1
0
mirror of https://github.com/postgres/postgres.git synced 2025-12-06 00:02:13 +03:00
Files
postgres/src/backend/storage/lmgr/lmgr.c
Noah Misch 560124a37c Fix CREATE INDEX CONCURRENTLY for the newest prepared transactions.
The purpose of commit 8a54e12a38 was to
fix this, and it sufficed when the PREPARE TRANSACTION completed before
the CIC looked for lock conflicts.  Otherwise, things still broke.  As
before, in a cluster having used CIC while having enabled prepared
transactions, queries that use the resulting index can silently fail to
find rows.  It may be necessary to reindex to recover from past
occurrences; REINDEX CONCURRENTLY suffices.  Fix this for future index
builds by making CIC wait for arbitrarily-recent prepared transactions
and for ordinary transactions that may yet PREPARE TRANSACTION.  As part
of that, have PREPARE TRANSACTION transfer locks to its dummy PGPROC
before it calls ProcArrayClearTransaction().  Back-patch to 9.6 (all
supported versions).

Andrey Borodin, reviewed (in earlier versions) by Andres Freund.

Discussion: https://postgr.es/m/01824242-AA92-4FE9-9BA7-AEBAFFEA3D0C@yandex-team.ru
2021-10-23 18:36:43 -07:00

1113 lines
27 KiB
C

/*-------------------------------------------------------------------------
*
* lmgr.c
* POSTGRES lock manager code
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/storage/lmgr/lmgr.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/subtrans.h"
#include "access/transam.h"
#include "access/xact.h"
#include "catalog/catalog.h"
#include "miscadmin.h"
#include "storage/lmgr.h"
#include "storage/procarray.h"
#include "utils/inval.h"
/*
* Per-backend counter for generating speculative insertion tokens.
*
* This may wrap around, but that's OK as it's only used for the short
* duration between inserting a tuple and checking that there are no (unique)
* constraint violations. It's theoretically possible that a backend sees a
* tuple that was speculatively inserted by another backend, but before it has
* started waiting on the token, the other backend completes its insertion,
* and then performs 2^32 unrelated insertions. And after all that, the
* first backend finally calls SpeculativeInsertionLockAcquire(), with the
* intention of waiting for the first insertion to complete, but ends up
* waiting for the latest unrelated insertion instead. Even then, nothing
* particularly bad happens: in the worst case they deadlock, causing one of
* the transactions to abort.
*/
static uint32 speculativeInsertionToken = 0;
/*
* Struct to hold context info for transaction lock waits.
*
* 'oper' is the operation that needs to wait for the other transaction; 'rel'
* and 'ctid' specify the address of the tuple being waited for.
*/
typedef struct XactLockTableWaitInfo
{
XLTW_Oper oper;
Relation rel;
ItemPointer ctid;
} XactLockTableWaitInfo;
static void XactLockTableWaitErrorCb(void *arg);
/*
* RelationInitLockInfo
* Initializes the lock information in a relation descriptor.
*
* relcache.c must call this during creation of any reldesc.
*/
void
RelationInitLockInfo(Relation relation)
{
Assert(RelationIsValid(relation));
Assert(OidIsValid(RelationGetRelid(relation)));
relation->rd_lockInfo.lockRelId.relId = RelationGetRelid(relation);
if (relation->rd_rel->relisshared)
relation->rd_lockInfo.lockRelId.dbId = InvalidOid;
else
relation->rd_lockInfo.lockRelId.dbId = MyDatabaseId;
}
/*
* SetLocktagRelationOid
* Set up a locktag for a relation, given only relation OID
*/
static inline void
SetLocktagRelationOid(LOCKTAG *tag, Oid relid)
{
Oid dbid;
if (IsSharedRelation(relid))
dbid = InvalidOid;
else
dbid = MyDatabaseId;
SET_LOCKTAG_RELATION(*tag, dbid, relid);
}
/*
* LockRelationOid
*
* Lock a relation given only its OID. This should generally be used
* before attempting to open the relation's relcache entry.
*/
void
LockRelationOid(Oid relid, LOCKMODE lockmode)
{
LOCKTAG tag;
LOCALLOCK *locallock;
LockAcquireResult res;
SetLocktagRelationOid(&tag, relid);
res = LockAcquireExtended(&tag, lockmode, false, false, true, &locallock);
/*
* Now that we have the lock, check for invalidation messages, so that we
* will update or flush any stale relcache entry before we try to use it.
* RangeVarGetRelid() specifically relies on us for this. We can skip
* this in the not-uncommon case that we already had the same type of lock
* being requested, since then no one else could have modified the
* relcache entry in an undesirable way. (In the case where our own xact
* modifies the rel, the relcache update happens via
* CommandCounterIncrement, not here.)
*
* However, in corner cases where code acts on tables (usually catalogs)
* recursively, we might get here while still processing invalidation
* messages in some outer execution of this function or a sibling. The
* "cleared" status of the lock tells us whether we really are done
* absorbing relevant inval messages.
*/
if (res != LOCKACQUIRE_ALREADY_CLEAR)
{
AcceptInvalidationMessages();
MarkLockClear(locallock);
}
}
/*
* ConditionalLockRelationOid
*
* As above, but only lock if we can get the lock without blocking.
* Returns TRUE iff the lock was acquired.
*
* NOTE: we do not currently need conditional versions of all the
* LockXXX routines in this file, but they could easily be added if needed.
*/
bool
ConditionalLockRelationOid(Oid relid, LOCKMODE lockmode)
{
LOCKTAG tag;
LOCALLOCK *locallock;
LockAcquireResult res;
SetLocktagRelationOid(&tag, relid);
res = LockAcquireExtended(&tag, lockmode, false, true, true, &locallock);
if (res == LOCKACQUIRE_NOT_AVAIL)
return false;
/*
* Now that we have the lock, check for invalidation messages; see notes
* in LockRelationOid.
*/
if (res != LOCKACQUIRE_ALREADY_CLEAR)
{
AcceptInvalidationMessages();
MarkLockClear(locallock);
}
return true;
}
/*
* UnlockRelationId
*
* Unlock, given a LockRelId. This is preferred over UnlockRelationOid
* for speed reasons.
*/
void
UnlockRelationId(LockRelId *relid, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_RELATION(tag, relid->dbId, relid->relId);
LockRelease(&tag, lockmode, false);
}
/*
* UnlockRelationOid
*
* Unlock, given only a relation Oid. Use UnlockRelationId if you can.
*/
void
UnlockRelationOid(Oid relid, LOCKMODE lockmode)
{
LOCKTAG tag;
SetLocktagRelationOid(&tag, relid);
LockRelease(&tag, lockmode, false);
}
/*
* LockRelation
*
* This is a convenience routine for acquiring an additional lock on an
* already-open relation. Never try to do "relation_open(foo, NoLock)"
* and then lock with this.
*/
void
LockRelation(Relation relation, LOCKMODE lockmode)
{
LOCKTAG tag;
LOCALLOCK *locallock;
LockAcquireResult res;
SET_LOCKTAG_RELATION(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId);
res = LockAcquireExtended(&tag, lockmode, false, false, true, &locallock);
/*
* Now that we have the lock, check for invalidation messages; see notes
* in LockRelationOid.
*/
if (res != LOCKACQUIRE_ALREADY_CLEAR)
{
AcceptInvalidationMessages();
MarkLockClear(locallock);
}
}
/*
* ConditionalLockRelation
*
* This is a convenience routine for acquiring an additional lock on an
* already-open relation. Never try to do "relation_open(foo, NoLock)"
* and then lock with this.
*/
bool
ConditionalLockRelation(Relation relation, LOCKMODE lockmode)
{
LOCKTAG tag;
LOCALLOCK *locallock;
LockAcquireResult res;
SET_LOCKTAG_RELATION(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId);
res = LockAcquireExtended(&tag, lockmode, false, true, true, &locallock);
if (res == LOCKACQUIRE_NOT_AVAIL)
return false;
/*
* Now that we have the lock, check for invalidation messages; see notes
* in LockRelationOid.
*/
if (res != LOCKACQUIRE_ALREADY_CLEAR)
{
AcceptInvalidationMessages();
MarkLockClear(locallock);
}
return true;
}
/*
* UnlockRelation
*
* This is a convenience routine for unlocking a relation without also
* closing it.
*/
void
UnlockRelation(Relation relation, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_RELATION(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId);
LockRelease(&tag, lockmode, false);
}
/*
* LockHasWaitersRelation
*
* This is a function to check whether someone else is waiting for a
* lock which we are currently holding.
*/
bool
LockHasWaitersRelation(Relation relation, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_RELATION(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId);
return LockHasWaiters(&tag, lockmode, false);
}
/*
* LockRelationIdForSession
*
* This routine grabs a session-level lock on the target relation. The
* session lock persists across transaction boundaries. It will be removed
* when UnlockRelationIdForSession() is called, or if an ereport(ERROR) occurs,
* or if the backend exits.
*
* Note that one should also grab a transaction-level lock on the rel
* in any transaction that actually uses the rel, to ensure that the
* relcache entry is up to date.
*/
void
LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_RELATION(tag, relid->dbId, relid->relId);
(void) LockAcquire(&tag, lockmode, true, false);
}
/*
* UnlockRelationIdForSession
*/
void
UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_RELATION(tag, relid->dbId, relid->relId);
LockRelease(&tag, lockmode, true);
}
/*
* LockRelationForExtension
*
* This lock tag is used to interlock addition of pages to relations.
* We need such locking because bufmgr/smgr definition of P_NEW is not
* race-condition-proof.
*
* We assume the caller is already holding some type of regular lock on
* the relation, so no AcceptInvalidationMessages call is needed here.
*/
void
LockRelationForExtension(Relation relation, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_RELATION_EXTEND(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId);
(void) LockAcquire(&tag, lockmode, false, false);
}
/*
* ConditionalLockRelationForExtension
*
* As above, but only lock if we can get the lock without blocking.
* Returns TRUE iff the lock was acquired.
*/
bool
ConditionalLockRelationForExtension(Relation relation, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_RELATION_EXTEND(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId);
return (LockAcquire(&tag, lockmode, false, true) != LOCKACQUIRE_NOT_AVAIL);
}
/*
* RelationExtensionLockWaiterCount
*
* Count the number of processes waiting for the given relation extension lock.
*/
int
RelationExtensionLockWaiterCount(Relation relation)
{
LOCKTAG tag;
SET_LOCKTAG_RELATION_EXTEND(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId);
return LockWaiterCount(&tag);
}
/*
* UnlockRelationForExtension
*/
void
UnlockRelationForExtension(Relation relation, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_RELATION_EXTEND(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId);
LockRelease(&tag, lockmode, false);
}
/*
* LockDatabaseFrozenIds
*
* This allows one backend per database to execute vac_update_datfrozenxid().
*/
void
LockDatabaseFrozenIds(LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_DATABASE_FROZEN_IDS(tag, MyDatabaseId);
(void) LockAcquire(&tag, lockmode, false, false);
}
/*
* LockPage
*
* Obtain a page-level lock. This is currently used by some index access
* methods to lock individual index pages.
*/
void
LockPage(Relation relation, BlockNumber blkno, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_PAGE(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId,
blkno);
(void) LockAcquire(&tag, lockmode, false, false);
}
/*
* ConditionalLockPage
*
* As above, but only lock if we can get the lock without blocking.
* Returns TRUE iff the lock was acquired.
*/
bool
ConditionalLockPage(Relation relation, BlockNumber blkno, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_PAGE(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId,
blkno);
return (LockAcquire(&tag, lockmode, false, true) != LOCKACQUIRE_NOT_AVAIL);
}
/*
* UnlockPage
*/
void
UnlockPage(Relation relation, BlockNumber blkno, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_PAGE(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId,
blkno);
LockRelease(&tag, lockmode, false);
}
/*
* LockTuple
*
* Obtain a tuple-level lock. This is used in a less-than-intuitive fashion
* because we can't afford to keep a separate lock in shared memory for every
* tuple. See heap_lock_tuple before using this!
*/
void
LockTuple(Relation relation, ItemPointer tid, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_TUPLE(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId,
ItemPointerGetBlockNumber(tid),
ItemPointerGetOffsetNumber(tid));
(void) LockAcquire(&tag, lockmode, false, false);
}
/*
* ConditionalLockTuple
*
* As above, but only lock if we can get the lock without blocking.
* Returns TRUE iff the lock was acquired.
*/
bool
ConditionalLockTuple(Relation relation, ItemPointer tid, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_TUPLE(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId,
ItemPointerGetBlockNumber(tid),
ItemPointerGetOffsetNumber(tid));
return (LockAcquire(&tag, lockmode, false, true) != LOCKACQUIRE_NOT_AVAIL);
}
/*
* UnlockTuple
*/
void
UnlockTuple(Relation relation, ItemPointer tid, LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_TUPLE(tag,
relation->rd_lockInfo.lockRelId.dbId,
relation->rd_lockInfo.lockRelId.relId,
ItemPointerGetBlockNumber(tid),
ItemPointerGetOffsetNumber(tid));
LockRelease(&tag, lockmode, false);
}
/*
* XactLockTableInsert
*
* Insert a lock showing that the given transaction ID is running ---
* this is done when an XID is acquired by a transaction or subtransaction.
* The lock can then be used to wait for the transaction to finish.
*/
void
XactLockTableInsert(TransactionId xid)
{
LOCKTAG tag;
SET_LOCKTAG_TRANSACTION(tag, xid);
(void) LockAcquire(&tag, ExclusiveLock, false, false);
}
/*
* XactLockTableDelete
*
* Delete the lock showing that the given transaction ID is running.
* (This is never used for main transaction IDs; those locks are only
* released implicitly at transaction end. But we do use it for subtrans IDs.)
*/
void
XactLockTableDelete(TransactionId xid)
{
LOCKTAG tag;
SET_LOCKTAG_TRANSACTION(tag, xid);
LockRelease(&tag, ExclusiveLock, false);
}
/*
* XactLockTableWait
*
* Wait for the specified transaction to commit or abort. If an operation
* is specified, an error context callback is set up. If 'oper' is passed as
* None, no error context callback is set up.
*
* Note that this does the right thing for subtransactions: if we wait on a
* subtransaction, we will exit as soon as it aborts or its top parent commits.
* It takes some extra work to ensure this, because to save on shared memory
* the XID lock of a subtransaction is released when it ends, whether
* successfully or unsuccessfully. So we have to check if it's "still running"
* and if so wait for its parent.
*/
void
XactLockTableWait(TransactionId xid, Relation rel, ItemPointer ctid,
XLTW_Oper oper)
{
LOCKTAG tag;
XactLockTableWaitInfo info;
ErrorContextCallback callback;
bool first = true;
/*
* If an operation is specified, set up our verbose error context
* callback.
*/
if (oper != XLTW_None)
{
Assert(RelationIsValid(rel));
Assert(ItemPointerIsValid(ctid));
info.rel = rel;
info.ctid = ctid;
info.oper = oper;
callback.callback = XactLockTableWaitErrorCb;
callback.arg = &info;
callback.previous = error_context_stack;
error_context_stack = &callback;
}
for (;;)
{
Assert(TransactionIdIsValid(xid));
Assert(!TransactionIdEquals(xid, GetTopTransactionIdIfAny()));
SET_LOCKTAG_TRANSACTION(tag, xid);
(void) LockAcquire(&tag, ShareLock, false, false);
LockRelease(&tag, ShareLock, false);
if (!TransactionIdIsInProgress(xid))
break;
/*
* If the Xid belonged to a subtransaction, then the lock would have
* gone away as soon as it was finished; for correct tuple visibility,
* the right action is to wait on its parent transaction to go away.
* But instead of going levels up one by one, we can just wait for the
* topmost transaction to finish with the same end result, which also
* incurs less locktable traffic.
*
* Some uses of this function don't involve tuple visibility -- such
* as when building snapshots for logical decoding. It is possible to
* see a transaction in ProcArray before it registers itself in the
* locktable. The topmost transaction in that case is the same xid,
* so we try again after a short sleep. (Don't sleep the first time
* through, to avoid slowing down the normal case.)
*/
if (!first)
pg_usleep(1000L);
first = false;
xid = SubTransGetTopmostTransaction(xid);
}
if (oper != XLTW_None)
error_context_stack = callback.previous;
}
/*
* ConditionalXactLockTableWait
*
* As above, but only lock if we can get the lock without blocking.
* Returns TRUE if the lock was acquired.
*/
bool
ConditionalXactLockTableWait(TransactionId xid)
{
LOCKTAG tag;
bool first = true;
for (;;)
{
Assert(TransactionIdIsValid(xid));
Assert(!TransactionIdEquals(xid, GetTopTransactionIdIfAny()));
SET_LOCKTAG_TRANSACTION(tag, xid);
if (LockAcquire(&tag, ShareLock, false, true) == LOCKACQUIRE_NOT_AVAIL)
return false;
LockRelease(&tag, ShareLock, false);
if (!TransactionIdIsInProgress(xid))
break;
/* See XactLockTableWait about this case */
if (!first)
pg_usleep(1000L);
first = false;
xid = SubTransGetTopmostTransaction(xid);
}
return true;
}
/*
* SpeculativeInsertionLockAcquire
*
* Insert a lock showing that the given transaction ID is inserting a tuple,
* but hasn't yet decided whether it's going to keep it. The lock can then be
* used to wait for the decision to go ahead with the insertion, or aborting
* it.
*
* The token is used to distinguish multiple insertions by the same
* transaction. It is returned to caller.
*/
uint32
SpeculativeInsertionLockAcquire(TransactionId xid)
{
LOCKTAG tag;
speculativeInsertionToken++;
/*
* Check for wrap-around. Zero means no token is held, so don't use that.
*/
if (speculativeInsertionToken == 0)
speculativeInsertionToken = 1;
SET_LOCKTAG_SPECULATIVE_INSERTION(tag, xid, speculativeInsertionToken);
(void) LockAcquire(&tag, ExclusiveLock, false, false);
return speculativeInsertionToken;
}
/*
* SpeculativeInsertionLockRelease
*
* Delete the lock showing that the given transaction is speculatively
* inserting a tuple.
*/
void
SpeculativeInsertionLockRelease(TransactionId xid)
{
LOCKTAG tag;
SET_LOCKTAG_SPECULATIVE_INSERTION(tag, xid, speculativeInsertionToken);
LockRelease(&tag, ExclusiveLock, false);
}
/*
* SpeculativeInsertionWait
*
* Wait for the specified transaction to finish or abort the insertion of a
* tuple.
*/
void
SpeculativeInsertionWait(TransactionId xid, uint32 token)
{
LOCKTAG tag;
SET_LOCKTAG_SPECULATIVE_INSERTION(tag, xid, token);
Assert(TransactionIdIsValid(xid));
Assert(token != 0);
(void) LockAcquire(&tag, ShareLock, false, false);
LockRelease(&tag, ShareLock, false);
}
/*
* XactLockTableWaitErrorContextCb
* Error context callback for transaction lock waits.
*/
static void
XactLockTableWaitErrorCb(void *arg)
{
XactLockTableWaitInfo *info = (XactLockTableWaitInfo *) arg;
/*
* We would like to print schema name too, but that would require a
* syscache lookup.
*/
if (info->oper != XLTW_None &&
ItemPointerIsValid(info->ctid) && RelationIsValid(info->rel))
{
const char *cxt;
switch (info->oper)
{
case XLTW_Update:
cxt = gettext_noop("while updating tuple (%u,%u) in relation \"%s\"");
break;
case XLTW_Delete:
cxt = gettext_noop("while deleting tuple (%u,%u) in relation \"%s\"");
break;
case XLTW_Lock:
cxt = gettext_noop("while locking tuple (%u,%u) in relation \"%s\"");
break;
case XLTW_LockUpdated:
cxt = gettext_noop("while locking updated version (%u,%u) of tuple in relation \"%s\"");
break;
case XLTW_InsertIndex:
cxt = gettext_noop("while inserting index tuple (%u,%u) in relation \"%s\"");
break;
case XLTW_InsertIndexUnique:
cxt = gettext_noop("while checking uniqueness of tuple (%u,%u) in relation \"%s\"");
break;
case XLTW_FetchUpdated:
cxt = gettext_noop("while rechecking updated tuple (%u,%u) in relation \"%s\"");
break;
case XLTW_RecheckExclusionConstr:
cxt = gettext_noop("while checking exclusion constraint on tuple (%u,%u) in relation \"%s\"");
break;
default:
return;
}
errcontext(cxt,
ItemPointerGetBlockNumber(info->ctid),
ItemPointerGetOffsetNumber(info->ctid),
RelationGetRelationName(info->rel));
}
}
/*
* WaitForLockersMultiple
* Wait until no transaction holds locks that conflict with the given
* locktags at the given lockmode.
*
* To do this, obtain the current list of lockers, and wait on their VXIDs
* until they are finished.
*
* Note we don't try to acquire the locks on the given locktags, only the
* VXIDs and XIDs of their lock holders; if somebody grabs a conflicting lock
* on the objects after we obtained our initial list of lockers, we will not
* wait for them.
*/
void
WaitForLockersMultiple(List *locktags, LOCKMODE lockmode)
{
List *holders = NIL;
ListCell *lc;
/* Done if no locks to wait for */
if (list_length(locktags) == 0)
return;
/* Collect the transactions we need to wait on */
foreach(lc, locktags)
{
LOCKTAG *locktag = lfirst(lc);
holders = lappend(holders, GetLockConflicts(locktag, lockmode));
}
/*
* Note: GetLockConflicts() never reports our own xid, hence we need not
* check for that. Also, prepared xacts are reported and awaited.
*/
/* Finally wait for each such transaction to complete */
foreach(lc, holders)
{
VirtualTransactionId *lockholders = lfirst(lc);
while (VirtualTransactionIdIsValid(*lockholders))
{
VirtualXactLock(*lockholders, true);
lockholders++;
}
}
list_free_deep(holders);
}
/*
* WaitForLockers
*
* Same as WaitForLockersMultiple, for a single lock tag.
*/
void
WaitForLockers(LOCKTAG heaplocktag, LOCKMODE lockmode)
{
List *l;
l = list_make1(&heaplocktag);
WaitForLockersMultiple(l, lockmode);
list_free(l);
}
/*
* LockDatabaseObject
*
* Obtain a lock on a general object of the current database. Don't use
* this for shared objects (such as tablespaces). It's unwise to apply it
* to relations, also, since a lock taken this way will NOT conflict with
* locks taken via LockRelation and friends.
*/
void
LockDatabaseObject(Oid classid, Oid objid, uint16 objsubid,
LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_OBJECT(tag,
MyDatabaseId,
classid,
objid,
objsubid);
(void) LockAcquire(&tag, lockmode, false, false);
/* Make sure syscaches are up-to-date with any changes we waited for */
AcceptInvalidationMessages();
}
/*
* UnlockDatabaseObject
*/
void
UnlockDatabaseObject(Oid classid, Oid objid, uint16 objsubid,
LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_OBJECT(tag,
MyDatabaseId,
classid,
objid,
objsubid);
LockRelease(&tag, lockmode, false);
}
/*
* LockSharedObject
*
* Obtain a lock on a shared-across-databases object.
*/
void
LockSharedObject(Oid classid, Oid objid, uint16 objsubid,
LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_OBJECT(tag,
InvalidOid,
classid,
objid,
objsubid);
(void) LockAcquire(&tag, lockmode, false, false);
/* Make sure syscaches are up-to-date with any changes we waited for */
AcceptInvalidationMessages();
}
/*
* UnlockSharedObject
*/
void
UnlockSharedObject(Oid classid, Oid objid, uint16 objsubid,
LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_OBJECT(tag,
InvalidOid,
classid,
objid,
objsubid);
LockRelease(&tag, lockmode, false);
}
/*
* LockSharedObjectForSession
*
* Obtain a session-level lock on a shared-across-databases object.
* See LockRelationIdForSession for notes about session-level locks.
*/
void
LockSharedObjectForSession(Oid classid, Oid objid, uint16 objsubid,
LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_OBJECT(tag,
InvalidOid,
classid,
objid,
objsubid);
(void) LockAcquire(&tag, lockmode, true, false);
}
/*
* UnlockSharedObjectForSession
*/
void
UnlockSharedObjectForSession(Oid classid, Oid objid, uint16 objsubid,
LOCKMODE lockmode)
{
LOCKTAG tag;
SET_LOCKTAG_OBJECT(tag,
InvalidOid,
classid,
objid,
objsubid);
LockRelease(&tag, lockmode, true);
}
/*
* Append a description of a lockable object to buf.
*
* Ideally we would print names for the numeric values, but that requires
* getting locks on system tables, which might cause problems since this is
* typically used to report deadlock situations.
*/
void
DescribeLockTag(StringInfo buf, const LOCKTAG *tag)
{
switch ((LockTagType) tag->locktag_type)
{
case LOCKTAG_RELATION:
appendStringInfo(buf,
_("relation %u of database %u"),
tag->locktag_field2,
tag->locktag_field1);
break;
case LOCKTAG_RELATION_EXTEND:
appendStringInfo(buf,
_("extension of relation %u of database %u"),
tag->locktag_field2,
tag->locktag_field1);
break;
case LOCKTAG_DATABASE_FROZEN_IDS:
appendStringInfo(buf,
_("pg_database.datfrozenxid of database %u"),
tag->locktag_field1);
break;
case LOCKTAG_PAGE:
appendStringInfo(buf,
_("page %u of relation %u of database %u"),
tag->locktag_field3,
tag->locktag_field2,
tag->locktag_field1);
break;
case LOCKTAG_TUPLE:
appendStringInfo(buf,
_("tuple (%u,%u) of relation %u of database %u"),
tag->locktag_field3,
tag->locktag_field4,
tag->locktag_field2,
tag->locktag_field1);
break;
case LOCKTAG_TRANSACTION:
appendStringInfo(buf,
_("transaction %u"),
tag->locktag_field1);
break;
case LOCKTAG_VIRTUALTRANSACTION:
appendStringInfo(buf,
_("virtual transaction %d/%u"),
tag->locktag_field1,
tag->locktag_field2);
break;
case LOCKTAG_SPECULATIVE_TOKEN:
appendStringInfo(buf,
_("speculative token %u of transaction %u"),
tag->locktag_field2,
tag->locktag_field1);
break;
case LOCKTAG_OBJECT:
appendStringInfo(buf,
_("object %u of class %u of database %u"),
tag->locktag_field3,
tag->locktag_field2,
tag->locktag_field1);
break;
case LOCKTAG_USERLOCK:
/* reserved for old contrib code, now on pgfoundry */
appendStringInfo(buf,
_("user lock [%u,%u,%u]"),
tag->locktag_field1,
tag->locktag_field2,
tag->locktag_field3);
break;
case LOCKTAG_ADVISORY:
appendStringInfo(buf,
_("advisory lock [%u,%u,%u,%u]"),
tag->locktag_field1,
tag->locktag_field2,
tag->locktag_field3,
tag->locktag_field4);
break;
default:
appendStringInfo(buf,
_("unrecognized locktag type %d"),
(int) tag->locktag_type);
break;
}
}
/*
* GetLockNameFromTagType
*
* Given locktag type, return the corresponding lock name.
*/
const char *
GetLockNameFromTagType(uint16 locktag_type)
{
if (locktag_type > LOCKTAG_LAST_TYPE)
return "???";
return LockTagTypeNames[locktag_type];
}