*/
|
|
if (contain_vars_of_level((Node *) subselect, 1))
|
|
return NULL;
|
|
|
|
/*
|
|
* The left-hand expressions must contain some Vars of the current query,
|
|
* else it's not gonna be a join.
|
|
*/
|
|
left_varnos = pull_varnos((Node *) left_exprs);
|
|
if (bms_is_empty(left_varnos))
|
|
return NULL;
|
|
|
|
/* ... and the right-hand expressions better not contain Vars at all */
|
|
Assert(!contain_var_clause((Node *) right_exprs));
|
|
|
|
/*
|
|
* The combining operators and left-hand expressions mustn't be volatile.
|
|
*/
|
|
if (contain_volatile_functions(sublink->testexpr))
|
|
return NULL;
|
|
|
|
/*
|
|
* Okay, pull up the sub-select into top range table and jointree.
|
|
*
|
|
* We rely here on the assumption that the outer query has no references
|
|
* to the inner (necessarily true, other than the Vars that we build
|
|
* below). Therefore this is a lot easier than what pull_up_subqueries has
|
|
* to go through.
|
|
*/
|
|
rte = addRangeTableEntryForSubquery(NULL,
|
|
subselect,
|
|
makeAlias("IN_subquery", NIL),
|
|
false);
|
|
parse->rtable = lappend(parse->rtable, rte);
|
|
rtindex = list_length(parse->rtable);
|
|
rtr = makeNode(RangeTblRef);
|
|
rtr->rtindex = rtindex;
|
|
parse->jointree->fromlist = lappend(parse->jointree->fromlist, rtr);
|
|
|
|
/*
|
|
* Build a list of Vars representing the subselect outputs.
|
|
*/
|
|
subquery_vars = generate_subquery_vars(root,
|
|
subselect->targetList,
|
|
rtindex);
|
|
|
|
/*
|
|
* Build the result qual expression, replacing Params with these Vars.
|
|
*/
|
|
result = convert_testexpr(root,
|
|
sublink->testexpr,
|
|
subquery_vars);
|
|
|
|
/*
|
|
* Now build the InClauseInfo node.
|
|
*/
|
|
ininfo = makeNode(InClauseInfo);
|
|
ininfo->lefthand = left_varnos;
|
|
ininfo->righthand = bms_make_singleton(rtindex);
|
|
ininfo->in_operators = in_operators;
|
|
|
|
/*
|
|
* ininfo->sub_targetlist must be filled with a list of expressions that
|
|
* would need to be unique-ified if we try to implement the IN using a
|
|
* regular join to unique-ified subquery output. This is most easily done
|
|
* by applying convert_testexpr to just the RHS inputs of the testexpr
|
|
* operators. That handles cases like type coercions of the subquery
|
|
* outputs, clauses dropped due to const-simplification, etc.
|
|
*/
|
|
ininfo->sub_targetlist = (List *) convert_testexpr(root,
|
|
(Node *) right_exprs,
|
|
subquery_vars);
|
|
|
|
/* Add the completed node to the query's list */
|
|
root->in_info_list = lappend(root->in_info_list, ininfo);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Replace correlation vars (uplevel vars) with Params.
|
|
*
|
|
* Uplevel aggregates are replaced, too.
|
|
*
|
|
* Note: it is critical that this runs immediately after SS_process_sublinks.
|
|
* Since we do not recurse into the arguments of uplevel aggregates, they will
|
|
* get copied to the appropriate subplan args list in the parent query with
|
|
* uplevel vars not replaced by Params, but only adjusted in level (see
|
|
* replace_outer_agg). That's exactly what we want for the vars of the parent
|
|
* level --- but if an aggregate's argument contains any further-up variables,
|
|
* they have to be replaced with Params in their turn. That will happen when
|
|
* the parent level runs SS_replace_correlation_vars. Therefore it must do
|
|
* so after expanding its sublinks to subplans. And we don't want any steps
|
|
* in between, else those steps would never get applied to the aggregate
|
|
* argument expressions, either in the parent or the child level.
|
|
*/
|
|
Node *
|
|
SS_replace_correlation_vars(PlannerInfo *root, Node *expr)
|
|
{
|
|
/* No setup needed for tree walk, so away we go */
|
|
return replace_correlation_vars_mutator(expr, root);
|
|
}
|
|
|
|
static Node *
|
|
replace_correlation_vars_mutator(Node *node, PlannerInfo *root)
|
|
{
|
|
if (node == NULL)
|
|
return NULL;
|
|
if (IsA(node, Var))
|
|
{
|
|
if (((Var *) node)->varlevelsup > 0)
|
|
return (Node *) replace_outer_var(root, (Var *) node);
|
|
}
|
|
if (IsA(node, Aggref))
|
|
{
|
|
if (((Aggref *) node)->agglevelsup > 0)
|
|
return (Node *) replace_outer_agg(root, (Aggref *) node);
|
|
}
|
|
return expression_tree_mutator(node,
|
|
replace_correlation_vars_mutator,
|
|
(void *) root);
|
|
}
|
|
|
|
/*
|
|
* Expand SubLinks to SubPlans in the given expression.
|
|
*
|
|
* The isQual argument tells whether or not this expression is a WHERE/HAVING
|
|
* qualifier expression. If it is, any sublinks appearing at top level need
|
|
* not distinguish FALSE from UNKNOWN return values.
|
|
*/
|
|
Node *
|
|
SS_process_sublinks(PlannerInfo *root, Node *expr, bool isQual)
|
|
{
|
|
process_sublinks_context context;
|
|
|
|
context.root = root;
|
|
context.isTopQual = isQual;
|
|
return process_sublinks_mutator(expr, &context);
|
|
}
|
|
|
|
static Node *
|
|
process_sublinks_mutator(Node *node, process_sublinks_context *context)
|
|
{
|
|
process_sublinks_context locContext;
|
|
|
|
locContext.root = context->root;
|
|
|
|
if (node == NULL)
|
|
return NULL;
|
|
if (IsA(node, SubLink))
|
|
{
|
|
SubLink *sublink = (SubLink *) node;
|
|
Node *testexpr;
|
|
|
|
/*
|
|
* First, recursively process the lefthand-side expressions, if any.
|
|
* They're not top-level anymore.
|
|
*/
|
|
locContext.isTopQual = false;
|
|
testexpr = process_sublinks_mutator(sublink->testexpr, &locContext);
|
|
|
|
/*
|
|
* Now build the SubPlan node and make the expr to return.
|
|
*/
|
|
return make_subplan(context->root,
|
|
sublink,
|
|
testexpr,
|
|
context->isTopQual);
|
|
}
|
|
|
|
/*
|
|
* We should never see a SubPlan expression in the input (since this is
|
|
* the very routine that creates 'em to begin with). We shouldn't find
|
|
* ourselves invoked directly on a Query, either.
|
|
*/
|
|
Assert(!is_subplan(node));
|
|
Assert(!IsA(node, Query));
|
|
|
|
/*
|
|
* Because make_subplan() could return an AND or OR clause, we have to
|
|
* take steps to preserve AND/OR flatness of a qual. We assume the input
|
|
* has been AND/OR flattened and so we need no recursion here.
|
|
*
|
|
* If we recurse down through anything other than an AND node, we are
|
|
* definitely not at top qual level anymore. (Due to the coding here, we
|
|
* will not get called on the List subnodes of an AND, so no check is
|
|
* needed for List.)
|
|
*/
|
|
if (and_clause(node))
|
|
{
|
|
List *newargs = NIL;
|
|
ListCell *l;
|
|
|
|
/* Still at qual top-level */
|
|
locContext.isTopQual = context->isTopQual;
|
|
|
|
foreach(l, ((BoolExpr *) node)->args)
|
|
{
|
|
Node *newarg;
|
|
|
|
newarg = process_sublinks_mutator(lfirst(l), &locContext);
|
|
if (and_clause(newarg))
|
|
newargs = list_concat(newargs, ((BoolExpr *) newarg)->args);
|
|
else
|
|
newargs = lappend(newargs, newarg);
|
|
}
|
|
return (Node *) make_andclause(newargs);
|
|
}
|
|
|
|
/* otherwise not at qual top-level */
|
|
locContext.isTopQual = false;
|
|
|
|
if (or_clause(node))
|
|
{
|
|
List *newargs = NIL;
|
|
ListCell *l;
|
|
|
|
foreach(l, ((BoolExpr *) node)->args)
|
|
{
|
|
Node *newarg;
|
|
|
|
newarg = process_sublinks_mutator(lfirst(l), &locContext);
|
|
if (or_clause(newarg))
|
|
newargs = list_concat(newargs, ((BoolExpr *) newarg)->args);
|
|
else
|
|
newargs = lappend(newargs, newarg);
|
|
}
|
|
return (Node *) make_orclause(newargs);
|
|
}
|
|
|
|
return expression_tree_mutator(node,
|
|
process_sublinks_mutator,
|
|
(void *) &locContext);
|
|
}
|
|
|
|
/*
|
|
* SS_finalize_plan - do final sublink processing for a completed Plan.
|
|
*
|
|
* This recursively computes the extParam and allParam sets for every Plan
|
|
* node in the given plan tree. It also attaches any generated InitPlans
|
|
* to the top plan node.
|
|
*/
|
|
void
|
|
SS_finalize_plan(PlannerInfo *root, Plan *plan)
|
|
{
|
|
Bitmapset *outer_params,
|
|
*valid_params,
|
|
*initExtParam,
|
|
*initSetParam;
|
|
Cost initplan_cost;
|
|
int paramid;
|
|
ListCell *l;
|
|
|
|
/*
|
|
* First, scan the param list to discover the sets of params that are
|
|
* available from outer query levels and my own query level. We do this
|
|
* once to save time in the per-plan recursion steps.
|
|
*/
|
|
outer_params = valid_params = NULL;
|
|
paramid = 0;
|
|
foreach(l, root->glob->paramlist)
|
|
{
|
|
PlannerParamItem *pitem = (PlannerParamItem *) lfirst(l);
|
|
|
|
if (pitem->abslevel < root->query_level)
|
|
{
|
|
/* valid outer-level parameter */
|
|
outer_params = bms_add_member(outer_params, paramid);
|
|
valid_params = bms_add_member(valid_params, paramid);
|
|
}
|
|
else if (pitem->abslevel == root->query_level &&
|
|
IsA(pitem->item, Param))
|
|
{
|
|
/* valid local parameter (i.e., a setParam of my child) */
|
|
valid_params = bms_add_member(valid_params, paramid);
|
|
}
|
|
|
|
paramid++;
|
|
}
|
|
|
|
/*
|
|
* Now recurse through plan tree.
|
|
*/
|
|
(void) finalize_plan(root, plan, outer_params, valid_params);
|
|
|
|
bms_free(outer_params);
|
|
bms_free(valid_params);
|
|
|
|
/*
|
|
* Finally, attach any initPlans to the topmost plan node, and add their
|
|
* extParams to the topmost node's, too. However, any setParams of the
|
|
* initPlans should not be present in the topmost node's extParams, only
|
|
* in its allParams. (As of PG 8.1, it's possible that some initPlans
|
|
* have extParams that are setParams of other initPlans, so we have to
|
|
* take care of this situation explicitly.)
|
|
*
|
|
* We also add the eval cost of each initPlan to the startup cost of the
|
|
* top node. This is a conservative overestimate, since in fact each
|
|
* initPlan might be executed later than plan startup, or even not at all.
|
|
*/
|
|
plan->initPlan = root->init_plans;
|
|
root->init_plans = NIL; /* make sure they're not attached twice */
|
|
|
|
initExtParam = initSetParam = NULL;
|
|
initplan_cost = 0;
|
|
foreach(l, plan->initPlan)
|
|
{
|
|
SubPlan *initsubplan = (SubPlan *) lfirst(l);
|
|
Plan *initplan = planner_subplan_get_plan(root, initsubplan);
|
|
ListCell *l2;
|
|
|
|
initExtParam = bms_add_members(initExtParam, initplan->extParam);
|
|
foreach(l2, initsubplan->setParam)
|
|
{
|
|
initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
|
|
}
|
|
initplan_cost += get_initplan_cost(root, initsubplan);
|
|
}
|
|
/* allParam must include all these params */
|
|
plan->allParam = bms_add_members(plan->allParam, initExtParam);
|
|
plan->allParam = bms_add_members(plan->allParam, initSetParam);
|
|
/* but extParam shouldn't include any setParams */
|
|
initExtParam = bms_del_members(initExtParam, initSetParam);
|
|
/* empty test ensures extParam is exactly NULL if it's empty */
|
|
if (!bms_is_empty(initExtParam))
|
|
plan->extParam = bms_join(plan->extParam, initExtParam);
|
|
|
|
plan->startup_cost += initplan_cost;
|
|
plan->total_cost += initplan_cost;
|
|
}
|
|
|
|
/*
|
|
* Recursive processing of all nodes in the plan tree
|
|
*
|
|
* The return value is the computed allParam set for the given Plan node.
|
|
* This is just an internal notational convenience.
|
|
*/
|
|
static Bitmapset *
|
|
finalize_plan(PlannerInfo *root, Plan *plan,
|
|
Bitmapset *outer_params, Bitmapset *valid_params)
|
|
{
|
|
finalize_primnode_context context;
|
|
|
|
if (plan == NULL)
|
|
return NULL;
|
|
|
|
context.root = root;
|
|
context.paramids = NULL; /* initialize set to empty */
|
|
context.outer_params = outer_params;
|
|
|
|
/*
|
|
* When we call finalize_primnode, context.paramids sets are automatically
|
|
* merged together. But when recursing to self, we have to do it the hard
|
|
* way. We want the paramids set to include params in subplans as well as
|
|
* at this level.
|
|
*/
|
|
|
|
/* Find params in targetlist and qual */
|
|
finalize_primnode((Node *) plan->targetlist, &context);
|
|
finalize_primnode((Node *) plan->qual, &context);
|
|
|
|
/* Check additional node-type-specific fields */
|
|
switch (nodeTag(plan))
|
|
{
|
|
case T_Result:
|
|
finalize_primnode(((Result *) plan)->resconstantqual,
|
|
&context);
|
|
break;
|
|
|
|
case T_IndexScan:
|
|
finalize_primnode((Node *) ((IndexScan *) plan)->indexqual,
|
|
&context);
|
|
|
|
/*
|
|
* we need not look at indexqualorig, since it will have the same
|
|
* param references as indexqual.
|
|
*/
|
|
break;
|
|
|
|
case T_BitmapIndexScan:
|
|
finalize_primnode((Node *) ((BitmapIndexScan *) plan)->indexqual,
|
|
&context);
|
|
|
|
/*
|
|
* we need not look at indexqualorig, since it will have the same
|
|
* param references as indexqual.
|
|
*/
|
|
break;
|
|
|
|
case T_BitmapHeapScan:
|
|
finalize_primnode((Node *) ((BitmapHeapScan *) plan)->bitmapqualorig,
|
|
&context);
|
|
break;
|
|
|
|
case T_TidScan:
|
|
finalize_primnode((Node *) ((TidScan *) plan)->tidquals,
|
|
&context);
|
|
break;
|
|
|
|
case T_SubqueryScan:
|
|
|
|
/*
|
|
* In a SubqueryScan, SS_finalize_plan has already been run on the
|
|
* subplan by the inner invocation of subquery_planner, so there's
|
|
* no need to do it again. Instead, just pull out the subplan's
|
|
* extParams list, which represents the params it needs from my
|
|
* level and higher levels.
|
|
*/
|
|
context.paramids = bms_add_members(context.paramids,
|
|
((SubqueryScan *) plan)->subplan->extParam);
|
|
break;
|
|
|
|
case T_FunctionScan:
|
|
finalize_primnode(((FunctionScan *) plan)->funcexpr,
|
|
&context);
|
|
break;
|
|
|
|
case T_ValuesScan:
|
|
finalize_primnode((Node *) ((ValuesScan *) plan)->values_lists,
|
|
&context);
|
|
break;
|
|
|
|
case T_Append:
|
|
{
|
|
ListCell *l;
|
|
|
|
foreach(l, ((Append *) plan)->appendplans)
|
|
{
|
|
context.paramids =
|
|
bms_add_members(context.paramids,
|
|
finalize_plan(root,
|
|
(Plan *) lfirst(l),
|
|
outer_params,
|
|
valid_params));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_BitmapAnd:
|
|
{
|
|
ListCell *l;
|
|
|
|
foreach(l, ((BitmapAnd *) plan)->bitmapplans)
|
|
{
|
|
context.paramids =
|
|
bms_add_members(context.paramids,
|
|
finalize_plan(root,
|
|
(Plan *) lfirst(l),
|
|
outer_params,
|
|
valid_params));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_BitmapOr:
|
|
{
|
|
ListCell *l;
|
|
|
|
foreach(l, ((BitmapOr *) plan)->bitmapplans)
|
|
{
|
|
context.paramids =
|
|
bms_add_members(context.paramids,
|
|
finalize_plan(root,
|
|
(Plan *) lfirst(l),
|
|
outer_params,
|
|
valid_params));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_NestLoop:
|
|
finalize_primnode((Node *) ((Join *) plan)->joinqual,
|
|
&context);
|
|
break;
|
|
|
|
case T_MergeJoin:
|
|
finalize_primnode((Node *) ((Join *) plan)->joinqual,
|
|
&context);
|
|
finalize_primnode((Node *) ((MergeJoin *) plan)->mergeclauses,
|
|
&context);
|
|
break;
|
|
|
|
case T_HashJoin:
|
|
finalize_primnode((Node *) ((Join *) plan)->joinqual,
|
|
&context);
|
|
finalize_primnode((Node *) ((HashJoin *) plan)->hashclauses,
|
|
&context);
|
|
break;
|
|
|
|
case T_Limit:
|
|
finalize_primnode(((Limit *) plan)->limitOffset,
|
|
&context);
|
|
finalize_primnode(((Limit *) plan)->limitCount,
|
|
&context);
|
|
break;
|
|
|
|
case T_Hash:
|
|
case T_Agg:
|
|
case T_SeqScan:
|
|
case T_Material:
|
|
case T_Sort:
|
|
case T_Unique:
|
|
case T_SetOp:
|
|
case T_Group:
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized node type: %d",
|
|
(int) nodeTag(plan));
|
|
}
|
|
|
|
/* Process left and right child plans, if any */
|
|
context.paramids = bms_add_members(context.paramids,
|
|
finalize_plan(root,
|
|
plan->lefttree,
|
|
outer_params,
|
|
valid_params));
|
|
|
|
context.paramids = bms_add_members(context.paramids,
|
|
finalize_plan(root,
|
|
plan->righttree,
|
|
outer_params,
|
|
valid_params));
|
|
|
|
/* Now we have all the paramids */
|
|
|
|
if (!bms_is_subset(context.paramids, valid_params))
|
|
elog(ERROR, "plan should not reference subplan's variable");
|
|
|
|
plan->extParam = bms_intersect(context.paramids, outer_params);
|
|
plan->allParam = context.paramids;
|
|
|
|
/*
|
|
* For speed at execution time, make sure extParam/allParam are actually
|
|
* NULL if they are empty sets.
|
|
*/
|
|
if (bms_is_empty(plan->extParam))
|
|
{
|
|
bms_free(plan->extParam);
|
|
plan->extParam = NULL;
|
|
}
|
|
if (bms_is_empty(plan->allParam))
|
|
{
|
|
bms_free(plan->allParam);
|
|
plan->allParam = NULL;
|
|
}
|
|
|
|
return plan->allParam;
|
|
}
|
|
|
|
/*
|
|
* finalize_primnode: add IDs of all PARAM_EXEC params appearing in the given
|
|
* expression tree to the result set.
|
|
*/
|
|
static bool
|
|
finalize_primnode(Node *node, finalize_primnode_context *context)
|
|
{
|
|
if (node == NULL)
|
|
return false;
|
|
if (IsA(node, Param))
|
|
{
|
|
if (((Param *) node)->paramkind == PARAM_EXEC)
|
|
{
|
|
int paramid = ((Param *) node)->paramid;
|
|
|
|
context->paramids = bms_add_member(context->paramids, paramid);
|
|
}
|
|
return false; /* no more to do here */
|
|
}
|
|
if (is_subplan(node))
|
|
{
|
|
SubPlan *subplan = (SubPlan *) node;
|
|
Plan *plan = planner_subplan_get_plan(context->root, subplan);
|
|
|
|
/* Add outer-level params needed by the subplan to paramids */
|
|
context->paramids = bms_join(context->paramids,
|
|
bms_intersect(plan->extParam,
|
|
context->outer_params));
|
|
/* fall through to recurse into subplan args */
|
|
}
|
|
return expression_tree_walker(node, finalize_primnode,
|
|
(void *) context);
|
|
}
|
|
|
|
/*
|
|
* SS_make_initplan_from_plan - given a plan tree, make it an InitPlan
|
|
*
|
|
* The plan is expected to return a scalar value of the indicated type.
|
|
* We build an EXPR_SUBLINK SubPlan node and put it into the initplan
|
|
* list for the current query level. A Param that represents the initplan's
|
|
* output is returned.
|
|
*
|
|
* We assume the plan hasn't been put through SS_finalize_plan.
|
|
*/
|
|
Param *
|
|
SS_make_initplan_from_plan(PlannerInfo *root, Plan *plan,
|
|
Oid resulttype, int32 resulttypmod)
|
|
{
|
|
List *saved_init_plans;
|
|
SubPlan *node;
|
|
Param *prm;
|
|
|
|
/*
|
|
* We must run SS_finalize_plan(), since that's normally done before a
|
|
* subplan gets put into the initplan list. However it will try to attach
|
|
* any pre-existing initplans to this one, which we don't want (they are
|
|
* siblings not children of this initplan). So, a quick kluge to hide
|
|
* them. (This is something else that could perhaps be cleaner if we did
|
|
* extParam/allParam processing in setrefs.c instead of here? See notes
|
|
* for materialize_finished_plan.)
|
|
*/
|
|
saved_init_plans = root->init_plans;
|
|
root->init_plans = NIL;
|
|
|
|
/*
|
|
* Build extParam/allParam sets for plan nodes.
|
|
*/
|
|
SS_finalize_plan(root, plan);
|
|
|
|
/* Restore outer initplan list */
|
|
root->init_plans = saved_init_plans;
|
|
|
|
/*
|
|
* Add the subplan and its rtable to the global lists.
|
|
*/
|
|
root->glob->subplans = lappend(root->glob->subplans,
|
|
plan);
|
|
root->glob->subrtables = lappend(root->glob->subrtables,
|
|
root->parse->rtable);
|
|
|
|
/*
|
|
* Create a SubPlan node and add it to the outer list of InitPlans.
|
|
*/
|
|
node = makeNode(SubPlan);
|
|
node->subLinkType = EXPR_SUBLINK;
|
|
node->firstColType = get_first_col_type(plan);
|
|
node->plan_id = list_length(root->glob->subplans);
|
|
|
|
root->init_plans = lappend(root->init_plans, node);
|
|
|
|
/*
|
|
* The node can't have any inputs (since it's an initplan), so the
|
|
* parParam and args lists remain empty.
|
|
*/
|
|
|
|
/*
|
|
* Make a Param that will be the subplan's output.
|
|
*/
|
|
prm = generate_new_param(root, resulttype, resulttypmod);
|
|
node->setParam = list_make1_int(prm->paramid);
|
|
|
|
return prm;
|
|
}
|