1
0
mirror of https://github.com/postgres/postgres.git synced 2025-04-22 23:02:54 +03:00
Tom Lane 54840eca2e Use a shutdown callback to clear setArgsValid in a FuncExprState that is
evaluating a set-valued function.  This fixes some additional problems
with rescanning partially-evaluated SRFs.
2003-12-18 22:23:42 +00:00

3146 lines
85 KiB
C

/*-------------------------------------------------------------------------
*
* execQual.c
* Routines to evaluate qualification and targetlist expressions
*
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/executor/execQual.c,v 1.152 2003/12/18 22:23:42 tgl Exp $
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
* ExecEvalExpr - evaluate an expression and return a datum
* ExecEvalExprSwitchContext - same, but switch into eval memory context
* ExecQual - return true/false if qualification is satisfied
* ExecProject - form a new tuple by projecting the given tuple
*
* NOTES
* ExecEvalExpr() and ExecEvalVar() are hotspots. making these faster
* will speed up the entire system. Unfortunately they are currently
* implemented recursively. Eliminating the recursion is bound to
* improve the speed of the executor.
*
* ExecProject() is used to make tuple projections. Rather then
* trying to speed it up, the execution plan should be pre-processed
* to facilitate attribute sharing between nodes wherever possible,
* instead of doing needless copying. -cim 5/31/91
*
*/
#include "postgres.h"
#include "access/heapam.h"
#include "catalog/pg_type.h"
#include "commands/typecmds.h"
#include "executor/execdebug.h"
#include "executor/functions.h"
#include "executor/nodeSubplan.h"
#include "miscadmin.h"
#include "optimizer/planmain.h"
#include "parser/parse_expr.h"
#include "utils/acl.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
/* static function decls */
static Datum ExecEvalAggref(AggrefExprState *aggref,
ExprContext *econtext,
bool *isNull);
static Datum ExecEvalArrayRef(ArrayRefExprState *astate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalVar(Var *variable, ExprContext *econtext, bool *isNull);
static Datum ExecEvalParam(Param *expression, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalFunc(FuncExprState *fcache, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalOper(FuncExprState *fcache, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalDistinct(FuncExprState *fcache, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
ExprContext *econtext, bool *isNull);
static ExprDoneCond ExecEvalFuncArgs(FunctionCallInfo fcinfo,
List *argList, ExprContext *econtext);
static Datum ExecEvalNot(BoolExprState *notclause, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalOr(BoolExprState *orExpr, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalAnd(BoolExprState *andExpr, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalCase(CaseExprState *caseExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalArray(ArrayExprState *astate,
ExprContext *econtext,
bool *isNull);
static Datum ExecEvalCoalesce(CoalesceExprState *coalesceExpr,
ExprContext *econtext,
bool *isNull);
static Datum ExecEvalNullIf(FuncExprState *nullIfExpr, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalNullTest(GenericExprState *nstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalBooleanTest(GenericExprState *bstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalCoerceToDomain(CoerceToDomainState *cstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalCoerceToDomainValue(CoerceToDomainValue *conVal,
ExprContext *econtext, bool *isNull);
static Datum ExecEvalFieldSelect(GenericExprState *fstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
/*----------
* ExecEvalArrayRef
*
* This function takes an ArrayRef and returns the extracted Datum
* if it's a simple reference, or the modified array value if it's
* an array assignment (i.e., array element or slice insertion).
*
* NOTE: if we get a NULL result from a subexpression, we return NULL when
* it's an array reference, or the unmodified source array when it's an
* array assignment. This may seem peculiar, but if we return NULL (as was
* done in versions up through 7.0) then an assignment like
* UPDATE table SET arrayfield[4] = NULL
* will result in setting the whole array to NULL, which is certainly not
* very desirable. By returning the source array we make the assignment
* into a no-op, instead. (Eventually we need to redesign arrays so that
* individual elements can be NULL, but for now, let's try to protect users
* from shooting themselves in the foot.)
*
* NOTE: we deliberately refrain from applying DatumGetArrayTypeP() here,
* even though that might seem natural, because this code needs to support
* both varlena arrays and fixed-length array types. DatumGetArrayTypeP()
* only works for the varlena kind. The routines we call in arrayfuncs.c
* have to know the difference (that's what they need refattrlength for).
*----------
*/
static Datum
ExecEvalArrayRef(ArrayRefExprState *astate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
ArrayRef *arrayRef = (ArrayRef *) astate->xprstate.expr;
ArrayType *array_source;
ArrayType *resultArray;
bool isAssignment = (arrayRef->refassgnexpr != NULL);
List *elt;
int i = 0,
j = 0;
IntArray upper,
lower;
int *lIndex;
if (arrayRef->refexpr != NULL)
{
array_source = (ArrayType *)
DatumGetPointer(ExecEvalExpr(astate->refexpr,
econtext,
isNull,
isDone));
/*
* If refexpr yields NULL, result is always NULL, for now anyway.
* (This means you cannot assign to an element or slice of an
* array that's NULL; it'll just stay NULL.)
*/
if (*isNull)
return (Datum) NULL;
}
else
{
/*
* Empty refexpr indicates we are doing an INSERT into an array
* column. For now, we just take the refassgnexpr (which the
* parser will have ensured is an array value) and return it
* as-is, ignoring any subscripts that may have been supplied in
* the INSERT column list. This is a kluge, but it's not real
* clear what the semantics ought to be...
*/
array_source = NULL;
}
foreach(elt, astate->refupperindexpr)
{
if (i >= MAXDIM)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)",
i, MAXDIM)));
upper.indx[i++] = DatumGetInt32(ExecEvalExpr((ExprState *) lfirst(elt),
econtext,
isNull,
NULL));
/* If any index expr yields NULL, result is NULL or source array */
if (*isNull)
{
if (!isAssignment || array_source == NULL)
return (Datum) NULL;
*isNull = false;
return PointerGetDatum(array_source);
}
}
if (astate->reflowerindexpr != NIL)
{
foreach(elt, astate->reflowerindexpr)
{
if (j >= MAXDIM)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)",
i, MAXDIM)));
lower.indx[j++] = DatumGetInt32(ExecEvalExpr((ExprState *) lfirst(elt),
econtext,
isNull,
NULL));
/*
* If any index expr yields NULL, result is NULL or source
* array
*/
if (*isNull)
{
if (!isAssignment || array_source == NULL)
return (Datum) NULL;
*isNull = false;
return PointerGetDatum(array_source);
}
}
/* this can't happen unless parser messed up */
if (i != j)
elog(ERROR, "upper and lower index lists are not same length");
lIndex = lower.indx;
}
else
lIndex = NULL;
if (isAssignment)
{
Datum sourceData = ExecEvalExpr(astate->refassgnexpr,
econtext,
isNull,
NULL);
/*
* For now, can't cope with inserting NULL into an array, so make
* it a no-op per discussion above...
*/
if (*isNull)
{
if (array_source == NULL)
return (Datum) NULL;
*isNull = false;
return PointerGetDatum(array_source);
}
if (array_source == NULL)
return sourceData; /* XXX do something else? */
if (lIndex == NULL)
resultArray = array_set(array_source, i,
upper.indx,
sourceData,
astate->refattrlength,
astate->refelemlength,
astate->refelembyval,
astate->refelemalign,
isNull);
else
resultArray = array_set_slice(array_source, i,
upper.indx, lower.indx,
(ArrayType *) DatumGetPointer(sourceData),
astate->refattrlength,
astate->refelemlength,
astate->refelembyval,
astate->refelemalign,
isNull);
return PointerGetDatum(resultArray);
}
if (lIndex == NULL)
return array_ref(array_source, i, upper.indx,
astate->refattrlength,
astate->refelemlength,
astate->refelembyval,
astate->refelemalign,
isNull);
else
{
resultArray = array_get_slice(array_source, i,
upper.indx, lower.indx,
astate->refattrlength,
astate->refelemlength,
astate->refelembyval,
astate->refelemalign,
isNull);
return PointerGetDatum(resultArray);
}
}
/* ----------------------------------------------------------------
* ExecEvalAggref
*
* Returns a Datum whose value is the value of the precomputed
* aggregate found in the given expression context.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalAggref(AggrefExprState *aggref, ExprContext *econtext, bool *isNull)
{
if (econtext->ecxt_aggvalues == NULL) /* safety check */
elog(ERROR, "no aggregates in this expression context");
*isNull = econtext->ecxt_aggnulls[aggref->aggno];
return econtext->ecxt_aggvalues[aggref->aggno];
}
/* ----------------------------------------------------------------
* ExecEvalVar
*
* Returns a Datum whose value is the value of a range
* variable with respect to given expression context.
* ---------------------------------------------------------------- */
static Datum
ExecEvalVar(Var *variable, ExprContext *econtext, bool *isNull)
{
Datum result;
TupleTableSlot *slot;
AttrNumber attnum;
HeapTuple heapTuple;
TupleDesc tuple_type;
/*
* get the slot we want
*/
switch (variable->varno)
{
case INNER: /* get the tuple from the inner node */
slot = econtext->ecxt_innertuple;
break;
case OUTER: /* get the tuple from the outer node */
slot = econtext->ecxt_outertuple;
break;
default: /* get the tuple from the relation being
* scanned */
slot = econtext->ecxt_scantuple;
break;
}
/*
* extract tuple information from the slot
*/
heapTuple = slot->val;
tuple_type = slot->ttc_tupleDescriptor;
attnum = variable->varattno;
/*
* Some checks that are only applied for user attribute numbers
* (bogus system attnums will be caught inside heap_getattr).
*/
if (attnum > 0)
{
/*
* This assert checks that the attnum is valid.
*/
Assert(attnum <= tuple_type->natts &&
tuple_type->attrs[attnum - 1] != NULL);
/*
* If the attribute's column has been dropped, we force a NULL result.
* This case should not happen in normal use, but it could happen if
* we are executing a plan cached before the column was dropped.
*/
if (tuple_type->attrs[attnum - 1]->attisdropped)
{
*isNull = true;
return (Datum) 0;
}
/*
* This assert checks that the datatype the plan expects to get (as
* told by our "variable" argument) is in fact the datatype of the
* attribute being fetched (as seen in the current context, identified
* by our "econtext" argument). Otherwise crashes are likely.
*
* Note that we can't check dropped columns, since their atttypid
* has been zeroed.
*/
Assert(variable->vartype == tuple_type->attrs[attnum - 1]->atttypid);
}
/*
* If the attribute number is invalid, then we are supposed to return
* the entire tuple; we give back a whole slot so that callers know
* what the tuple looks like.
*
* XXX this is a horrid crock: since the pointer to the slot might live
* longer than the current evaluation context, we are forced to copy
* the tuple and slot into a long-lived context --- we use the
* econtext's per-query memory which should be safe enough. This
* represents a serious memory leak if many such tuples are processed
* in one command, however. We ought to redesign the representation
* of whole-tuple datums so that this is not necessary.
*
* We assume it's OK to point to the existing tupleDescriptor, rather
* than copy that too.
*/
if (attnum == InvalidAttrNumber)
{
MemoryContext oldContext;
TupleTableSlot *tempSlot;
HeapTuple tup;
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory);
tempSlot = MakeTupleTableSlot();
tup = heap_copytuple(heapTuple);
ExecStoreTuple(tup, tempSlot, InvalidBuffer, true);
ExecSetSlotDescriptor(tempSlot, tuple_type, false);
MemoryContextSwitchTo(oldContext);
return PointerGetDatum(tempSlot);
}
result = heap_getattr(heapTuple, /* tuple containing attribute */
attnum, /* attribute number of desired
* attribute */
tuple_type, /* tuple descriptor of tuple */
isNull); /* return: is attribute null? */
return result;
}
/* ----------------------------------------------------------------
* ExecEvalParam
*
* Returns the value of a parameter. A param node contains
* something like ($.name) and the expression context contains
* the current parameter bindings (name = "sam") (age = 34)...
* so our job is to find and return the appropriate datum ("sam").
*
* Q: if we have a parameter ($.foo) without a binding, i.e.
* there is no (foo = xxx) in the parameter list info,
* is this a fatal error or should this be a "not available"
* (in which case we could return NULL)? -cim 10/13/89
* ----------------------------------------------------------------
*/
static Datum
ExecEvalParam(Param *expression, ExprContext *econtext, bool *isNull)
{
int thisParamKind = expression->paramkind;
AttrNumber thisParamId = expression->paramid;
if (thisParamKind == PARAM_EXEC)
{
/*
* PARAM_EXEC params (internal executor parameters) are stored in
* the ecxt_param_exec_vals array, and can be accessed by array
* index.
*/
ParamExecData *prm;
prm = &(econtext->ecxt_param_exec_vals[thisParamId]);
if (prm->execPlan != NULL)
{
/* Parameter not evaluated yet, so go do it */
ExecSetParamPlan(prm->execPlan, econtext);
/* ExecSetParamPlan should have processed this param... */
Assert(prm->execPlan == NULL);
}
*isNull = prm->isnull;
return prm->value;
}
else
{
/*
* All other parameter types must be sought in
* ecxt_param_list_info. NOTE: The last entry in the param array
* is always an entry with kind == PARAM_INVALID.
*/
ParamListInfo paramList = econtext->ecxt_param_list_info;
char *thisParamName = expression->paramname;
bool matchFound = false;
if (paramList != NULL)
{
while (paramList->kind != PARAM_INVALID && !matchFound)
{
if (thisParamKind == paramList->kind)
{
switch (thisParamKind)
{
case PARAM_NAMED:
if (strcmp(paramList->name, thisParamName) == 0)
matchFound = true;
break;
case PARAM_NUM:
if (paramList->id == thisParamId)
matchFound = true;
break;
default:
elog(ERROR, "unrecognized paramkind: %d",
thisParamKind);
}
}
if (!matchFound)
paramList++;
} /* while */
} /* if */
if (!matchFound)
{
if (thisParamKind == PARAM_NAMED)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("no value found for parameter \"%s\"",
thisParamName)));
else
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("no value found for parameter %d",
thisParamId)));
}
*isNull = paramList->isnull;
return paramList->value;
}
}
/* ----------------------------------------------------------------
* ExecEvalOper / ExecEvalFunc support routines
* ----------------------------------------------------------------
*/
/*
* GetAttributeByName
* GetAttributeByNum
*
* These are functions which return the value of the
* named attribute out of the tuple from the arg slot. User defined
* C functions which take a tuple as an argument are expected
* to use this. Ex: overpaid(EMP) might call GetAttributeByNum().
*/
Datum
GetAttributeByNum(TupleTableSlot *slot,
AttrNumber attrno,
bool *isNull)
{
Datum retval;
if (!AttributeNumberIsValid(attrno))
elog(ERROR, "invalid attribute number %d", attrno);
if (isNull == (bool *) NULL)
elog(ERROR, "a NULL isNull pointer was passed");
if (TupIsNull(slot))
{
*isNull = true;
return (Datum) 0;
}
retval = heap_getattr(slot->val,
attrno,
slot->ttc_tupleDescriptor,
isNull);
if (*isNull)
return (Datum) 0;
return retval;
}
Datum
GetAttributeByName(TupleTableSlot *slot, char *attname, bool *isNull)
{
AttrNumber attrno;
TupleDesc tupdesc;
Datum retval;
int natts;
int i;
if (attname == NULL)
elog(ERROR, "invalid attribute name");
if (isNull == (bool *) NULL)
elog(ERROR, "a NULL isNull pointer was passed");
if (TupIsNull(slot))
{
*isNull = true;
return (Datum) 0;
}
tupdesc = slot->ttc_tupleDescriptor;
natts = slot->val->t_data->t_natts;
attrno = InvalidAttrNumber;
for (i = 0; i < tupdesc->natts; i++)
{
if (namestrcmp(&(tupdesc->attrs[i]->attname), attname) == 0)
{
attrno = tupdesc->attrs[i]->attnum;
break;
}
}
if (attrno == InvalidAttrNumber)
elog(ERROR, "attribute \"%s\" does not exist", attname);
retval = heap_getattr(slot->val,
attrno,
tupdesc,
isNull);
if (*isNull)
return (Datum) 0;
return retval;
}
/*
* init_fcache - initialize a FuncExprState node during first use
*/
void
init_fcache(Oid foid, FuncExprState *fcache, MemoryContext fcacheCxt)
{
AclResult aclresult;
/* Check permission to call function */
aclresult = pg_proc_aclcheck(foid, GetUserId(), ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_PROC, get_func_name(foid));
/* Safety check (should never fail, as parser should check sooner) */
if (length(fcache->args) > FUNC_MAX_ARGS)
elog(ERROR, "too many arguments");
/* Set up the primary fmgr lookup information */
fmgr_info_cxt(foid, &(fcache->func), fcacheCxt);
/* Initialize additional info */
fcache->setArgsValid = false;
fcache->shutdown_reg = false;
fcache->func.fn_expr = (Node *) fcache->xprstate.expr;
}
/*
* callback function in case a FuncExpr returning a set needs to be shut down
* before it has been run to completion
*/
static void
ShutdownFuncExpr(Datum arg)
{
FuncExprState *fcache = (FuncExprState *) DatumGetPointer(arg);
/* Clear any active set-argument state */
fcache->setArgsValid = false;
/* execUtils will deregister the callback... */
fcache->shutdown_reg = false;
}
/*
* Evaluate arguments for a function.
*/
static ExprDoneCond
ExecEvalFuncArgs(FunctionCallInfo fcinfo,
List *argList,
ExprContext *econtext)
{
ExprDoneCond argIsDone;
int i;
List *arg;
argIsDone = ExprSingleResult; /* default assumption */
i = 0;
foreach(arg, argList)
{
ExprDoneCond thisArgIsDone;
fcinfo->arg[i] = ExecEvalExpr((ExprState *) lfirst(arg),
econtext,
&fcinfo->argnull[i],
&thisArgIsDone);
if (thisArgIsDone != ExprSingleResult)
{
/*
* We allow only one argument to have a set value; we'd need
* much more complexity to keep track of multiple set
* arguments (cf. ExecTargetList) and it doesn't seem worth
* it.
*/
if (argIsDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("functions and operators can take at most one set argument")));
argIsDone = thisArgIsDone;
}
i++;
}
fcinfo->nargs = i;
return argIsDone;
}
/*
* ExecMakeFunctionResult
*
* Evaluate the arguments to a function and then the function itself.
*/
Datum
ExecMakeFunctionResult(FuncExprState *fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
List *arguments = fcache->args;
Datum result;
FunctionCallInfoData fcinfo;
ReturnSetInfo rsinfo; /* for functions returning sets */
ExprDoneCond argDone;
bool hasSetArg;
int i;
/*
* arguments is a list of expressions to evaluate before passing to
* the function manager. We skip the evaluation if it was already
* done in the previous call (ie, we are continuing the evaluation of
* a set-valued function). Otherwise, collect the current argument
* values into fcinfo.
*/
if (!fcache->setArgsValid)
{
/* Need to prep callinfo structure */
MemSet(&fcinfo, 0, sizeof(fcinfo));
fcinfo.flinfo = &(fcache->func);
argDone = ExecEvalFuncArgs(&fcinfo, arguments, econtext);
if (argDone == ExprEndResult)
{
/* input is an empty set, so return an empty set. */
*isNull = true;
if (isDone)
*isDone = ExprEndResult;
else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-valued function called in context that cannot accept a set")));
return (Datum) 0;
}
hasSetArg = (argDone != ExprSingleResult);
}
else
{
/* Copy callinfo from previous evaluation */
memcpy(&fcinfo, &fcache->setArgs, sizeof(fcinfo));
hasSetArg = fcache->setHasSetArg;
/* Reset flag (we may set it again below) */
fcache->setArgsValid = false;
}
/*
* If function returns set, prepare a resultinfo node for
* communication
*/
if (fcache->func.fn_retset)
{
fcinfo.resultinfo = (Node *) &rsinfo;
rsinfo.type = T_ReturnSetInfo;
rsinfo.econtext = econtext;
rsinfo.expectedDesc = NULL;
rsinfo.allowedModes = (int) SFRM_ValuePerCall;
rsinfo.returnMode = SFRM_ValuePerCall;
/* isDone is filled below */
rsinfo.setResult = NULL;
rsinfo.setDesc = NULL;
}
/*
* now return the value gotten by calling the function manager,
* passing the function the evaluated parameter values.
*/
if (fcache->func.fn_retset || hasSetArg)
{
/*
* We need to return a set result. Complain if caller not ready
* to accept one.
*/
if (isDone == NULL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-valued function called in context that cannot accept a set")));
/*
* This loop handles the situation where we have both a set
* argument and a set-valued function. Once we have exhausted the
* function's value(s) for a particular argument value, we have to
* get the next argument value and start the function over again.
* We might have to do it more than once, if the function produces
* an empty result set for a particular input value.
*/
for (;;)
{
/*
* If function is strict, and there are any NULL arguments,
* skip calling the function (at least for this set of args).
*/
bool callit = true;
if (fcache->func.fn_strict)
{
for (i = 0; i < fcinfo.nargs; i++)
{
if (fcinfo.argnull[i])
{
callit = false;
break;
}
}
}
if (callit)
{
fcinfo.isnull = false;
rsinfo.isDone = ExprSingleResult;
result = FunctionCallInvoke(&fcinfo);
*isNull = fcinfo.isnull;
*isDone = rsinfo.isDone;
}
else
{
result = (Datum) 0;
*isNull = true;
*isDone = ExprEndResult;
}
if (*isDone != ExprEndResult)
{
/*
* Got a result from current argument. If function itself
* returns set, save the current argument values to re-use
* on the next call.
*/
if (fcache->func.fn_retset)
{
memcpy(&fcache->setArgs, &fcinfo, sizeof(fcinfo));
fcache->setHasSetArg = hasSetArg;
fcache->setArgsValid = true;
/* Register cleanup callback if we didn't already */
if (!fcache->shutdown_reg)
{
RegisterExprContextCallback(econtext,
ShutdownFuncExpr,
PointerGetDatum(fcache));
fcache->shutdown_reg = true;
}
}
/*
* Make sure we say we are returning a set, even if the
* function itself doesn't return sets.
*/
*isDone = ExprMultipleResult;
break;
}
/* Else, done with this argument */
if (!hasSetArg)
break; /* input not a set, so done */
/* Re-eval args to get the next element of the input set */
argDone = ExecEvalFuncArgs(&fcinfo, arguments, econtext);
if (argDone != ExprMultipleResult)
{
/* End of argument set, so we're done. */
*isNull = true;
*isDone = ExprEndResult;
result = (Datum) 0;
break;
}
/*
* If we reach here, loop around to run the function on the
* new argument.
*/
}
}
else
{
/*
* Non-set case: much easier.
*
* If function is strict, and there are any NULL arguments, skip
* calling the function and return NULL.
*/
if (fcache->func.fn_strict)
{
for (i = 0; i < fcinfo.nargs; i++)
{
if (fcinfo.argnull[i])
{
*isNull = true;
return (Datum) 0;
}
}
}
fcinfo.isnull = false;
result = FunctionCallInvoke(&fcinfo);
*isNull = fcinfo.isnull;
}
return result;
}
/*
* ExecMakeTableFunctionResult
*
* Evaluate a table function, producing a materialized result in a Tuplestore
* object. (If function returns an empty set, we just return NULL instead.)
*/
Tuplestorestate *
ExecMakeTableFunctionResult(ExprState *funcexpr,
ExprContext *econtext,
TupleDesc expectedDesc,
TupleDesc *returnDesc)
{
Tuplestorestate *tupstore = NULL;
TupleDesc tupdesc = NULL;
Oid funcrettype;
FunctionCallInfoData fcinfo;
ReturnSetInfo rsinfo;
MemoryContext callerContext;
MemoryContext oldcontext;
TupleTableSlot *slot;
bool direct_function_call;
bool first_time = true;
bool returnsTuple = false;
/*
* Normally the passed expression tree will be a FuncExprState, since
* the grammar only allows a function call at the top level of a table
* function reference. However, if the function doesn't return set
* then the planner might have replaced the function call via
* constant-folding or inlining. So if we see any other kind of
* expression node, execute it via the general ExecEvalExpr() code;
* the only difference is that we don't get a chance to pass a special
* ReturnSetInfo to any functions buried in the expression.
*/
if (funcexpr && IsA(funcexpr, FuncExprState) &&
IsA(funcexpr->expr, FuncExpr))
{
FuncExprState *fcache = (FuncExprState *) funcexpr;
ExprDoneCond argDone;
/*
* This path is similar to ExecMakeFunctionResult.
*/
direct_function_call = true;
/*
* Initialize function cache if first time through
*/
if (fcache->func.fn_oid == InvalidOid)
{
FuncExpr *func = (FuncExpr *) fcache->xprstate.expr;
init_fcache(func->funcid, fcache, econtext->ecxt_per_query_memory);
}
/*
* Evaluate the function's argument list.
*
* Note: ideally, we'd do this in the per-tuple context, but then the
* argument values would disappear when we reset the context in
* the inner loop. So do it in caller context. Perhaps we should
* make a separate context just to hold the evaluated arguments?
*/
MemSet(&fcinfo, 0, sizeof(fcinfo));
fcinfo.flinfo = &(fcache->func);
argDone = ExecEvalFuncArgs(&fcinfo, fcache->args, econtext);
/* We don't allow sets in the arguments of the table function */
if (argDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-valued function called in context that cannot accept a set")));
/*
* If function is strict, and there are any NULL arguments, skip
* calling the function and return NULL (actually an empty set).
*/
if (fcache->func.fn_strict)
{
int i;
for (i = 0; i < fcinfo.nargs; i++)
{
if (fcinfo.argnull[i])
{
*returnDesc = NULL;
return NULL;
}
}
}
}
else
{
/* Treat funcexpr as a generic expression */
direct_function_call = false;
}
funcrettype = exprType((Node *) funcexpr->expr);
/*
* Prepare a resultinfo node for communication. We always do this
* even if not expecting a set result, so that we can pass
* expectedDesc. In the generic-expression case, the expression
* doesn't actually get to see the resultinfo, but set it up anyway
* because we use some of the fields as our own state variables.
*/
fcinfo.resultinfo = (Node *) &rsinfo;
rsinfo.type = T_ReturnSetInfo;
rsinfo.econtext = econtext;
rsinfo.expectedDesc = expectedDesc;
rsinfo.allowedModes = (int) (SFRM_ValuePerCall | SFRM_Materialize);
rsinfo.returnMode = SFRM_ValuePerCall;
/* isDone is filled below */
rsinfo.setResult = NULL;
rsinfo.setDesc = NULL;
/*
* Switch to short-lived context for calling the function or
* expression.
*/
callerContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
/*
* Loop to handle the ValuePerCall protocol (which is also the same
* behavior needed in the generic ExecEvalExpr path).
*/
for (;;)
{
Datum result;
HeapTuple tuple;
/*
* reset per-tuple memory context before each call of the function
* or expression. This cleans up any local memory the function may
* leak when called.
*/
ResetExprContext(econtext);
/* Call the function or expression one time */
if (direct_function_call)
{
fcinfo.isnull = false;
rsinfo.isDone = ExprSingleResult;
result = FunctionCallInvoke(&fcinfo);
}
else
{
result = ExecEvalExpr(funcexpr, econtext,
&fcinfo.isnull, &rsinfo.isDone);
}
/* Which protocol does function want to use? */
if (rsinfo.returnMode == SFRM_ValuePerCall)
{
/*
* Check for end of result set.
*
* Note: if function returns an empty set, we don't build a
* tupdesc or tuplestore (since we can't get a tupdesc in the
* function-returning-tuple case)
*/
if (rsinfo.isDone == ExprEndResult)
break;
/*
* If first time through, build tupdesc and tuplestore for
* result
*/
if (first_time)
{
oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory);
if (funcrettype == RECORDOID ||
get_typtype(funcrettype) == 'c')
{
/*
* Composite type, so function should have returned a
* TupleTableSlot; use its descriptor
*/
slot = (TupleTableSlot *) DatumGetPointer(result);
if (fcinfo.isnull || !slot)
ereport(ERROR,
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
errmsg("function returning row cannot return null value")));
if (!IsA(slot, TupleTableSlot) ||
!slot->ttc_tupleDescriptor)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("function returning row did not return a valid tuple slot")));
tupdesc = CreateTupleDescCopy(slot->ttc_tupleDescriptor);
returnsTuple = true;
}
else
{
/*
* Scalar type, so make a single-column descriptor
*/
tupdesc = CreateTemplateTupleDesc(1, false);
TupleDescInitEntry(tupdesc,
(AttrNumber) 1,
"column",
funcrettype,
-1,
0,
false);
}
tupstore = tuplestore_begin_heap(true, false, SortMem);
MemoryContextSwitchTo(oldcontext);
rsinfo.setResult = tupstore;
rsinfo.setDesc = tupdesc;
}
/*
* Store current resultset item.
*/
if (returnsTuple)
{
slot = (TupleTableSlot *) DatumGetPointer(result);
if (fcinfo.isnull ||
!slot ||
!IsA(slot, TupleTableSlot) ||
TupIsNull(slot))
ereport(ERROR,
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
errmsg("function returning row cannot return null value")));
tuple = slot->val;
}
else
{
char nullflag;
nullflag = fcinfo.isnull ? 'n' : ' ';
tuple = heap_formtuple(tupdesc, &result, &nullflag);
}
oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory);
tuplestore_puttuple(tupstore, tuple);
MemoryContextSwitchTo(oldcontext);
/*
* Are we done?
*/
if (rsinfo.isDone != ExprMultipleResult)
break;
}
else if (rsinfo.returnMode == SFRM_Materialize)
{
/* check we're on the same page as the function author */
if (!first_time || rsinfo.isDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_E_R_I_E_SRF_PROTOCOL_VIOLATED),
errmsg("table-function protocol for materialize mode was not followed")));
/* Done evaluating the set result */
break;
}
else
ereport(ERROR,
(errcode(ERRCODE_E_R_I_E_SRF_PROTOCOL_VIOLATED),
errmsg("unrecognized table-function returnMode: %d",
(int) rsinfo.returnMode)));
first_time = false;
}
MemoryContextSwitchTo(callerContext);
/* The returned pointers are those in rsinfo */
*returnDesc = rsinfo.setDesc;
return rsinfo.setResult;
}
/* ----------------------------------------------------------------
* ExecEvalFunc
* ExecEvalOper
*
* Evaluate the functional result of a list of arguments by calling the
* function manager.
* ----------------------------------------------------------------
*/
/* ----------------------------------------------------------------
* ExecEvalFunc
* ----------------------------------------------------------------
*/
static Datum
ExecEvalFunc(FuncExprState *fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
/*
* Initialize function cache if first time through
*/
if (fcache->func.fn_oid == InvalidOid)
{
FuncExpr *func = (FuncExpr *) fcache->xprstate.expr;
init_fcache(func->funcid, fcache, econtext->ecxt_per_query_memory);
}
return ExecMakeFunctionResult(fcache, econtext, isNull, isDone);
}
/* ----------------------------------------------------------------
* ExecEvalOper
* ----------------------------------------------------------------
*/
static Datum
ExecEvalOper(FuncExprState *fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
/*
* Initialize function cache if first time through
*/
if (fcache->func.fn_oid == InvalidOid)
{
OpExpr *op = (OpExpr *) fcache->xprstate.expr;
init_fcache(op->opfuncid, fcache, econtext->ecxt_per_query_memory);
}
return ExecMakeFunctionResult(fcache, econtext, isNull, isDone);
}
/* ----------------------------------------------------------------
* ExecEvalDistinct
*
* IS DISTINCT FROM must evaluate arguments to determine whether
* they are NULL; if either is NULL then the result is already
* known. If neither is NULL, then proceed to evaluate the
* function. Note that this is *always* derived from the equals
* operator, but since we need special processing of the arguments
* we can not simply reuse ExecEvalOper() or ExecEvalFunc().
* ----------------------------------------------------------------
*/
static Datum
ExecEvalDistinct(FuncExprState *fcache,
ExprContext *econtext,
bool *isNull)
{
Datum result;
FunctionCallInfoData fcinfo;
ExprDoneCond argDone;
List *argList;
/*
* Initialize function cache if first time through
*/
if (fcache->func.fn_oid == InvalidOid)
{
DistinctExpr *op = (DistinctExpr *) fcache->xprstate.expr;
init_fcache(op->opfuncid, fcache, econtext->ecxt_per_query_memory);
Assert(!fcache->func.fn_retset);
}
/*
* extract info from fcache
*/
argList = fcache->args;
/* Need to prep callinfo structure */
MemSet(&fcinfo, 0, sizeof(fcinfo));
fcinfo.flinfo = &(fcache->func);
argDone = ExecEvalFuncArgs(&fcinfo, argList, econtext);
if (argDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("IS DISTINCT FROM does not support set arguments")));
Assert(fcinfo.nargs == 2);
if (fcinfo.argnull[0] && fcinfo.argnull[1])
{
/* Both NULL? Then is not distinct... */
result = BoolGetDatum(FALSE);
}
else if (fcinfo.argnull[0] || fcinfo.argnull[1])
{
/* Only one is NULL? Then is distinct... */
result = BoolGetDatum(TRUE);
}
else
{
fcinfo.isnull = false;
result = FunctionCallInvoke(&fcinfo);
*isNull = fcinfo.isnull;
/* Must invert result of "=" */
result = BoolGetDatum(!DatumGetBool(result));
}
return result;
}
/*
* ExecEvalScalarArrayOp
*
* Evaluate "scalar op ANY/ALL (array)". The operator always yields boolean,
* and we combine the results across all array elements using OR and AND
* (for ANY and ALL respectively). Of course we short-circuit as soon as
* the result is known.
*/
static Datum
ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
ExprContext *econtext, bool *isNull)
{
ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) sstate->fxprstate.xprstate.expr;
bool useOr = opexpr->useOr;
ArrayType *arr;
int nitems;
Datum result;
bool resultnull;
FunctionCallInfoData fcinfo;
ExprDoneCond argDone;
int i;
int16 typlen;
bool typbyval;
char typalign;
char *s;
/*
* Initialize function cache if first time through
*/
if (sstate->fxprstate.func.fn_oid == InvalidOid)
{
init_fcache(opexpr->opfuncid, &sstate->fxprstate,
econtext->ecxt_per_query_memory);
Assert(!sstate->fxprstate.func.fn_retset);
}
/* Need to prep callinfo structure */
MemSet(&fcinfo, 0, sizeof(fcinfo));
fcinfo.flinfo = &(sstate->fxprstate.func);
argDone = ExecEvalFuncArgs(&fcinfo, sstate->fxprstate.args, econtext);
if (argDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("op ANY/ALL (array) does not support set arguments")));
Assert(fcinfo.nargs == 2);
/*
* If the array is NULL then we return NULL --- it's not very
* meaningful to do anything else, even if the operator isn't strict.
*/
if (fcinfo.argnull[1])
{
*isNull = true;
return (Datum) 0;
}
/* Else okay to fetch and detoast the array */
arr = DatumGetArrayTypeP(fcinfo.arg[1]);
/*
* If the array is empty, we return either FALSE or TRUE per the useOr
* flag. This is correct even if the scalar is NULL; since we would
* evaluate the operator zero times, it matters not whether it would
* want to return NULL.
*/
nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
if (nitems <= 0)
return BoolGetDatum(!useOr);
/*
* If the scalar is NULL, and the function is strict, return NULL.
* This is just to avoid having to test for strictness inside the
* loop. (XXX but if arrays could have null elements, we'd need a
* test anyway.)
*/
if (fcinfo.argnull[0] && sstate->fxprstate.func.fn_strict)
{
*isNull = true;
return (Datum) 0;
}
/*
* We arrange to look up info about the element type only once per
* series of calls, assuming the element type doesn't change
* underneath us.
*/
if (sstate->element_type != ARR_ELEMTYPE(arr))
{
get_typlenbyvalalign(ARR_ELEMTYPE(arr),
&sstate->typlen,
&sstate->typbyval,
&sstate->typalign);
sstate->element_type = ARR_ELEMTYPE(arr);
}
typlen = sstate->typlen;
typbyval = sstate->typbyval;
typalign = sstate->typalign;
result = BoolGetDatum(!useOr);
resultnull = false;
/* Loop over the array elements */
s = (char *) ARR_DATA_PTR(arr);
for (i = 0; i < nitems; i++)
{
Datum elt;
Datum thisresult;
/* Get array element */
elt = fetch_att(s, typbyval, typlen);
s = att_addlength(s, typlen, PointerGetDatum(s));
s = (char *) att_align(s, typalign);
/* Call comparison function */
fcinfo.arg[1] = elt;
fcinfo.argnull[1] = false;
fcinfo.isnull = false;
thisresult = FunctionCallInvoke(&fcinfo);
/* Combine results per OR or AND semantics */
if (fcinfo.isnull)
resultnull = true;
else if (useOr)
{
if (DatumGetBool(thisresult))
{
result = BoolGetDatum(true);
resultnull = false;
break; /* needn't look at any more elements */
}
}
else
{
if (!DatumGetBool(thisresult))
{
result = BoolGetDatum(false);
resultnull = false;
break; /* needn't look at any more elements */
}
}
}
*isNull = resultnull;
return result;
}
/* ----------------------------------------------------------------
* ExecEvalNot
* ExecEvalOr
* ExecEvalAnd
*
* Evaluate boolean expressions, with appropriate short-circuiting.
*
* The query planner reformulates clause expressions in the
* qualification to conjunctive normal form. If we ever get
* an AND to evaluate, we can be sure that it's not a top-level
* clause in the qualification, but appears lower (as a function
* argument, for example), or in the target list. Not that you
* need to know this, mind you...
* ----------------------------------------------------------------
*/
static Datum
ExecEvalNot(BoolExprState *notclause, ExprContext *econtext, bool *isNull)
{
ExprState *clause;
Datum expr_value;
clause = lfirst(notclause->args);
expr_value = ExecEvalExpr(clause, econtext, isNull, NULL);
/*
* if the expression evaluates to null, then we just cascade the null
* back to whoever called us.
*/
if (*isNull)
return expr_value;
/*
* evaluation of 'not' is simple.. expr is false, then return 'true'
* and vice versa.
*/
return BoolGetDatum(!DatumGetBool(expr_value));
}
/* ----------------------------------------------------------------
* ExecEvalOr
* ----------------------------------------------------------------
*/
static Datum
ExecEvalOr(BoolExprState *orExpr, ExprContext *econtext, bool *isNull)
{
List *clauses;
List *clause;
bool AnyNull;
Datum clause_value;
clauses = orExpr->args;
AnyNull = false;
/*
* If any of the clauses is TRUE, the OR result is TRUE regardless of
* the states of the rest of the clauses, so we can stop evaluating
* and return TRUE immediately. If none are TRUE and one or more is
* NULL, we return NULL; otherwise we return FALSE. This makes sense
* when you interpret NULL as "don't know": if we have a TRUE then the
* OR is TRUE even if we aren't sure about some of the other inputs.
* If all the known inputs are FALSE, but we have one or more "don't
* knows", then we have to report that we "don't know" what the OR's
* result should be --- perhaps one of the "don't knows" would have
* been TRUE if we'd known its value. Only when all the inputs are
* known to be FALSE can we state confidently that the OR's result is
* FALSE.
*/
foreach(clause, clauses)
{
clause_value = ExecEvalExpr((ExprState *) lfirst(clause),
econtext, isNull, NULL);
/*
* if we have a non-null true result, then return it.
*/
if (*isNull)
AnyNull = true; /* remember we got a null */
else if (DatumGetBool(clause_value))
return clause_value;
}
/* AnyNull is true if at least one clause evaluated to NULL */
*isNull = AnyNull;
return BoolGetDatum(false);
}
/* ----------------------------------------------------------------
* ExecEvalAnd
* ----------------------------------------------------------------
*/
static Datum
ExecEvalAnd(BoolExprState *andExpr, ExprContext *econtext, bool *isNull)
{
List *clauses;
List *clause;
bool AnyNull;
Datum clause_value;
clauses = andExpr->args;
AnyNull = false;
/*
* If any of the clauses is FALSE, the AND result is FALSE regardless
* of the states of the rest of the clauses, so we can stop evaluating
* and return FALSE immediately. If none are FALSE and one or more is
* NULL, we return NULL; otherwise we return TRUE. This makes sense
* when you interpret NULL as "don't know", using the same sort of
* reasoning as for OR, above.
*/
foreach(clause, clauses)
{
clause_value = ExecEvalExpr((ExprState *) lfirst(clause),
econtext, isNull, NULL);
/*
* if we have a non-null false result, then return it.
*/
if (*isNull)
AnyNull = true; /* remember we got a null */
else if (!DatumGetBool(clause_value))
return clause_value;
}
/* AnyNull is true if at least one clause evaluated to NULL */
*isNull = AnyNull;
return BoolGetDatum(!AnyNull);
}
/* ----------------------------------------------------------------
* ExecEvalCase
*
* Evaluate a CASE clause. Will have boolean expressions
* inside the WHEN clauses, and will have expressions
* for results.
* - thomas 1998-11-09
* ----------------------------------------------------------------
*/
static Datum
ExecEvalCase(CaseExprState *caseExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
List *clauses;
List *clause;
Datum clause_value;
clauses = caseExpr->args;
/*
* we evaluate each of the WHEN clauses in turn, as soon as one is
* true we return the corresponding result. If none are true then we
* return the value of the default clause, or NULL if there is none.
*/
foreach(clause, clauses)
{
CaseWhenState *wclause = lfirst(clause);
clause_value = ExecEvalExpr(wclause->expr,
econtext,
isNull,
NULL);
/*
* if we have a true test, then we return the result, since the
* case statement is satisfied. A NULL result from the test is
* not considered true.
*/
if (DatumGetBool(clause_value) && !*isNull)
{
return ExecEvalExpr(wclause->result,
econtext,
isNull,
isDone);
}
}
if (caseExpr->defresult)
{
return ExecEvalExpr(caseExpr->defresult,
econtext,
isNull,
isDone);
}
*isNull = true;
return (Datum) 0;
}
/* ----------------------------------------------------------------
* ExecEvalArray - ARRAY[] expressions
*
* NOTE: currently, if any input value is NULL then we return a NULL array,
* so the ARRAY[] construct can be considered strict. Eventually this will
* change; when it does, be sure to fix contain_nonstrict_functions().
* ----------------------------------------------------------------
*/
static Datum
ExecEvalArray(ArrayExprState *astate, ExprContext *econtext,
bool *isNull)
{
ArrayExpr *arrayExpr = (ArrayExpr *) astate->xprstate.expr;
ArrayType *result;
List *element;
Oid element_type = arrayExpr->element_typeid;
int ndims = 0;
int dims[MAXDIM];
int lbs[MAXDIM];
if (!arrayExpr->multidims)
{
/* Elements are presumably of scalar type */
int nelems;
Datum *dvalues;
int i = 0;
ndims = 1;
nelems = length(astate->elements);
/* Shouldn't happen here, but if length is 0, return NULL */
if (nelems == 0)
{
*isNull = true;
return (Datum) 0;
}
dvalues = (Datum *) palloc(nelems * sizeof(Datum));
/* loop through and build array of datums */
foreach(element, astate->elements)
{
ExprState *e = (ExprState *) lfirst(element);
bool eisnull;
dvalues[i++] = ExecEvalExpr(e, econtext, &eisnull, NULL);
if (eisnull)
{
*isNull = true;
return (Datum) 0;
}
}
/* setup for 1-D array of the given length */
dims[0] = nelems;
lbs[0] = 1;
result = construct_md_array(dvalues, ndims, dims, lbs,
element_type,
astate->elemlength,
astate->elembyval,
astate->elemalign);
}
else
{
/* Must be nested array expressions */
char *dat = NULL;
Size ndatabytes = 0;
int nbytes;
int outer_nelems = length(astate->elements);
int elem_ndims = 0;
int *elem_dims = NULL;
int *elem_lbs = NULL;
bool firstone = true;
int i;
/* loop through and get data area from each element */
foreach(element, astate->elements)
{
ExprState *e = (ExprState *) lfirst(element);
bool eisnull;
Datum arraydatum;
ArrayType *array;
int elem_ndatabytes;
arraydatum = ExecEvalExpr(e, econtext, &eisnull, NULL);
if (eisnull)
{
*isNull = true;
return (Datum) 0;
}
array = DatumGetArrayTypeP(arraydatum);
/* run-time double-check on element type */
if (element_type != ARR_ELEMTYPE(array))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("cannot merge incompatible arrays"),
errdetail("Array with element type %s cannot be "
"included in ARRAY construct with element type %s.",
format_type_be(ARR_ELEMTYPE(array)),
format_type_be(element_type))));
if (firstone)
{
/* Get sub-array details from first member */
elem_ndims = ARR_NDIM(array);
ndims = elem_ndims + 1;
if (ndims <= 0 || ndims > MAXDIM)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("number of array dimensions (%d) exceeds " \
"the maximum allowed (%d)", ndims, MAXDIM)));
elem_dims = (int *) palloc(elem_ndims * sizeof(int));
memcpy(elem_dims, ARR_DIMS(array), elem_ndims * sizeof(int));
elem_lbs = (int *) palloc(elem_ndims * sizeof(int));
memcpy(elem_lbs, ARR_LBOUND(array), elem_ndims * sizeof(int));
firstone = false;
}
else
{
/* Check other sub-arrays are compatible */
if (elem_ndims != ARR_NDIM(array) ||
memcmp(elem_dims, ARR_DIMS(array),
elem_ndims * sizeof(int)) != 0 ||
memcmp(elem_lbs, ARR_LBOUND(array),
elem_ndims * sizeof(int)) != 0)
ereport(ERROR,
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
errmsg("multidimensional arrays must have array "
"expressions with matching dimensions")));
}
elem_ndatabytes = ARR_SIZE(array) - ARR_OVERHEAD(elem_ndims);
ndatabytes += elem_ndatabytes;
if (dat == NULL)
dat = (char *) palloc(ndatabytes);
else
dat = (char *) repalloc(dat, ndatabytes);
memcpy(dat + (ndatabytes - elem_ndatabytes),
ARR_DATA_PTR(array),
elem_ndatabytes);
}
/* setup for multi-D array */
dims[0] = outer_nelems;
lbs[0] = 1;
for (i = 1; i < ndims; i++)
{
dims[i] = elem_dims[i - 1];
lbs[i] = elem_lbs[i - 1];
}
nbytes = ndatabytes + ARR_OVERHEAD(ndims);
result = (ArrayType *) palloc(nbytes);
result->size = nbytes;
result->ndim = ndims;
result->flags = 0;
result->elemtype = element_type;
memcpy(ARR_DIMS(result), dims, ndims * sizeof(int));
memcpy(ARR_LBOUND(result), lbs, ndims * sizeof(int));
if (ndatabytes > 0)
memcpy(ARR_DATA_PTR(result), dat, ndatabytes);
if (dat != NULL)
pfree(dat);
}
return PointerGetDatum(result);
}
/* ----------------------------------------------------------------
* ExecEvalCoalesce
* ----------------------------------------------------------------
*/
static Datum
ExecEvalCoalesce(CoalesceExprState *coalesceExpr, ExprContext *econtext,
bool *isNull)
{
List *arg;
/* Simply loop through until something NOT NULL is found */
foreach(arg, coalesceExpr->args)
{
ExprState *e = (ExprState *) lfirst(arg);
Datum value;
value = ExecEvalExpr(e, econtext, isNull, NULL);
if (!*isNull)
return value;
}
/* Else return NULL */
*isNull = true;
return (Datum) 0;
}
/* ----------------------------------------------------------------
* ExecEvalNullIf
*
* Note that this is *always* derived from the equals operator,
* but since we need special processing of the arguments
* we can not simply reuse ExecEvalOper() or ExecEvalFunc().
* ----------------------------------------------------------------
*/
static Datum
ExecEvalNullIf(FuncExprState *fcache, ExprContext *econtext,
bool *isNull)
{
Datum result;
FunctionCallInfoData fcinfo;
ExprDoneCond argDone;
List *argList;
/*
* Initialize function cache if first time through
*/
if (fcache->func.fn_oid == InvalidOid)
{
NullIfExpr *op = (NullIfExpr *) fcache->xprstate.expr;
init_fcache(op->opfuncid, fcache, econtext->ecxt_per_query_memory);
Assert(!fcache->func.fn_retset);
}
/*
* extract info from fcache
*/
argList = fcache->args;
/* Need to prep callinfo structure */
MemSet(&fcinfo, 0, sizeof(fcinfo));
fcinfo.flinfo = &(fcache->func);
argDone = ExecEvalFuncArgs(&fcinfo, argList, econtext);
if (argDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("NULLIF does not support set arguments")));
Assert(fcinfo.nargs == 2);
/* if either argument is NULL they can't be equal */
if (!fcinfo.argnull[0] && !fcinfo.argnull[1])
{
fcinfo.isnull = false;
result = FunctionCallInvoke(&fcinfo);
/* if the arguments are equal return null */
if (!fcinfo.isnull && DatumGetBool(result))
{
*isNull = true;
return (Datum) 0;
}
}
/* else return first argument */
*isNull = fcinfo.argnull[0];
return fcinfo.arg[0];
}
/* ----------------------------------------------------------------
* ExecEvalNullTest
*
* Evaluate a NullTest node.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalNullTest(GenericExprState *nstate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
NullTest *ntest = (NullTest *) nstate->xprstate.expr;
Datum result;
result = ExecEvalExpr(nstate->arg, econtext, isNull, isDone);
if (isDone && *isDone == ExprEndResult)
return result; /* nothing to check */
switch (ntest->nulltesttype)
{
case IS_NULL:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(true);
}
else
return BoolGetDatum(false);
case IS_NOT_NULL:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(false);
}
else
return BoolGetDatum(true);
default:
elog(ERROR, "unrecognized nulltesttype: %d",
(int) ntest->nulltesttype);
return (Datum) 0; /* keep compiler quiet */
}
}
/* ----------------------------------------------------------------
* ExecEvalBooleanTest
*
* Evaluate a BooleanTest node.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalBooleanTest(GenericExprState *bstate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
BooleanTest *btest = (BooleanTest *) bstate->xprstate.expr;
Datum result;
result = ExecEvalExpr(bstate->arg, econtext, isNull, isDone);
if (isDone && *isDone == ExprEndResult)
return result; /* nothing to check */
switch (btest->booltesttype)
{
case IS_TRUE:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(false);
}
else if (DatumGetBool(result))
return BoolGetDatum(true);
else
return BoolGetDatum(false);
case IS_NOT_TRUE:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(true);
}
else if (DatumGetBool(result))
return BoolGetDatum(false);
else
return BoolGetDatum(true);
case IS_FALSE:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(false);
}
else if (DatumGetBool(result))
return BoolGetDatum(false);
else
return BoolGetDatum(true);
case IS_NOT_FALSE:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(true);
}
else if (DatumGetBool(result))
return BoolGetDatum(true);
else
return BoolGetDatum(false);
case IS_UNKNOWN:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(true);
}
else
return BoolGetDatum(false);
case IS_NOT_UNKNOWN:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(false);
}
else
return BoolGetDatum(true);
default:
elog(ERROR, "unrecognized booltesttype: %d",
(int) btest->booltesttype);
return (Datum) 0; /* keep compiler quiet */
}
}
/*
* ExecEvalCoerceToDomain
*
* Test the provided data against the domain constraint(s). If the data
* passes the constraint specifications, pass it through (return the
* datum) otherwise throw an error.
*/
static Datum
ExecEvalCoerceToDomain(CoerceToDomainState *cstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
CoerceToDomain *ctest = (CoerceToDomain *) cstate->xprstate.expr;
Datum result;
List *l;
result = ExecEvalExpr(cstate->arg, econtext, isNull, isDone);
if (isDone && *isDone == ExprEndResult)
return result; /* nothing to check */
foreach(l, cstate->constraints)
{
DomainConstraintState *con = (DomainConstraintState *) lfirst(l);
switch (con->constrainttype)
{
case DOM_CONSTRAINT_NOTNULL:
if (*isNull)
ereport(ERROR,
(errcode(ERRCODE_NOT_NULL_VIOLATION),
errmsg("domain %s does not allow null values",
format_type_be(ctest->resulttype))));
break;
case DOM_CONSTRAINT_CHECK:
{
Datum conResult;
bool conIsNull;
Datum save_datum;
bool save_isNull;
/*
* Set up value to be returned by CoerceToDomainValue
* nodes. We must save and restore prior setting of
* econtext's domainValue fields, in case this node is
* itself within a check expression for another
* domain.
*/
save_datum = econtext->domainValue_datum;
save_isNull = econtext->domainValue_isNull;
econtext->domainValue_datum = result;
econtext->domainValue_isNull = *isNull;
conResult = ExecEvalExpr(con->check_expr,
econtext, &conIsNull, NULL);
if (!conIsNull &&
!DatumGetBool(conResult))
ereport(ERROR,
(errcode(ERRCODE_CHECK_VIOLATION),
errmsg("value for domain %s violates check constraint \"%s\"",
format_type_be(ctest->resulttype),
con->name)));
econtext->domainValue_datum = save_datum;
econtext->domainValue_isNull = save_isNull;
break;
}
default:
elog(ERROR, "unrecognized constraint type: %d",
(int) con->constrainttype);
break;
}
}
/* If all has gone well (constraints did not fail) return the datum */
return result;
}
/*
* ExecEvalCoerceToDomainValue
*
* Return the value stored by CoerceToDomain.
*/
static Datum
ExecEvalCoerceToDomainValue(CoerceToDomainValue *conVal,
ExprContext *econtext, bool *isNull)
{
*isNull = econtext->domainValue_isNull;
return econtext->domainValue_datum;
}
/* ----------------------------------------------------------------
* ExecEvalFieldSelect
*
* Evaluate a FieldSelect node.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalFieldSelect(GenericExprState *fstate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
FieldSelect *fselect = (FieldSelect *) fstate->xprstate.expr;
Datum result;
TupleTableSlot *resSlot;
result = ExecEvalExpr(fstate->arg, econtext, isNull, isDone);
/* this test covers the isDone exception too: */
if (*isNull)
return result;
resSlot = (TupleTableSlot *) DatumGetPointer(result);
Assert(resSlot != NULL && IsA(resSlot, TupleTableSlot));
result = heap_getattr(resSlot->val,
fselect->fieldnum,
resSlot->ttc_tupleDescriptor,
isNull);
return result;
}
/* ----------------------------------------------------------------
* ExecEvalExpr
*
* Recursively evaluate a targetlist or qualification expression.
*
* Inputs:
* expression: the expression state tree to evaluate
* econtext: evaluation context information
*
* Outputs:
* return value: Datum value of result
* *isNull: set to TRUE if result is NULL (actual return value is
* meaningless if so); set to FALSE if non-null result
* *isDone: set to indicator of set-result status
*
* A caller that can only accept a singleton (non-set) result should pass
* NULL for isDone; if the expression computes a set result then an error
* will be reported via ereport. If the caller does pass an isDone pointer
* then *isDone is set to one of these three states:
* ExprSingleResult singleton result (not a set)
* ExprMultipleResult return value is one element of a set
* ExprEndResult there are no more elements in the set
* When ExprMultipleResult is returned, the caller should invoke
* ExecEvalExpr() repeatedly until ExprEndResult is returned. ExprEndResult
* is returned after the last real set element. For convenience isNull will
* always be set TRUE when ExprEndResult is returned, but this should not be
* taken as indicating a NULL element of the set. Note that these return
* conventions allow us to distinguish among a singleton NULL, a NULL element
* of a set, and an empty set.
*
* The caller should already have switched into the temporary memory
* context econtext->ecxt_per_tuple_memory. The convenience entry point
* ExecEvalExprSwitchContext() is provided for callers who don't prefer to
* do the switch in an outer loop. We do not do the switch here because
* it'd be a waste of cycles during recursive entries to ExecEvalExpr().
*
* This routine is an inner loop routine and must be as fast as possible.
* ----------------------------------------------------------------
*/
Datum
ExecEvalExpr(ExprState *expression,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
Datum retDatum;
Expr *expr;
/* Set default values for result flags: non-null, not a set result */
*isNull = false;
if (isDone)
*isDone = ExprSingleResult;
/* Is this still necessary? Doubtful... */
if (expression == NULL)
{
*isNull = true;
return (Datum) 0;
}
/*
* here we dispatch the work to the appropriate type of function given
* the type of our expression.
*/
expr = expression->expr;
switch (nodeTag(expr))
{
case T_Var:
retDatum = ExecEvalVar((Var *) expr, econtext, isNull);
break;
case T_Const:
{
Const *con = (Const *) expr;
retDatum = con->constvalue;
*isNull = con->constisnull;
break;
}
case T_Param:
retDatum = ExecEvalParam((Param *) expr, econtext, isNull);
break;
case T_Aggref:
retDatum = ExecEvalAggref((AggrefExprState *) expression,
econtext,
isNull);
break;
case T_ArrayRef:
retDatum = ExecEvalArrayRef((ArrayRefExprState *) expression,
econtext,
isNull,
isDone);
break;
case T_FuncExpr:
retDatum = ExecEvalFunc((FuncExprState *) expression, econtext,
isNull, isDone);
break;
case T_OpExpr:
retDatum = ExecEvalOper((FuncExprState *) expression, econtext,
isNull, isDone);
break;
case T_DistinctExpr:
retDatum = ExecEvalDistinct((FuncExprState *) expression, econtext,
isNull);
break;
case T_ScalarArrayOpExpr:
retDatum = ExecEvalScalarArrayOp((ScalarArrayOpExprState *) expression,
econtext, isNull);
break;
case T_BoolExpr:
{
BoolExprState *state = (BoolExprState *) expression;
switch (((BoolExpr *) expr)->boolop)
{
case AND_EXPR:
retDatum = ExecEvalAnd(state, econtext, isNull);
break;
case OR_EXPR:
retDatum = ExecEvalOr(state, econtext, isNull);
break;
case NOT_EXPR:
retDatum = ExecEvalNot(state, econtext, isNull);
break;
default:
elog(ERROR, "unrecognized boolop: %d",
(int) ((BoolExpr *) expr)->boolop);
retDatum = 0; /* keep compiler quiet */
break;
}
break;
}
case T_SubPlan:
retDatum = ExecSubPlan((SubPlanState *) expression,
econtext,
isNull);
break;
case T_FieldSelect:
retDatum = ExecEvalFieldSelect((GenericExprState *) expression,
econtext,
isNull,
isDone);
break;
case T_RelabelType:
retDatum = ExecEvalExpr(((GenericExprState *) expression)->arg,
econtext,
isNull,
isDone);
break;
case T_CaseExpr:
retDatum = ExecEvalCase((CaseExprState *) expression,
econtext,
isNull,
isDone);
break;
case T_ArrayExpr:
retDatum = ExecEvalArray((ArrayExprState *) expression,
econtext,
isNull);
break;
case T_CoalesceExpr:
retDatum = ExecEvalCoalesce((CoalesceExprState *) expression,
econtext,
isNull);
break;
case T_NullIfExpr:
retDatum = ExecEvalNullIf((FuncExprState *) expression,
econtext,
isNull);
break;
case T_NullTest:
retDatum = ExecEvalNullTest((GenericExprState *) expression,
econtext,
isNull,
isDone);
break;
case T_BooleanTest:
retDatum = ExecEvalBooleanTest((GenericExprState *) expression,
econtext,
isNull,
isDone);
break;
case T_CoerceToDomain:
retDatum = ExecEvalCoerceToDomain((CoerceToDomainState *) expression,
econtext,
isNull,
isDone);
break;
case T_CoerceToDomainValue:
retDatum = ExecEvalCoerceToDomainValue((CoerceToDomainValue *) expr,
econtext,
isNull);
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(expression));
retDatum = 0; /* keep compiler quiet */
break;
}
return retDatum;
} /* ExecEvalExpr() */
/*
* Same as above, but get into the right allocation context explicitly.
*/
Datum
ExecEvalExprSwitchContext(ExprState *expression,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
Datum retDatum;
MemoryContext oldContext;
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
retDatum = ExecEvalExpr(expression, econtext, isNull, isDone);
MemoryContextSwitchTo(oldContext);
return retDatum;
}
/*
* ExecInitExpr: prepare an expression tree for execution
*
* This function builds and returns an ExprState tree paralleling the given
* Expr node tree. The ExprState tree can then be handed to ExecEvalExpr
* for execution. Because the Expr tree itself is read-only as far as
* ExecInitExpr and ExecEvalExpr are concerned, several different executions
* of the same plan tree can occur concurrently.
*
* This must be called in a memory context that will last as long as repeated
* executions of the expression are needed. Typically the context will be
* the same as the per-query context of the associated ExprContext.
*
* Any Aggref and SubPlan nodes found in the tree are added to the lists
* of such nodes held by the parent PlanState. Otherwise, we do very little
* initialization here other than building the state-node tree. Any nontrivial
* work associated with initializing runtime info for a node should happen
* during the first actual evaluation of that node. (This policy lets us
* avoid work if the node is never actually evaluated.)
*
* Note: there is no ExecEndExpr function; we assume that any resource
* cleanup needed will be handled by just releasing the memory context
* in which the state tree is built. Functions that require additional
* cleanup work can register a shutdown callback in the ExprContext.
*
* 'node' is the root of the expression tree to examine
* 'parent' is the PlanState node that owns the expression.
*
* 'parent' may be NULL if we are preparing an expression that is not
* associated with a plan tree. (If so, it can't have aggs or subplans.)
* This case should usually come through ExecPrepareExpr, not directly here.
*/
ExprState *
ExecInitExpr(Expr *node, PlanState *parent)
{
ExprState *state;
if (node == NULL)
return NULL;
switch (nodeTag(node))
{
case T_Var:
case T_Const:
case T_Param:
case T_CoerceToDomainValue:
/* No special setup needed for these node types */
state = (ExprState *) makeNode(ExprState);
break;
case T_Aggref:
{
Aggref *aggref = (Aggref *) node;
AggrefExprState *astate = makeNode(AggrefExprState);
if (parent && IsA(parent, AggState))
{
AggState *aggstate = (AggState *) parent;
int naggs;
aggstate->aggs = lcons(astate, aggstate->aggs);
naggs = ++aggstate->numaggs;
astate->target = ExecInitExpr(aggref->target, parent);
/*
* Complain if the aggregate's argument contains any
* aggregates; nested agg functions are semantically
* nonsensical. (This should have been caught
* earlier, but we defend against it here anyway.)
*/
if (naggs != aggstate->numaggs)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls may not be nested")));
}
else
{
/* planner messed up */
elog(ERROR, "aggref found in non-Agg plan node");
}
state = (ExprState *) astate;
}
break;
case T_ArrayRef:
{
ArrayRef *aref = (ArrayRef *) node;
ArrayRefExprState *astate = makeNode(ArrayRefExprState);
astate->refupperindexpr = (List *)
ExecInitExpr((Expr *) aref->refupperindexpr, parent);
astate->reflowerindexpr = (List *)
ExecInitExpr((Expr *) aref->reflowerindexpr, parent);
astate->refexpr = ExecInitExpr(aref->refexpr, parent);
astate->refassgnexpr = ExecInitExpr(aref->refassgnexpr,
parent);
/* do one-time catalog lookups for type info */
astate->refattrlength = get_typlen(aref->refarraytype);
get_typlenbyvalalign(aref->refelemtype,
&astate->refelemlength,
&astate->refelembyval,
&astate->refelemalign);
state = (ExprState *) astate;
}
break;
case T_FuncExpr:
{
FuncExpr *funcexpr = (FuncExpr *) node;
FuncExprState *fstate = makeNode(FuncExprState);
fstate->args = (List *)
ExecInitExpr((Expr *) funcexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
state = (ExprState *) fstate;
}
break;
case T_OpExpr:
{
OpExpr *opexpr = (OpExpr *) node;
FuncExprState *fstate = makeNode(FuncExprState);
fstate->args = (List *)
ExecInitExpr((Expr *) opexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
state = (ExprState *) fstate;
}
break;
case T_DistinctExpr:
{
DistinctExpr *distinctexpr = (DistinctExpr *) node;
FuncExprState *fstate = makeNode(FuncExprState);
fstate->args = (List *)
ExecInitExpr((Expr *) distinctexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
state = (ExprState *) fstate;
}
break;
case T_ScalarArrayOpExpr:
{
ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
ScalarArrayOpExprState *sstate = makeNode(ScalarArrayOpExprState);
sstate->fxprstate.args = (List *)
ExecInitExpr((Expr *) opexpr->args, parent);
sstate->fxprstate.func.fn_oid = InvalidOid; /* not initialized */
sstate->element_type = InvalidOid; /* ditto */
state = (ExprState *) sstate;
}
break;
case T_BoolExpr:
{
BoolExpr *boolexpr = (BoolExpr *) node;
BoolExprState *bstate = makeNode(BoolExprState);
bstate->args = (List *)
ExecInitExpr((Expr *) boolexpr->args, parent);
state = (ExprState *) bstate;
}
break;
case T_SubPlan:
{
/* Keep this in sync with ExecInitExprInitPlan, below */
SubPlan *subplan = (SubPlan *) node;
SubPlanState *sstate = makeNode(SubPlanState);
if (!parent)
elog(ERROR, "SubPlan found with no parent plan");
/*
* Here we just add the SubPlanState nodes to
* parent->subPlan. The subplans will be initialized
* later.
*/
parent->subPlan = lcons(sstate, parent->subPlan);
sstate->sub_estate = NULL;
sstate->planstate = NULL;
sstate->exprs = (List *)
ExecInitExpr((Expr *) subplan->exprs, parent);
sstate->args = (List *)
ExecInitExpr((Expr *) subplan->args, parent);
state = (ExprState *) sstate;
}
break;
case T_FieldSelect:
{
FieldSelect *fselect = (FieldSelect *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->arg = ExecInitExpr(fselect->arg, parent);
state = (ExprState *) gstate;
}
break;
case T_RelabelType:
{
RelabelType *relabel = (RelabelType *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->arg = ExecInitExpr(relabel->arg, parent);
state = (ExprState *) gstate;
}
break;
case T_CaseExpr:
{
CaseExpr *caseexpr = (CaseExpr *) node;
CaseExprState *cstate = makeNode(CaseExprState);
FastList outlist;
List *inlist;
FastListInit(&outlist);
foreach(inlist, caseexpr->args)
{
CaseWhen *when = (CaseWhen *) lfirst(inlist);
CaseWhenState *wstate = makeNode(CaseWhenState);
Assert(IsA(when, CaseWhen));
wstate->xprstate.expr = (Expr *) when;
wstate->expr = ExecInitExpr(when->expr, parent);
wstate->result = ExecInitExpr(when->result, parent);
FastAppend(&outlist, wstate);
}
cstate->args = FastListValue(&outlist);
/* caseexpr->arg should be null by now */
Assert(caseexpr->arg == NULL);
cstate->defresult = ExecInitExpr(caseexpr->defresult, parent);
state = (ExprState *) cstate;
}
break;
case T_ArrayExpr:
{
ArrayExpr *arrayexpr = (ArrayExpr *) node;
ArrayExprState *astate = makeNode(ArrayExprState);
FastList outlist;
List *inlist;
FastListInit(&outlist);
foreach(inlist, arrayexpr->elements)
{
Expr *e = (Expr *) lfirst(inlist);
ExprState *estate;
estate = ExecInitExpr(e, parent);
FastAppend(&outlist, estate);
}
astate->elements = FastListValue(&outlist);
/* do one-time catalog lookup for type info */
get_typlenbyvalalign(arrayexpr->element_typeid,
&astate->elemlength,
&astate->elembyval,
&astate->elemalign);
state = (ExprState *) astate;
}
break;
case T_CoalesceExpr:
{
CoalesceExpr *coalesceexpr = (CoalesceExpr *) node;
CoalesceExprState *cstate = makeNode(CoalesceExprState);
FastList outlist;
List *inlist;
FastListInit(&outlist);
foreach(inlist, coalesceexpr->args)
{
Expr *e = (Expr *) lfirst(inlist);
ExprState *estate;
estate = ExecInitExpr(e, parent);
FastAppend(&outlist, estate);
}
cstate->args = FastListValue(&outlist);
state = (ExprState *) cstate;
}
break;
case T_NullIfExpr:
{
NullIfExpr *nullifexpr = (NullIfExpr *) node;
FuncExprState *fstate = makeNode(FuncExprState);
fstate->args = (List *)
ExecInitExpr((Expr *) nullifexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
state = (ExprState *) fstate;
}
break;
case T_NullTest:
{
NullTest *ntest = (NullTest *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->arg = ExecInitExpr(ntest->arg, parent);
state = (ExprState *) gstate;
}
break;
case T_BooleanTest:
{
BooleanTest *btest = (BooleanTest *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->arg = ExecInitExpr(btest->arg, parent);
state = (ExprState *) gstate;
}
break;
case T_CoerceToDomain:
{
CoerceToDomain *ctest = (CoerceToDomain *) node;
CoerceToDomainState *cstate = makeNode(CoerceToDomainState);
cstate->arg = ExecInitExpr(ctest->arg, parent);
cstate->constraints = GetDomainConstraints(ctest->resulttype);
state = (ExprState *) cstate;
}
break;
case T_TargetEntry:
{
TargetEntry *tle = (TargetEntry *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->arg = ExecInitExpr(tle->expr, parent);
state = (ExprState *) gstate;
}
break;
case T_List:
{
FastList outlist;
List *inlist;
FastListInit(&outlist);
foreach(inlist, (List *) node)
{
FastAppend(&outlist,
ExecInitExpr((Expr *) lfirst(inlist),
parent));
}
/* Don't fall through to the "common" code below */
return (ExprState *) FastListValue(&outlist);
}
default:
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(node));
state = NULL; /* keep compiler quiet */
break;
}
/* Common code for all state-node types */
state->expr = node;
return state;
}
/*
* ExecInitExprInitPlan --- initialize a subplan expr that's being handled
* as an InitPlan. This is identical to ExecInitExpr's handling of a regular
* subplan expr, except we do NOT want to add the node to the parent's
* subplan list.
*/
SubPlanState *
ExecInitExprInitPlan(SubPlan *node, PlanState *parent)
{
SubPlanState *sstate = makeNode(SubPlanState);
if (!parent)
elog(ERROR, "SubPlan found with no parent plan");
/* The subplan's state will be initialized later */
sstate->sub_estate = NULL;
sstate->planstate = NULL;
sstate->exprs = (List *) ExecInitExpr((Expr *) node->exprs, parent);
sstate->args = (List *) ExecInitExpr((Expr *) node->args, parent);
sstate->xprstate.expr = (Expr *) node;
return sstate;
}
/*
* ExecPrepareExpr --- initialize for expression execution outside a normal
* Plan tree context.
*
* This differs from ExecInitExpr in that we don't assume the caller is
* already running in the EState's per-query context. Also, we apply
* fix_opfuncids() to the passed expression tree to be sure it is ready
* to run. (In ordinary Plan trees the planner will have fixed opfuncids,
* but callers outside the executor will not have done this.)
*/
ExprState *
ExecPrepareExpr(Expr *node, EState *estate)
{
ExprState *result;
MemoryContext oldcontext;
fix_opfuncids((Node *) node);
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
result = ExecInitExpr(node, NULL);
MemoryContextSwitchTo(oldcontext);
return result;
}
/* ----------------------------------------------------------------
* ExecQual / ExecTargetList / ExecProject
* ----------------------------------------------------------------
*/
/* ----------------------------------------------------------------
* ExecQual
*
* Evaluates a conjunctive boolean expression (qual list) and
* returns true iff none of the subexpressions are false.
* (We also return true if the list is empty.)
*
* If some of the subexpressions yield NULL but none yield FALSE,
* then the result of the conjunction is NULL (ie, unknown)
* according to three-valued boolean logic. In this case,
* we return the value specified by the "resultForNull" parameter.
*
* Callers evaluating WHERE clauses should pass resultForNull=FALSE,
* since SQL specifies that tuples with null WHERE results do not
* get selected. On the other hand, callers evaluating constraint
* conditions should pass resultForNull=TRUE, since SQL also specifies
* that NULL constraint conditions are not failures.
*
* NOTE: it would not be correct to use this routine to evaluate an
* AND subclause of a boolean expression; for that purpose, a NULL
* result must be returned as NULL so that it can be properly treated
* in the next higher operator (cf. ExecEvalAnd and ExecEvalOr).
* This routine is only used in contexts where a complete expression
* is being evaluated and we know that NULL can be treated the same
* as one boolean result or the other.
*
* ----------------------------------------------------------------
*/
bool
ExecQual(List *qual, ExprContext *econtext, bool resultForNull)
{
bool result;
MemoryContext oldContext;
List *qlist;
/*
* debugging stuff
*/
EV_printf("ExecQual: qual is ");
EV_nodeDisplay(qual);
EV_printf("\n");
IncrProcessed();
/*
* Run in short-lived per-tuple context while computing expressions.
*/
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
/*
* Evaluate the qual conditions one at a time. If we find a FALSE
* result, we can stop evaluating and return FALSE --- the AND result
* must be FALSE. Also, if we find a NULL result when resultForNull
* is FALSE, we can stop and return FALSE --- the AND result must be
* FALSE or NULL in that case, and the caller doesn't care which.
*
* If we get to the end of the list, we can return TRUE. This will
* happen when the AND result is indeed TRUE, or when the AND result
* is NULL (one or more NULL subresult, with all the rest TRUE) and
* the caller has specified resultForNull = TRUE.
*/
result = true;
foreach(qlist, qual)
{
ExprState *clause = (ExprState *) lfirst(qlist);
Datum expr_value;
bool isNull;
expr_value = ExecEvalExpr(clause, econtext, &isNull, NULL);
if (isNull)
{
if (resultForNull == false)
{
result = false; /* treat NULL as FALSE */
break;
}
}
else
{
if (!DatumGetBool(expr_value))
{
result = false; /* definitely FALSE */
break;
}
}
}
MemoryContextSwitchTo(oldContext);
return result;
}
/*
* Number of items in a tlist (including any resjunk items!)
*/
int
ExecTargetListLength(List *targetlist)
{
/* This used to be more complex, but fjoins are dead */
return length(targetlist);
}
/*
* Number of items in a tlist, not including any resjunk items
*/
int
ExecCleanTargetListLength(List *targetlist)
{
int len = 0;
List *tl;
foreach(tl, targetlist)
{
TargetEntry *curTle = (TargetEntry *) lfirst(tl);
Assert(IsA(curTle, TargetEntry));
if (!curTle->resdom->resjunk)
len++;
}
return len;
}
/* ----------------------------------------------------------------
* ExecTargetList
*
* Evaluates a targetlist with respect to the given
* expression context and returns a tuple.
*
* The caller must pass workspace for the values and nulls arrays
* as well as the itemIsDone array. This convention saves palloc'ing
* workspace on each call, and some callers may find it useful to examine
* the values array directly.
*
* As with ExecEvalExpr, the caller should pass isDone = NULL if not
* prepared to deal with sets of result tuples. Otherwise, a return
* of *isDone = ExprMultipleResult signifies a set element, and a return
* of *isDone = ExprEndResult signifies end of the set of tuple.
* ----------------------------------------------------------------
*/
static HeapTuple
ExecTargetList(List *targetlist,
TupleDesc targettype,
ExprContext *econtext,
Datum *values,
char *nulls,
ExprDoneCond *itemIsDone,
ExprDoneCond *isDone)
{
MemoryContext oldContext;
List *tl;
bool isNull;
bool haveDoneSets;
static struct tupleDesc NullTupleDesc; /* we assume this inits to
* zeroes */
/*
* debugging stuff
*/
EV_printf("ExecTargetList: tl is ");
EV_nodeDisplay(targetlist);
EV_printf("\n");
/*
* Run in short-lived per-tuple context while computing expressions.
*/
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
/*
* There used to be some klugy and demonstrably broken code here that
* special-cased the situation where targetlist == NIL. Now we just
* fall through and return an empty-but-valid tuple. We do, however,
* have to cope with the possibility that targettype is NULL ---
* heap_formtuple won't like that, so pass a dummy descriptor with
* natts = 0 to deal with it.
*/
if (targettype == NULL)
targettype = &NullTupleDesc;
/*
* evaluate all the expressions in the target list
*/
if (isDone)
*isDone = ExprSingleResult; /* until proven otherwise */
haveDoneSets = false; /* any exhausted set exprs in tlist? */
foreach(tl, targetlist)
{
GenericExprState *gstate = (GenericExprState *) lfirst(tl);
TargetEntry *tle = (TargetEntry *) gstate->xprstate.expr;
AttrNumber resind = tle->resdom->resno - 1;
values[resind] = ExecEvalExpr(gstate->arg,
econtext,
&isNull,
&itemIsDone[resind]);
nulls[resind] = isNull ? 'n' : ' ';
if (itemIsDone[resind] != ExprSingleResult)
{
/* We have a set-valued expression in the tlist */
if (isDone == NULL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-valued function called in context that cannot accept a set")));
if (itemIsDone[resind] == ExprMultipleResult)
{
/* we have undone sets in the tlist, set flag */
*isDone = ExprMultipleResult;
}
else
{
/* we have done sets in the tlist, set flag for that */
haveDoneSets = true;
}
}
}
if (haveDoneSets)
{
/*
* note: can't get here unless we verified isDone != NULL
*/
if (*isDone == ExprSingleResult)
{
/*
* all sets are done, so report that tlist expansion is
* complete.
*/
*isDone = ExprEndResult;
MemoryContextSwitchTo(oldContext);
return NULL;
}
else
{
/*
* We have some done and some undone sets. Restart the done
* ones so that we can deliver a tuple (if possible).
*/
foreach(tl, targetlist)
{
GenericExprState *gstate = (GenericExprState *) lfirst(tl);
TargetEntry *tle = (TargetEntry *) gstate->xprstate.expr;
AttrNumber resind = tle->resdom->resno - 1;
if (itemIsDone[resind] == ExprEndResult)
{
values[resind] = ExecEvalExpr(gstate->arg,
econtext,
&isNull,
&itemIsDone[resind]);
nulls[resind] = isNull ? 'n' : ' ';
if (itemIsDone[resind] == ExprEndResult)
{
/*
* Oh dear, this item is returning an empty set.
* Guess we can't make a tuple after all.
*/
*isDone = ExprEndResult;
break;
}
}
}
/*
* If we cannot make a tuple because some sets are empty, we
* still have to cycle the nonempty sets to completion, else
* resources will not be released from subplans etc.
*
* XXX is that still necessary?
*/
if (*isDone == ExprEndResult)
{
foreach(tl, targetlist)
{
GenericExprState *gstate = (GenericExprState *) lfirst(tl);
TargetEntry *tle = (TargetEntry *) gstate->xprstate.expr;
AttrNumber resind = tle->resdom->resno - 1;
while (itemIsDone[resind] == ExprMultipleResult)
{
(void) ExecEvalExpr(gstate->arg,
econtext,
&isNull,
&itemIsDone[resind]);
}
}
MemoryContextSwitchTo(oldContext);
return NULL;
}
}
}
/*
* form the new result tuple (in the caller's memory context!)
*/
MemoryContextSwitchTo(oldContext);
return heap_formtuple(targettype, values, nulls);
}
/* ----------------------------------------------------------------
* ExecProject
*
* projects a tuple based on projection info and stores
* it in the specified tuple table slot.
*
* Note: someday soon the executor can be extended to eliminate
* redundant projections by storing pointers to datums
* in the tuple table and then passing these around when
* possible. this should make things much quicker.
* -cim 6/3/91
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecProject(ProjectionInfo *projInfo, ExprDoneCond *isDone)
{
TupleTableSlot *slot;
TupleDesc tupType;
HeapTuple newTuple;
/*
* sanity checks
*/
if (projInfo == NULL)
return (TupleTableSlot *) NULL;
/*
* get the projection info we want
*/
slot = projInfo->pi_slot;
tupType = slot->ttc_tupleDescriptor;
/*
* form a new result tuple (if possible --- result can be NULL)
*/
newTuple = ExecTargetList(projInfo->pi_targetlist,
tupType,
projInfo->pi_exprContext,
projInfo->pi_tupValues,
projInfo->pi_tupNulls,
projInfo->pi_itemIsDone,
isDone);
/*
* store the tuple in the projection slot and return the slot.
*/
return ExecStoreTuple(newTuple, /* tuple to store */
slot, /* slot to store in */
InvalidBuffer, /* tuple has no buffer */
true);
}