mirror of
https://github.com/postgres/postgres.git
synced 2025-05-09 18:21:05 +03:00
of tuples when passing data up through multiple plan nodes. A slot can now hold either a normal "physical" HeapTuple, or a "virtual" tuple consisting of Datum/isnull arrays. Upper plan levels can usually just copy the Datum arrays, avoiding heap_formtuple() and possible subsequent nocachegetattr() calls to extract the data again. This work extends Atsushi Ogawa's earlier patch, which provided the key idea of adding Datum arrays to TupleTableSlots. (I believe however that something like this was foreseen way back in Berkeley days --- see the old comment on ExecProject.) A test case involving many levels of join of fairly wide tables (about 80 columns altogether) showed about 3x overall speedup, though simple queries will probably not be helped very much. I have also duplicated some code in heaptuple.c in order to provide versions of heap_formtuple and friends that use "bool" arrays to indicate null attributes, instead of the old convention of "char" arrays containing either 'n' or ' '. This provides a better match to the convention used by ExecEvalExpr. While I have not made a concerted effort to get rid of uses of the old routines, I think they should be deprecated and eventually removed.
518 lines
14 KiB
C
518 lines
14 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* execGrouping.c
|
|
* executor utility routines for grouping, hashing, and aggregation
|
|
*
|
|
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/executor/execGrouping.c,v 1.14 2005/03/16 21:38:06 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/hash.h"
|
|
#include "access/heapam.h"
|
|
#include "executor/executor.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
|
|
|
|
static TupleHashTable CurTupleHashTable = NULL;
|
|
|
|
static uint32 TupleHashTableHash(const void *key, Size keysize);
|
|
static int TupleHashTableMatch(const void *key1, const void *key2,
|
|
Size keysize);
|
|
|
|
|
|
/*****************************************************************************
|
|
* Utility routines for grouping tuples together
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* execTuplesMatch
|
|
* Return true if two tuples match in all the indicated fields.
|
|
*
|
|
* This actually implements SQL's notion of "not distinct". Two nulls
|
|
* match, a null and a not-null don't match.
|
|
*
|
|
* slot1, slot2: the tuples to compare (must have same columns!)
|
|
* numCols: the number of attributes to be examined
|
|
* matchColIdx: array of attribute column numbers
|
|
* eqFunctions: array of fmgr lookup info for the equality functions to use
|
|
* evalContext: short-term memory context for executing the functions
|
|
*
|
|
* NB: evalContext is reset each time!
|
|
*/
|
|
bool
|
|
execTuplesMatch(TupleTableSlot *slot1,
|
|
TupleTableSlot *slot2,
|
|
int numCols,
|
|
AttrNumber *matchColIdx,
|
|
FmgrInfo *eqfunctions,
|
|
MemoryContext evalContext)
|
|
{
|
|
MemoryContext oldContext;
|
|
bool result;
|
|
int i;
|
|
|
|
/* Reset and switch into the temp context. */
|
|
MemoryContextReset(evalContext);
|
|
oldContext = MemoryContextSwitchTo(evalContext);
|
|
|
|
/*
|
|
* We cannot report a match without checking all the fields, but we
|
|
* can report a non-match as soon as we find unequal fields. So,
|
|
* start comparing at the last field (least significant sort key).
|
|
* That's the most likely to be different if we are dealing with
|
|
* sorted input.
|
|
*/
|
|
result = true;
|
|
|
|
for (i = numCols; --i >= 0;)
|
|
{
|
|
AttrNumber att = matchColIdx[i];
|
|
Datum attr1,
|
|
attr2;
|
|
bool isNull1,
|
|
isNull2;
|
|
|
|
attr1 = slot_getattr(slot1, att, &isNull1);
|
|
|
|
attr2 = slot_getattr(slot2, att, &isNull2);
|
|
|
|
if (isNull1 != isNull2)
|
|
{
|
|
result = false; /* one null and one not; they aren't equal */
|
|
break;
|
|
}
|
|
|
|
if (isNull1)
|
|
continue; /* both are null, treat as equal */
|
|
|
|
/* Apply the type-specific equality function */
|
|
|
|
if (!DatumGetBool(FunctionCall2(&eqfunctions[i],
|
|
attr1, attr2)))
|
|
{
|
|
result = false; /* they aren't equal */
|
|
break;
|
|
}
|
|
}
|
|
|
|
MemoryContextSwitchTo(oldContext);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* execTuplesUnequal
|
|
* Return true if two tuples are definitely unequal in the indicated
|
|
* fields.
|
|
*
|
|
* Nulls are neither equal nor unequal to anything else. A true result
|
|
* is obtained only if there are non-null fields that compare not-equal.
|
|
*
|
|
* Parameters are identical to execTuplesMatch.
|
|
*/
|
|
bool
|
|
execTuplesUnequal(TupleTableSlot *slot1,
|
|
TupleTableSlot *slot2,
|
|
int numCols,
|
|
AttrNumber *matchColIdx,
|
|
FmgrInfo *eqfunctions,
|
|
MemoryContext evalContext)
|
|
{
|
|
MemoryContext oldContext;
|
|
bool result;
|
|
int i;
|
|
|
|
/* Reset and switch into the temp context. */
|
|
MemoryContextReset(evalContext);
|
|
oldContext = MemoryContextSwitchTo(evalContext);
|
|
|
|
/*
|
|
* We cannot report a match without checking all the fields, but we
|
|
* can report a non-match as soon as we find unequal fields. So,
|
|
* start comparing at the last field (least significant sort key).
|
|
* That's the most likely to be different if we are dealing with
|
|
* sorted input.
|
|
*/
|
|
result = false;
|
|
|
|
for (i = numCols; --i >= 0;)
|
|
{
|
|
AttrNumber att = matchColIdx[i];
|
|
Datum attr1,
|
|
attr2;
|
|
bool isNull1,
|
|
isNull2;
|
|
|
|
attr1 = slot_getattr(slot1, att, &isNull1);
|
|
|
|
if (isNull1)
|
|
continue; /* can't prove anything here */
|
|
|
|
attr2 = slot_getattr(slot2, att, &isNull2);
|
|
|
|
if (isNull2)
|
|
continue; /* can't prove anything here */
|
|
|
|
/* Apply the type-specific equality function */
|
|
|
|
if (!DatumGetBool(FunctionCall2(&eqfunctions[i],
|
|
attr1, attr2)))
|
|
{
|
|
result = true; /* they are unequal */
|
|
break;
|
|
}
|
|
}
|
|
|
|
MemoryContextSwitchTo(oldContext);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* execTuplesMatchPrepare
|
|
* Look up the equality functions needed for execTuplesMatch or
|
|
* execTuplesUnequal.
|
|
*
|
|
* The result is a palloc'd array.
|
|
*/
|
|
FmgrInfo *
|
|
execTuplesMatchPrepare(TupleDesc tupdesc,
|
|
int numCols,
|
|
AttrNumber *matchColIdx)
|
|
{
|
|
FmgrInfo *eqfunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo));
|
|
int i;
|
|
|
|
for (i = 0; i < numCols; i++)
|
|
{
|
|
AttrNumber att = matchColIdx[i];
|
|
Oid typid = tupdesc->attrs[att - 1]->atttypid;
|
|
Oid eq_function;
|
|
|
|
eq_function = equality_oper_funcid(typid);
|
|
fmgr_info(eq_function, &eqfunctions[i]);
|
|
}
|
|
|
|
return eqfunctions;
|
|
}
|
|
|
|
/*
|
|
* execTuplesHashPrepare
|
|
* Look up the equality and hashing functions needed for a TupleHashTable.
|
|
*
|
|
* This is similar to execTuplesMatchPrepare, but we also need to find the
|
|
* hash functions associated with the equality operators. *eqfunctions and
|
|
* *hashfunctions receive the palloc'd result arrays.
|
|
*/
|
|
void
|
|
execTuplesHashPrepare(TupleDesc tupdesc,
|
|
int numCols,
|
|
AttrNumber *matchColIdx,
|
|
FmgrInfo **eqfunctions,
|
|
FmgrInfo **hashfunctions)
|
|
{
|
|
int i;
|
|
|
|
*eqfunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo));
|
|
*hashfunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo));
|
|
|
|
for (i = 0; i < numCols; i++)
|
|
{
|
|
AttrNumber att = matchColIdx[i];
|
|
Oid typid = tupdesc->attrs[att - 1]->atttypid;
|
|
Operator optup;
|
|
Oid eq_opr;
|
|
Oid eq_function;
|
|
Oid hash_function;
|
|
|
|
optup = equality_oper(typid, false);
|
|
eq_opr = oprid(optup);
|
|
eq_function = oprfuncid(optup);
|
|
ReleaseSysCache(optup);
|
|
hash_function = get_op_hash_function(eq_opr);
|
|
if (!OidIsValid(hash_function)) /* should not happen */
|
|
elog(ERROR, "could not find hash function for hash operator %u",
|
|
eq_opr);
|
|
fmgr_info(eq_function, &(*eqfunctions)[i]);
|
|
fmgr_info(hash_function, &(*hashfunctions)[i]);
|
|
}
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
* Utility routines for all-in-memory hash tables
|
|
*
|
|
* These routines build hash tables for grouping tuples together (eg, for
|
|
* hash aggregation). There is one entry for each not-distinct set of tuples
|
|
* presented.
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* Construct an empty TupleHashTable
|
|
*
|
|
* numCols, keyColIdx: identify the tuple fields to use as lookup key
|
|
* eqfunctions: equality comparison functions to use
|
|
* hashfunctions: datatype-specific hashing functions to use
|
|
* nbuckets: initial estimate of hashtable size
|
|
* entrysize: size of each entry (at least sizeof(TupleHashEntryData))
|
|
* tablecxt: memory context in which to store table and table entries
|
|
* tempcxt: short-lived context for evaluation hash and comparison functions
|
|
*
|
|
* The function arrays may be made with execTuplesHashPrepare().
|
|
*
|
|
* Note that keyColIdx, eqfunctions, and hashfunctions must be allocated in
|
|
* storage that will live as long as the hashtable does.
|
|
*/
|
|
TupleHashTable
|
|
BuildTupleHashTable(int numCols, AttrNumber *keyColIdx,
|
|
FmgrInfo *eqfunctions,
|
|
FmgrInfo *hashfunctions,
|
|
int nbuckets, Size entrysize,
|
|
MemoryContext tablecxt, MemoryContext tempcxt)
|
|
{
|
|
TupleHashTable hashtable;
|
|
HASHCTL hash_ctl;
|
|
|
|
Assert(nbuckets > 0);
|
|
Assert(entrysize >= sizeof(TupleHashEntryData));
|
|
|
|
hashtable = (TupleHashTable) MemoryContextAlloc(tablecxt,
|
|
sizeof(TupleHashTableData));
|
|
|
|
hashtable->numCols = numCols;
|
|
hashtable->keyColIdx = keyColIdx;
|
|
hashtable->eqfunctions = eqfunctions;
|
|
hashtable->hashfunctions = hashfunctions;
|
|
hashtable->tablecxt = tablecxt;
|
|
hashtable->tempcxt = tempcxt;
|
|
hashtable->entrysize = entrysize;
|
|
hashtable->tableslot = NULL; /* will be made on first lookup */
|
|
hashtable->inputslot = NULL;
|
|
|
|
MemSet(&hash_ctl, 0, sizeof(hash_ctl));
|
|
hash_ctl.keysize = sizeof(TupleHashEntryData);
|
|
hash_ctl.entrysize = entrysize;
|
|
hash_ctl.hash = TupleHashTableHash;
|
|
hash_ctl.match = TupleHashTableMatch;
|
|
hash_ctl.hcxt = tablecxt;
|
|
hashtable->hashtab = hash_create("TupleHashTable", (long) nbuckets,
|
|
&hash_ctl,
|
|
HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
|
|
|
|
return hashtable;
|
|
}
|
|
|
|
/*
|
|
* Find or create a hashtable entry for the tuple group containing the
|
|
* given tuple.
|
|
*
|
|
* If isnew is NULL, we do not create new entries; we return NULL if no
|
|
* match is found.
|
|
*
|
|
* If isnew isn't NULL, then a new entry is created if no existing entry
|
|
* matches. On return, *isnew is true if the entry is newly created,
|
|
* false if it existed already. Any extra space in a new entry has been
|
|
* zeroed.
|
|
*/
|
|
TupleHashEntry
|
|
LookupTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot,
|
|
bool *isnew)
|
|
{
|
|
TupleHashEntry entry;
|
|
MemoryContext oldContext;
|
|
TupleHashTable saveCurHT;
|
|
TupleHashEntryData dummy;
|
|
bool found;
|
|
|
|
/* If first time through, clone the input slot to make table slot */
|
|
if (hashtable->tableslot == NULL)
|
|
{
|
|
TupleDesc tupdesc;
|
|
|
|
oldContext = MemoryContextSwitchTo(hashtable->tablecxt);
|
|
/*
|
|
* We copy the input tuple descriptor just for safety --- we assume
|
|
* all input tuples will have equivalent descriptors.
|
|
*/
|
|
tupdesc = CreateTupleDescCopy(slot->tts_tupleDescriptor);
|
|
hashtable->tableslot = MakeSingleTupleTableSlot(tupdesc);
|
|
MemoryContextSwitchTo(oldContext);
|
|
}
|
|
|
|
/* Need to run the hash functions in short-lived context */
|
|
oldContext = MemoryContextSwitchTo(hashtable->tempcxt);
|
|
|
|
/*
|
|
* Set up data needed by hash and match functions
|
|
*
|
|
* We save and restore CurTupleHashTable just in case someone manages to
|
|
* invoke this code re-entrantly.
|
|
*/
|
|
hashtable->inputslot = slot;
|
|
saveCurHT = CurTupleHashTable;
|
|
CurTupleHashTable = hashtable;
|
|
|
|
/* Search the hash table */
|
|
dummy.firstTuple = NULL; /* flag to reference inputslot */
|
|
entry = (TupleHashEntry) hash_search(hashtable->hashtab,
|
|
&dummy,
|
|
isnew ? HASH_ENTER : HASH_FIND,
|
|
&found);
|
|
|
|
if (isnew)
|
|
{
|
|
if (found)
|
|
{
|
|
/* found pre-existing entry */
|
|
*isnew = false;
|
|
}
|
|
else
|
|
{
|
|
/* created new entry ... we hope */
|
|
if (entry == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OUT_OF_MEMORY),
|
|
errmsg("out of memory")));
|
|
|
|
/*
|
|
* Zero any caller-requested space in the entry. (This zaps
|
|
* the "key data" dynahash.c copied into the new entry, but we
|
|
* don't care since we're about to overwrite it anyway.)
|
|
*/
|
|
MemSet(entry, 0, hashtable->entrysize);
|
|
|
|
/* Copy the first tuple into the table context */
|
|
MemoryContextSwitchTo(hashtable->tablecxt);
|
|
entry->firstTuple = ExecCopySlotTuple(slot);
|
|
|
|
*isnew = true;
|
|
}
|
|
}
|
|
|
|
CurTupleHashTable = saveCurHT;
|
|
|
|
MemoryContextSwitchTo(oldContext);
|
|
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Compute the hash value for a tuple
|
|
*
|
|
* The passed-in key is a pointer to TupleHashEntryData. In an actual
|
|
* hash table entry, the firstTuple field therein points to a physical
|
|
* tuple. LookupTupleHashEntry sets up a dummy TupleHashEntryData with
|
|
* a NULL firstTuple field --- that cues us to look at the inputslot instead.
|
|
* This convention avoids the need to materialize virtual input tuples
|
|
* unless they actually need to get copied into the table.
|
|
*
|
|
* CurTupleHashTable must be set before calling this, since dynahash.c
|
|
* doesn't provide any API that would let us get at the hashtable otherwise.
|
|
*
|
|
* Also, the caller must select an appropriate memory context for running
|
|
* the hash functions. (dynahash.c doesn't change CurrentMemoryContext.)
|
|
*/
|
|
static uint32
|
|
TupleHashTableHash(const void *key, Size keysize)
|
|
{
|
|
HeapTuple tuple = ((const TupleHashEntryData *) key)->firstTuple;
|
|
TupleTableSlot *slot;
|
|
TupleHashTable hashtable = CurTupleHashTable;
|
|
int numCols = hashtable->numCols;
|
|
AttrNumber *keyColIdx = hashtable->keyColIdx;
|
|
uint32 hashkey = 0;
|
|
int i;
|
|
|
|
if (tuple == NULL)
|
|
{
|
|
/* Process the current input tuple for the table */
|
|
slot = hashtable->inputslot;
|
|
}
|
|
else
|
|
{
|
|
/* Process a tuple already stored in the table */
|
|
/* (this case never actually occurs in current dynahash.c code) */
|
|
slot = hashtable->tableslot;
|
|
ExecStoreTuple(tuple, slot, InvalidBuffer, false);
|
|
}
|
|
|
|
for (i = 0; i < numCols; i++)
|
|
{
|
|
AttrNumber att = keyColIdx[i];
|
|
Datum attr;
|
|
bool isNull;
|
|
|
|
/* rotate hashkey left 1 bit at each step */
|
|
hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);
|
|
|
|
attr = slot_getattr(slot, att, &isNull);
|
|
|
|
if (!isNull) /* treat nulls as having hash key 0 */
|
|
{
|
|
uint32 hkey;
|
|
|
|
hkey = DatumGetUInt32(FunctionCall1(&hashtable->hashfunctions[i],
|
|
attr));
|
|
hashkey ^= hkey;
|
|
}
|
|
}
|
|
|
|
return hashkey;
|
|
}
|
|
|
|
/*
|
|
* See whether two tuples (presumably of the same hash value) match
|
|
*
|
|
* As above, the passed pointers are pointers to TupleHashEntryData.
|
|
*
|
|
* CurTupleHashTable must be set before calling this, since dynahash.c
|
|
* doesn't provide any API that would let us get at the hashtable otherwise.
|
|
*
|
|
* Also, the caller must select an appropriate memory context for running
|
|
* the compare functions. (dynahash.c doesn't change CurrentMemoryContext.)
|
|
*/
|
|
static int
|
|
TupleHashTableMatch(const void *key1, const void *key2, Size keysize)
|
|
{
|
|
HeapTuple tuple1 = ((const TupleHashEntryData *) key1)->firstTuple;
|
|
#ifdef USE_ASSERT_CHECKING
|
|
HeapTuple tuple2 = ((const TupleHashEntryData *) key2)->firstTuple;
|
|
#endif
|
|
TupleTableSlot *slot1;
|
|
TupleTableSlot *slot2;
|
|
TupleHashTable hashtable = CurTupleHashTable;
|
|
|
|
/*
|
|
* We assume that dynahash.c will only ever call us with the first
|
|
* argument being an actual table entry, and the second argument being
|
|
* LookupTupleHashEntry's dummy TupleHashEntryData. The other direction
|
|
* could be supported too, but is not currently used by dynahash.c.
|
|
*/
|
|
Assert(tuple1 != NULL);
|
|
slot1 = hashtable->tableslot;
|
|
ExecStoreTuple(tuple1, slot1, InvalidBuffer, false);
|
|
Assert(tuple2 == NULL);
|
|
slot2 = hashtable->inputslot;
|
|
|
|
if (execTuplesMatch(slot1,
|
|
slot2,
|
|
hashtable->numCols,
|
|
hashtable->keyColIdx,
|
|
hashtable->eqfunctions,
|
|
hashtable->tempcxt))
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|