mirror of
https://github.com/postgres/postgres.git
synced 2025-08-22 21:53:06 +03:00
831 lines
22 KiB
C
831 lines
22 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* bufpage.c
|
|
* POSTGRES standard buffer page code.
|
|
*
|
|
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/storage/page/bufpage.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/htup.h"
|
|
#include "storage/bufpage.h"
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* Page support functions
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* PageInit
|
|
* Initializes the contents of a page.
|
|
*/
|
|
void
|
|
PageInit(Page page, Size pageSize, Size specialSize)
|
|
{
|
|
PageHeader p = (PageHeader) page;
|
|
|
|
specialSize = MAXALIGN(specialSize);
|
|
|
|
Assert(pageSize == BLCKSZ);
|
|
Assert(pageSize > specialSize + SizeOfPageHeaderData);
|
|
|
|
/* Make sure all fields of page are zero, as well as unused space */
|
|
MemSet(p, 0, pageSize);
|
|
|
|
/* p->pd_flags = 0; done by above MemSet */
|
|
p->pd_lower = SizeOfPageHeaderData;
|
|
p->pd_upper = pageSize - specialSize;
|
|
p->pd_special = pageSize - specialSize;
|
|
PageSetPageSizeAndVersion(page, pageSize, PG_PAGE_LAYOUT_VERSION);
|
|
/* p->pd_prune_xid = InvalidTransactionId; done by above MemSet */
|
|
}
|
|
|
|
|
|
/*
|
|
* PageHeaderIsValid
|
|
* Check that the header fields of a page appear valid.
|
|
*
|
|
* This is called when a page has just been read in from disk. The idea is
|
|
* to cheaply detect trashed pages before we go nuts following bogus item
|
|
* pointers, testing invalid transaction identifiers, etc.
|
|
*
|
|
* It turns out to be necessary to allow zeroed pages here too. Even though
|
|
* this routine is *not* called when deliberately adding a page to a relation,
|
|
* there are scenarios in which a zeroed page might be found in a table.
|
|
* (Example: a backend extends a relation, then crashes before it can write
|
|
* any WAL entry about the new page. The kernel will already have the
|
|
* zeroed page in the file, and it will stay that way after restart.) So we
|
|
* allow zeroed pages here, and are careful that the page access macros
|
|
* treat such a page as empty and without free space. Eventually, VACUUM
|
|
* will clean up such a page and make it usable.
|
|
*/
|
|
bool
|
|
PageHeaderIsValid(PageHeader page)
|
|
{
|
|
char *pagebytes;
|
|
int i;
|
|
|
|
/* Check normal case */
|
|
if (PageGetPageSize(page) == BLCKSZ &&
|
|
PageGetPageLayoutVersion(page) == PG_PAGE_LAYOUT_VERSION &&
|
|
(page->pd_flags & ~PD_VALID_FLAG_BITS) == 0 &&
|
|
page->pd_lower >= SizeOfPageHeaderData &&
|
|
page->pd_lower <= page->pd_upper &&
|
|
page->pd_upper <= page->pd_special &&
|
|
page->pd_special <= BLCKSZ &&
|
|
page->pd_special == MAXALIGN(page->pd_special))
|
|
return true;
|
|
|
|
/* Check all-zeroes case */
|
|
pagebytes = (char *) page;
|
|
for (i = 0; i < BLCKSZ; i++)
|
|
{
|
|
if (pagebytes[i] != 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
* PageAddItem
|
|
*
|
|
* Add an item to a page. Return value is offset at which it was
|
|
* inserted, or InvalidOffsetNumber if there's not room to insert.
|
|
*
|
|
* If overwrite is true, we just store the item at the specified
|
|
* offsetNumber (which must be either a currently-unused item pointer,
|
|
* or one past the last existing item). Otherwise,
|
|
* if offsetNumber is valid and <= current max offset in the page,
|
|
* insert item into the array at that position by shuffling ItemId's
|
|
* down to make room.
|
|
* If offsetNumber is not valid, then assign one by finding the first
|
|
* one that is both unused and deallocated.
|
|
*
|
|
* If is_heap is true, we enforce that there can't be more than
|
|
* MaxHeapTuplesPerPage line pointers on the page.
|
|
*
|
|
* !!! EREPORT(ERROR) IS DISALLOWED HERE !!!
|
|
*/
|
|
OffsetNumber
|
|
PageAddItem(Page page,
|
|
Item item,
|
|
Size size,
|
|
OffsetNumber offsetNumber,
|
|
bool overwrite,
|
|
bool is_heap)
|
|
{
|
|
PageHeader phdr = (PageHeader) page;
|
|
Size alignedSize;
|
|
int lower;
|
|
int upper;
|
|
ItemId itemId;
|
|
OffsetNumber limit;
|
|
bool needshuffle = false;
|
|
|
|
/*
|
|
* Be wary about corrupted page pointers
|
|
*/
|
|
if (phdr->pd_lower < SizeOfPageHeaderData ||
|
|
phdr->pd_lower > phdr->pd_upper ||
|
|
phdr->pd_upper > phdr->pd_special ||
|
|
phdr->pd_special > BLCKSZ)
|
|
ereport(PANIC,
|
|
(errcode(ERRCODE_DATA_CORRUPTED),
|
|
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
|
|
phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
|
|
|
|
/*
|
|
* Select offsetNumber to place the new item at
|
|
*/
|
|
limit = OffsetNumberNext(PageGetMaxOffsetNumber(page));
|
|
|
|
/* was offsetNumber passed in? */
|
|
if (OffsetNumberIsValid(offsetNumber))
|
|
{
|
|
/* yes, check it */
|
|
if (overwrite)
|
|
{
|
|
if (offsetNumber < limit)
|
|
{
|
|
itemId = PageGetItemId(phdr, offsetNumber);
|
|
if (ItemIdIsUsed(itemId) || ItemIdHasStorage(itemId))
|
|
{
|
|
elog(WARNING, "will not overwrite a used ItemId");
|
|
return InvalidOffsetNumber;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (offsetNumber < limit)
|
|
needshuffle = true; /* need to move existing linp's */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* offsetNumber was not passed in, so find a free slot */
|
|
/* if no free slot, we'll put it at limit (1st open slot) */
|
|
if (PageHasFreeLinePointers(phdr))
|
|
{
|
|
/*
|
|
* Look for "recyclable" (unused) ItemId. We check for no storage
|
|
* as well, just to be paranoid --- unused items should never have
|
|
* storage.
|
|
*/
|
|
for (offsetNumber = 1; offsetNumber < limit; offsetNumber++)
|
|
{
|
|
itemId = PageGetItemId(phdr, offsetNumber);
|
|
if (!ItemIdIsUsed(itemId) && !ItemIdHasStorage(itemId))
|
|
break;
|
|
}
|
|
if (offsetNumber >= limit)
|
|
{
|
|
/* the hint is wrong, so reset it */
|
|
PageClearHasFreeLinePointers(phdr);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* don't bother searching if hint says there's no free slot */
|
|
offsetNumber = limit;
|
|
}
|
|
}
|
|
|
|
if (offsetNumber > limit)
|
|
{
|
|
elog(WARNING, "specified item offset is too large");
|
|
return InvalidOffsetNumber;
|
|
}
|
|
|
|
if (is_heap && offsetNumber > MaxHeapTuplesPerPage)
|
|
{
|
|
elog(WARNING, "can't put more than MaxHeapTuplesPerPage items in a heap page");
|
|
return InvalidOffsetNumber;
|
|
}
|
|
|
|
/*
|
|
* Compute new lower and upper pointers for page, see if it'll fit.
|
|
*
|
|
* Note: do arithmetic as signed ints, to avoid mistakes if, say,
|
|
* alignedSize > pd_upper.
|
|
*/
|
|
if (offsetNumber == limit || needshuffle)
|
|
lower = phdr->pd_lower + sizeof(ItemIdData);
|
|
else
|
|
lower = phdr->pd_lower;
|
|
|
|
alignedSize = MAXALIGN(size);
|
|
|
|
upper = (int) phdr->pd_upper - (int) alignedSize;
|
|
|
|
if (lower > upper)
|
|
return InvalidOffsetNumber;
|
|
|
|
/*
|
|
* OK to insert the item. First, shuffle the existing pointers if needed.
|
|
*/
|
|
itemId = PageGetItemId(phdr, offsetNumber);
|
|
|
|
if (needshuffle)
|
|
memmove(itemId + 1, itemId,
|
|
(limit - offsetNumber) * sizeof(ItemIdData));
|
|
|
|
/* set the item pointer */
|
|
ItemIdSetNormal(itemId, upper, size);
|
|
|
|
/* copy the item's data onto the page */
|
|
memcpy((char *) page + upper, item, size);
|
|
|
|
/* adjust page header */
|
|
phdr->pd_lower = (LocationIndex) lower;
|
|
phdr->pd_upper = (LocationIndex) upper;
|
|
|
|
return offsetNumber;
|
|
}
|
|
|
|
/*
|
|
* PageGetTempPage
|
|
* Get a temporary page in local memory for special processing.
|
|
* The returned page is not initialized at all; caller must do that.
|
|
*/
|
|
Page
|
|
PageGetTempPage(Page page)
|
|
{
|
|
Size pageSize;
|
|
Page temp;
|
|
|
|
pageSize = PageGetPageSize(page);
|
|
temp = (Page) palloc(pageSize);
|
|
|
|
return temp;
|
|
}
|
|
|
|
/*
|
|
* PageGetTempPageCopy
|
|
* Get a temporary page in local memory for special processing.
|
|
* The page is initialized by copying the contents of the given page.
|
|
*/
|
|
Page
|
|
PageGetTempPageCopy(Page page)
|
|
{
|
|
Size pageSize;
|
|
Page temp;
|
|
|
|
pageSize = PageGetPageSize(page);
|
|
temp = (Page) palloc(pageSize);
|
|
|
|
memcpy(temp, page, pageSize);
|
|
|
|
return temp;
|
|
}
|
|
|
|
/*
|
|
* PageGetTempPageCopySpecial
|
|
* Get a temporary page in local memory for special processing.
|
|
* The page is PageInit'd with the same special-space size as the
|
|
* given page, and the special space is copied from the given page.
|
|
*/
|
|
Page
|
|
PageGetTempPageCopySpecial(Page page)
|
|
{
|
|
Size pageSize;
|
|
Page temp;
|
|
|
|
pageSize = PageGetPageSize(page);
|
|
temp = (Page) palloc(pageSize);
|
|
|
|
PageInit(temp, pageSize, PageGetSpecialSize(page));
|
|
memcpy(PageGetSpecialPointer(temp),
|
|
PageGetSpecialPointer(page),
|
|
PageGetSpecialSize(page));
|
|
|
|
return temp;
|
|
}
|
|
|
|
/*
|
|
* PageRestoreTempPage
|
|
* Copy temporary page back to permanent page after special processing
|
|
* and release the temporary page.
|
|
*/
|
|
void
|
|
PageRestoreTempPage(Page tempPage, Page oldPage)
|
|
{
|
|
Size pageSize;
|
|
|
|
pageSize = PageGetPageSize(tempPage);
|
|
memcpy((char *) oldPage, (char *) tempPage, pageSize);
|
|
|
|
pfree(tempPage);
|
|
}
|
|
|
|
/*
|
|
* sorting support for PageRepairFragmentation and PageIndexMultiDelete
|
|
*/
|
|
typedef struct itemIdSortData
|
|
{
|
|
int offsetindex; /* linp array index */
|
|
int itemoff; /* page offset of item data */
|
|
Size alignedlen; /* MAXALIGN(item data len) */
|
|
ItemIdData olditemid; /* used only in PageIndexMultiDelete */
|
|
} itemIdSortData;
|
|
typedef itemIdSortData *itemIdSort;
|
|
|
|
static int
|
|
itemoffcompare(const void *itemidp1, const void *itemidp2)
|
|
{
|
|
/* Sort in decreasing itemoff order */
|
|
return ((itemIdSort) itemidp2)->itemoff -
|
|
((itemIdSort) itemidp1)->itemoff;
|
|
}
|
|
|
|
/*
|
|
* PageRepairFragmentation
|
|
*
|
|
* Frees fragmented space on a page.
|
|
* It doesn't remove unused line pointers! Please don't change this.
|
|
*
|
|
* This routine is usable for heap pages only, but see PageIndexMultiDelete.
|
|
*
|
|
* As a side effect, the page's PD_HAS_FREE_LINES hint bit is updated.
|
|
*/
|
|
void
|
|
PageRepairFragmentation(Page page)
|
|
{
|
|
Offset pd_lower = ((PageHeader) page)->pd_lower;
|
|
Offset pd_upper = ((PageHeader) page)->pd_upper;
|
|
Offset pd_special = ((PageHeader) page)->pd_special;
|
|
itemIdSort itemidbase,
|
|
itemidptr;
|
|
ItemId lp;
|
|
int nline,
|
|
nstorage,
|
|
nunused;
|
|
int i;
|
|
Size totallen;
|
|
Offset upper;
|
|
|
|
/*
|
|
* It's worth the trouble to be more paranoid here than in most places,
|
|
* because we are about to reshuffle data in (what is usually) a shared
|
|
* disk buffer. If we aren't careful then corrupted pointers, lengths,
|
|
* etc could cause us to clobber adjacent disk buffers, spreading the data
|
|
* loss further. So, check everything.
|
|
*/
|
|
if (pd_lower < SizeOfPageHeaderData ||
|
|
pd_lower > pd_upper ||
|
|
pd_upper > pd_special ||
|
|
pd_special > BLCKSZ ||
|
|
pd_special != MAXALIGN(pd_special))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATA_CORRUPTED),
|
|
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
|
|
pd_lower, pd_upper, pd_special)));
|
|
|
|
nline = PageGetMaxOffsetNumber(page);
|
|
nunused = nstorage = 0;
|
|
for (i = FirstOffsetNumber; i <= nline; i++)
|
|
{
|
|
lp = PageGetItemId(page, i);
|
|
if (ItemIdIsUsed(lp))
|
|
{
|
|
if (ItemIdHasStorage(lp))
|
|
nstorage++;
|
|
}
|
|
else
|
|
{
|
|
/* Unused entries should have lp_len = 0, but make sure */
|
|
ItemIdSetUnused(lp);
|
|
nunused++;
|
|
}
|
|
}
|
|
|
|
if (nstorage == 0)
|
|
{
|
|
/* Page is completely empty, so just reset it quickly */
|
|
((PageHeader) page)->pd_upper = pd_special;
|
|
}
|
|
else
|
|
{ /* nstorage != 0 */
|
|
/* Need to compact the page the hard way */
|
|
itemidbase = (itemIdSort) palloc(sizeof(itemIdSortData) * nstorage);
|
|
itemidptr = itemidbase;
|
|
totallen = 0;
|
|
for (i = 0; i < nline; i++)
|
|
{
|
|
lp = PageGetItemId(page, i + 1);
|
|
if (ItemIdHasStorage(lp))
|
|
{
|
|
itemidptr->offsetindex = i;
|
|
itemidptr->itemoff = ItemIdGetOffset(lp);
|
|
if (itemidptr->itemoff < (int) pd_upper ||
|
|
itemidptr->itemoff >= (int) pd_special)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATA_CORRUPTED),
|
|
errmsg("corrupted item pointer: %u",
|
|
itemidptr->itemoff)));
|
|
itemidptr->alignedlen = MAXALIGN(ItemIdGetLength(lp));
|
|
totallen += itemidptr->alignedlen;
|
|
itemidptr++;
|
|
}
|
|
}
|
|
|
|
if (totallen > (Size) (pd_special - pd_lower))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATA_CORRUPTED),
|
|
errmsg("corrupted item lengths: total %u, available space %u",
|
|
(unsigned int) totallen, pd_special - pd_lower)));
|
|
|
|
/* sort itemIdSortData array into decreasing itemoff order */
|
|
qsort((char *) itemidbase, nstorage, sizeof(itemIdSortData),
|
|
itemoffcompare);
|
|
|
|
/* compactify page */
|
|
upper = pd_special;
|
|
|
|
for (i = 0, itemidptr = itemidbase; i < nstorage; i++, itemidptr++)
|
|
{
|
|
lp = PageGetItemId(page, itemidptr->offsetindex + 1);
|
|
upper -= itemidptr->alignedlen;
|
|
memmove((char *) page + upper,
|
|
(char *) page + itemidptr->itemoff,
|
|
itemidptr->alignedlen);
|
|
lp->lp_off = upper;
|
|
}
|
|
|
|
((PageHeader) page)->pd_upper = upper;
|
|
|
|
pfree(itemidbase);
|
|
}
|
|
|
|
/* Set hint bit for PageAddItem */
|
|
if (nunused > 0)
|
|
PageSetHasFreeLinePointers(page);
|
|
else
|
|
PageClearHasFreeLinePointers(page);
|
|
}
|
|
|
|
/*
|
|
* PageGetFreeSpace
|
|
* Returns the size of the free (allocatable) space on a page,
|
|
* reduced by the space needed for a new line pointer.
|
|
*
|
|
* Note: this should usually only be used on index pages. Use
|
|
* PageGetHeapFreeSpace on heap pages.
|
|
*/
|
|
Size
|
|
PageGetFreeSpace(Page page)
|
|
{
|
|
int space;
|
|
|
|
/*
|
|
* Use signed arithmetic here so that we behave sensibly if pd_lower >
|
|
* pd_upper.
|
|
*/
|
|
space = (int) ((PageHeader) page)->pd_upper -
|
|
(int) ((PageHeader) page)->pd_lower;
|
|
|
|
if (space < (int) sizeof(ItemIdData))
|
|
return 0;
|
|
space -= sizeof(ItemIdData);
|
|
|
|
return (Size) space;
|
|
}
|
|
|
|
/*
|
|
* PageGetExactFreeSpace
|
|
* Returns the size of the free (allocatable) space on a page,
|
|
* without any consideration for adding/removing line pointers.
|
|
*/
|
|
Size
|
|
PageGetExactFreeSpace(Page page)
|
|
{
|
|
int space;
|
|
|
|
/*
|
|
* Use signed arithmetic here so that we behave sensibly if pd_lower >
|
|
* pd_upper.
|
|
*/
|
|
space = (int) ((PageHeader) page)->pd_upper -
|
|
(int) ((PageHeader) page)->pd_lower;
|
|
|
|
if (space < 0)
|
|
return 0;
|
|
|
|
return (Size) space;
|
|
}
|
|
|
|
|
|
/*
|
|
* PageGetHeapFreeSpace
|
|
* Returns the size of the free (allocatable) space on a page,
|
|
* reduced by the space needed for a new line pointer.
|
|
*
|
|
* The difference between this and PageGetFreeSpace is that this will return
|
|
* zero if there are already MaxHeapTuplesPerPage line pointers in the page
|
|
* and none are free. We use this to enforce that no more than
|
|
* MaxHeapTuplesPerPage line pointers are created on a heap page. (Although
|
|
* no more tuples than that could fit anyway, in the presence of redirected
|
|
* or dead line pointers it'd be possible to have too many line pointers.
|
|
* To avoid breaking code that assumes MaxHeapTuplesPerPage is a hard limit
|
|
* on the number of line pointers, we make this extra check.)
|
|
*/
|
|
Size
|
|
PageGetHeapFreeSpace(Page page)
|
|
{
|
|
Size space;
|
|
|
|
space = PageGetFreeSpace(page);
|
|
if (space > 0)
|
|
{
|
|
OffsetNumber offnum,
|
|
nline;
|
|
|
|
/*
|
|
* Are there already MaxHeapTuplesPerPage line pointers in the page?
|
|
*/
|
|
nline = PageGetMaxOffsetNumber(page);
|
|
if (nline >= MaxHeapTuplesPerPage)
|
|
{
|
|
if (PageHasFreeLinePointers((PageHeader) page))
|
|
{
|
|
/*
|
|
* Since this is just a hint, we must confirm that there is
|
|
* indeed a free line pointer
|
|
*/
|
|
for (offnum = FirstOffsetNumber; offnum <= nline; offnum = OffsetNumberNext(offnum))
|
|
{
|
|
ItemId lp = PageGetItemId(page, offnum);
|
|
|
|
if (!ItemIdIsUsed(lp))
|
|
break;
|
|
}
|
|
|
|
if (offnum > nline)
|
|
{
|
|
/*
|
|
* The hint is wrong, but we can't clear it here since we
|
|
* don't have the ability to mark the page dirty.
|
|
*/
|
|
space = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Although the hint might be wrong, PageAddItem will believe
|
|
* it anyway, so we must believe it too.
|
|
*/
|
|
space = 0;
|
|
}
|
|
}
|
|
}
|
|
return space;
|
|
}
|
|
|
|
|
|
/*
|
|
* PageIndexTupleDelete
|
|
*
|
|
* This routine does the work of removing a tuple from an index page.
|
|
*
|
|
* Unlike heap pages, we compact out the line pointer for the removed tuple.
|
|
*/
|
|
void
|
|
PageIndexTupleDelete(Page page, OffsetNumber offnum)
|
|
{
|
|
PageHeader phdr = (PageHeader) page;
|
|
char *addr;
|
|
ItemId tup;
|
|
Size size;
|
|
unsigned offset;
|
|
int nbytes;
|
|
int offidx;
|
|
int nline;
|
|
|
|
/*
|
|
* As with PageRepairFragmentation, paranoia seems justified.
|
|
*/
|
|
if (phdr->pd_lower < SizeOfPageHeaderData ||
|
|
phdr->pd_lower > phdr->pd_upper ||
|
|
phdr->pd_upper > phdr->pd_special ||
|
|
phdr->pd_special > BLCKSZ)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATA_CORRUPTED),
|
|
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
|
|
phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
|
|
|
|
nline = PageGetMaxOffsetNumber(page);
|
|
if ((int) offnum <= 0 || (int) offnum > nline)
|
|
elog(ERROR, "invalid index offnum: %u", offnum);
|
|
|
|
/* change offset number to offset index */
|
|
offidx = offnum - 1;
|
|
|
|
tup = PageGetItemId(page, offnum);
|
|
Assert(ItemIdHasStorage(tup));
|
|
size = ItemIdGetLength(tup);
|
|
offset = ItemIdGetOffset(tup);
|
|
|
|
if (offset < phdr->pd_upper || (offset + size) > phdr->pd_special ||
|
|
offset != MAXALIGN(offset) || size != MAXALIGN(size))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATA_CORRUPTED),
|
|
errmsg("corrupted item pointer: offset = %u, size = %u",
|
|
offset, (unsigned int) size)));
|
|
|
|
/*
|
|
* First, we want to get rid of the pd_linp entry for the index tuple. We
|
|
* copy all subsequent linp's back one slot in the array. We don't use
|
|
* PageGetItemId, because we are manipulating the _array_, not individual
|
|
* linp's.
|
|
*/
|
|
nbytes = phdr->pd_lower -
|
|
((char *) &phdr->pd_linp[offidx + 1] - (char *) phdr);
|
|
|
|
if (nbytes > 0)
|
|
memmove((char *) &(phdr->pd_linp[offidx]),
|
|
(char *) &(phdr->pd_linp[offidx + 1]),
|
|
nbytes);
|
|
|
|
/*
|
|
* Now move everything between the old upper bound (beginning of tuple
|
|
* space) and the beginning of the deleted tuple forward, so that space in
|
|
* the middle of the page is left free. If we've just deleted the tuple
|
|
* at the beginning of tuple space, then there's no need to do the copy
|
|
* (and bcopy on some architectures SEGV's if asked to move zero bytes).
|
|
*/
|
|
|
|
/* beginning of tuple space */
|
|
addr = (char *) page + phdr->pd_upper;
|
|
|
|
if (offset > phdr->pd_upper)
|
|
memmove(addr + size, addr, (int) (offset - phdr->pd_upper));
|
|
|
|
/* adjust free space boundary pointers */
|
|
phdr->pd_upper += size;
|
|
phdr->pd_lower -= sizeof(ItemIdData);
|
|
|
|
/*
|
|
* Finally, we need to adjust the linp entries that remain.
|
|
*
|
|
* Anything that used to be before the deleted tuple's data was moved
|
|
* forward by the size of the deleted tuple.
|
|
*/
|
|
if (!PageIsEmpty(page))
|
|
{
|
|
int i;
|
|
|
|
nline--; /* there's one less than when we started */
|
|
for (i = 1; i <= nline; i++)
|
|
{
|
|
ItemId ii = PageGetItemId(phdr, i);
|
|
|
|
Assert(ItemIdHasStorage(ii));
|
|
if (ItemIdGetOffset(ii) <= offset)
|
|
ii->lp_off += size;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* PageIndexMultiDelete
|
|
*
|
|
* This routine handles the case of deleting multiple tuples from an
|
|
* index page at once. It is considerably faster than a loop around
|
|
* PageIndexTupleDelete ... however, the caller *must* supply the array
|
|
* of item numbers to be deleted in item number order!
|
|
*/
|
|
void
|
|
PageIndexMultiDelete(Page page, OffsetNumber *itemnos, int nitems)
|
|
{
|
|
PageHeader phdr = (PageHeader) page;
|
|
Offset pd_lower = phdr->pd_lower;
|
|
Offset pd_upper = phdr->pd_upper;
|
|
Offset pd_special = phdr->pd_special;
|
|
itemIdSort itemidbase,
|
|
itemidptr;
|
|
ItemId lp;
|
|
int nline,
|
|
nused;
|
|
int i;
|
|
Size totallen;
|
|
Offset upper;
|
|
Size size;
|
|
unsigned offset;
|
|
int nextitm;
|
|
OffsetNumber offnum;
|
|
|
|
/*
|
|
* If there aren't very many items to delete, then retail
|
|
* PageIndexTupleDelete is the best way. Delete the items in reverse
|
|
* order so we don't have to think about adjusting item numbers for
|
|
* previous deletions.
|
|
*
|
|
* TODO: tune the magic number here
|
|
*/
|
|
if (nitems <= 2)
|
|
{
|
|
while (--nitems >= 0)
|
|
PageIndexTupleDelete(page, itemnos[nitems]);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* As with PageRepairFragmentation, paranoia seems justified.
|
|
*/
|
|
if (pd_lower < SizeOfPageHeaderData ||
|
|
pd_lower > pd_upper ||
|
|
pd_upper > pd_special ||
|
|
pd_special > BLCKSZ ||
|
|
pd_special != MAXALIGN(pd_special))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATA_CORRUPTED),
|
|
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
|
|
pd_lower, pd_upper, pd_special)));
|
|
|
|
/*
|
|
* Scan the item pointer array and build a list of just the ones we are
|
|
* going to keep. Notice we do not modify the page yet, since we are
|
|
* still validity-checking.
|
|
*/
|
|
nline = PageGetMaxOffsetNumber(page);
|
|
itemidbase = (itemIdSort) palloc(sizeof(itemIdSortData) * nline);
|
|
itemidptr = itemidbase;
|
|
totallen = 0;
|
|
nused = 0;
|
|
nextitm = 0;
|
|
for (offnum = FirstOffsetNumber; offnum <= nline; offnum = OffsetNumberNext(offnum))
|
|
{
|
|
lp = PageGetItemId(page, offnum);
|
|
Assert(ItemIdHasStorage(lp));
|
|
size = ItemIdGetLength(lp);
|
|
offset = ItemIdGetOffset(lp);
|
|
if (offset < pd_upper ||
|
|
(offset + size) > pd_special ||
|
|
offset != MAXALIGN(offset))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATA_CORRUPTED),
|
|
errmsg("corrupted item pointer: offset = %u, size = %u",
|
|
offset, (unsigned int) size)));
|
|
|
|
if (nextitm < nitems && offnum == itemnos[nextitm])
|
|
{
|
|
/* skip item to be deleted */
|
|
nextitm++;
|
|
}
|
|
else
|
|
{
|
|
itemidptr->offsetindex = nused; /* where it will go */
|
|
itemidptr->itemoff = offset;
|
|
itemidptr->olditemid = *lp;
|
|
itemidptr->alignedlen = MAXALIGN(size);
|
|
totallen += itemidptr->alignedlen;
|
|
itemidptr++;
|
|
nused++;
|
|
}
|
|
}
|
|
|
|
/* this will catch invalid or out-of-order itemnos[] */
|
|
if (nextitm != nitems)
|
|
elog(ERROR, "incorrect index offsets supplied");
|
|
|
|
if (totallen > (Size) (pd_special - pd_lower))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATA_CORRUPTED),
|
|
errmsg("corrupted item lengths: total %u, available space %u",
|
|
(unsigned int) totallen, pd_special - pd_lower)));
|
|
|
|
/* sort itemIdSortData array into decreasing itemoff order */
|
|
qsort((char *) itemidbase, nused, sizeof(itemIdSortData),
|
|
itemoffcompare);
|
|
|
|
/* compactify page and install new itemids */
|
|
upper = pd_special;
|
|
|
|
for (i = 0, itemidptr = itemidbase; i < nused; i++, itemidptr++)
|
|
{
|
|
lp = PageGetItemId(page, itemidptr->offsetindex + 1);
|
|
upper -= itemidptr->alignedlen;
|
|
memmove((char *) page + upper,
|
|
(char *) page + itemidptr->itemoff,
|
|
itemidptr->alignedlen);
|
|
*lp = itemidptr->olditemid;
|
|
lp->lp_off = upper;
|
|
}
|
|
|
|
phdr->pd_lower = SizeOfPageHeaderData + nused * sizeof(ItemIdData);
|
|
phdr->pd_upper = upper;
|
|
|
|
pfree(itemidbase);
|
|
}
|