1
0
mirror of https://github.com/postgres/postgres.git synced 2025-06-03 01:21:48 +03:00
Daniel Gustafsson 45e7e8ca9e Convert strncpy to strlcpy
We try to avoid using strncpy() due to the ease of which it can
be misused.  Convert this callsite to use strlcpy() instead to
match similar codepaths in this file.

Suggested-by: Peter Eisentraut <peter@eisentraut.org>
Discussion: https://postgr.es/m/2a796830-de2d-4030-b480-d673f6cc5d94@eisentraut.org
2025-04-30 23:00:47 +02:00

2364 lines
69 KiB
C

/*-------------------------------------------------------------------------
*
* mcxt.c
* POSTGRES memory context management code.
*
* This module handles context management operations that are independent
* of the particular kind of context being operated on. It calls
* context-type-specific operations via the function pointers in a
* context's MemoryContextMethods struct.
*
*
* Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/utils/mmgr/mcxt.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "nodes/pg_list.h"
#include "storage/lwlock.h"
#include "storage/ipc.h"
#include "utils/dsa.h"
#include "utils/hsearch.h"
#include "utils/memdebug.h"
#include "utils/memutils.h"
#include "utils/memutils_internal.h"
#include "utils/memutils_memorychunk.h"
static void BogusFree(void *pointer);
static void *BogusRealloc(void *pointer, Size size, int flags);
static MemoryContext BogusGetChunkContext(void *pointer);
static Size BogusGetChunkSpace(void *pointer);
/*****************************************************************************
* GLOBAL MEMORY *
*****************************************************************************/
#define BOGUS_MCTX(id) \
[id].free_p = BogusFree, \
[id].realloc = BogusRealloc, \
[id].get_chunk_context = BogusGetChunkContext, \
[id].get_chunk_space = BogusGetChunkSpace
static const MemoryContextMethods mcxt_methods[] = {
/* aset.c */
[MCTX_ASET_ID].alloc = AllocSetAlloc,
[MCTX_ASET_ID].free_p = AllocSetFree,
[MCTX_ASET_ID].realloc = AllocSetRealloc,
[MCTX_ASET_ID].reset = AllocSetReset,
[MCTX_ASET_ID].delete_context = AllocSetDelete,
[MCTX_ASET_ID].get_chunk_context = AllocSetGetChunkContext,
[MCTX_ASET_ID].get_chunk_space = AllocSetGetChunkSpace,
[MCTX_ASET_ID].is_empty = AllocSetIsEmpty,
[MCTX_ASET_ID].stats = AllocSetStats,
#ifdef MEMORY_CONTEXT_CHECKING
[MCTX_ASET_ID].check = AllocSetCheck,
#endif
/* generation.c */
[MCTX_GENERATION_ID].alloc = GenerationAlloc,
[MCTX_GENERATION_ID].free_p = GenerationFree,
[MCTX_GENERATION_ID].realloc = GenerationRealloc,
[MCTX_GENERATION_ID].reset = GenerationReset,
[MCTX_GENERATION_ID].delete_context = GenerationDelete,
[MCTX_GENERATION_ID].get_chunk_context = GenerationGetChunkContext,
[MCTX_GENERATION_ID].get_chunk_space = GenerationGetChunkSpace,
[MCTX_GENERATION_ID].is_empty = GenerationIsEmpty,
[MCTX_GENERATION_ID].stats = GenerationStats,
#ifdef MEMORY_CONTEXT_CHECKING
[MCTX_GENERATION_ID].check = GenerationCheck,
#endif
/* slab.c */
[MCTX_SLAB_ID].alloc = SlabAlloc,
[MCTX_SLAB_ID].free_p = SlabFree,
[MCTX_SLAB_ID].realloc = SlabRealloc,
[MCTX_SLAB_ID].reset = SlabReset,
[MCTX_SLAB_ID].delete_context = SlabDelete,
[MCTX_SLAB_ID].get_chunk_context = SlabGetChunkContext,
[MCTX_SLAB_ID].get_chunk_space = SlabGetChunkSpace,
[MCTX_SLAB_ID].is_empty = SlabIsEmpty,
[MCTX_SLAB_ID].stats = SlabStats,
#ifdef MEMORY_CONTEXT_CHECKING
[MCTX_SLAB_ID].check = SlabCheck,
#endif
/* alignedalloc.c */
[MCTX_ALIGNED_REDIRECT_ID].alloc = NULL, /* not required */
[MCTX_ALIGNED_REDIRECT_ID].free_p = AlignedAllocFree,
[MCTX_ALIGNED_REDIRECT_ID].realloc = AlignedAllocRealloc,
[MCTX_ALIGNED_REDIRECT_ID].reset = NULL, /* not required */
[MCTX_ALIGNED_REDIRECT_ID].delete_context = NULL, /* not required */
[MCTX_ALIGNED_REDIRECT_ID].get_chunk_context = AlignedAllocGetChunkContext,
[MCTX_ALIGNED_REDIRECT_ID].get_chunk_space = AlignedAllocGetChunkSpace,
[MCTX_ALIGNED_REDIRECT_ID].is_empty = NULL, /* not required */
[MCTX_ALIGNED_REDIRECT_ID].stats = NULL, /* not required */
#ifdef MEMORY_CONTEXT_CHECKING
[MCTX_ALIGNED_REDIRECT_ID].check = NULL, /* not required */
#endif
/* bump.c */
[MCTX_BUMP_ID].alloc = BumpAlloc,
[MCTX_BUMP_ID].free_p = BumpFree,
[MCTX_BUMP_ID].realloc = BumpRealloc,
[MCTX_BUMP_ID].reset = BumpReset,
[MCTX_BUMP_ID].delete_context = BumpDelete,
[MCTX_BUMP_ID].get_chunk_context = BumpGetChunkContext,
[MCTX_BUMP_ID].get_chunk_space = BumpGetChunkSpace,
[MCTX_BUMP_ID].is_empty = BumpIsEmpty,
[MCTX_BUMP_ID].stats = BumpStats,
#ifdef MEMORY_CONTEXT_CHECKING
[MCTX_BUMP_ID].check = BumpCheck,
#endif
/*
* Reserved and unused IDs should have dummy entries here. This allows us
* to fail cleanly if a bogus pointer is passed to pfree or the like. It
* seems sufficient to provide routines for the methods that might get
* invoked from inspection of a chunk (see MCXT_METHOD calls below).
*/
BOGUS_MCTX(MCTX_1_RESERVED_GLIBC_ID),
BOGUS_MCTX(MCTX_2_RESERVED_GLIBC_ID),
BOGUS_MCTX(MCTX_8_UNUSED_ID),
BOGUS_MCTX(MCTX_9_UNUSED_ID),
BOGUS_MCTX(MCTX_10_UNUSED_ID),
BOGUS_MCTX(MCTX_11_UNUSED_ID),
BOGUS_MCTX(MCTX_12_UNUSED_ID),
BOGUS_MCTX(MCTX_13_UNUSED_ID),
BOGUS_MCTX(MCTX_14_UNUSED_ID),
BOGUS_MCTX(MCTX_0_RESERVED_UNUSEDMEM_ID),
BOGUS_MCTX(MCTX_15_RESERVED_WIPEDMEM_ID)
};
#undef BOGUS_MCTX
/*
* This is passed to MemoryContextStatsInternal to determine whether
* to print context statistics or not and where to print them logs or
* stderr.
*/
typedef enum PrintDestination
{
PRINT_STATS_TO_STDERR = 0,
PRINT_STATS_TO_LOGS,
PRINT_STATS_NONE
} PrintDestination;
/*
* CurrentMemoryContext
* Default memory context for allocations.
*/
MemoryContext CurrentMemoryContext = NULL;
/*
* Standard top-level contexts. For a description of the purpose of each
* of these contexts, refer to src/backend/utils/mmgr/README
*/
MemoryContext TopMemoryContext = NULL;
MemoryContext ErrorContext = NULL;
MemoryContext PostmasterContext = NULL;
MemoryContext CacheMemoryContext = NULL;
MemoryContext MessageContext = NULL;
MemoryContext TopTransactionContext = NULL;
MemoryContext CurTransactionContext = NULL;
/* This is a transient link to the active portal's memory context: */
MemoryContext PortalContext = NULL;
dsa_area *MemoryStatsDsaArea = NULL;
static void MemoryContextDeleteOnly(MemoryContext context);
static void MemoryContextCallResetCallbacks(MemoryContext context);
static void MemoryContextStatsInternal(MemoryContext context, int level,
int max_level, int max_children,
MemoryContextCounters *totals,
PrintDestination print_location,
int *num_contexts);
static void MemoryContextStatsPrint(MemoryContext context, void *passthru,
const char *stats_string,
bool print_to_stderr);
static void PublishMemoryContext(MemoryStatsEntry *memcxt_info,
int curr_id, MemoryContext context,
List *path,
MemoryContextCounters stat,
int num_contexts, dsa_area *area,
int max_levels);
static void compute_contexts_count_and_ids(List *contexts, HTAB *context_id_lookup,
int *stats_count,
bool summary);
static List *compute_context_path(MemoryContext c, HTAB *context_id_lookup);
static void free_memorycontextstate_dsa(dsa_area *area, int total_stats,
dsa_pointer prev_dsa_pointer);
static void end_memorycontext_reporting(void);
/*
* You should not do memory allocations within a critical section, because
* an out-of-memory error will be escalated to a PANIC. To enforce that
* rule, the allocation functions Assert that.
*/
#define AssertNotInCriticalSection(context) \
Assert(CritSectionCount == 0 || (context)->allowInCritSection)
/*
* Call the given function in the MemoryContextMethods for the memory context
* type that 'pointer' belongs to.
*/
#define MCXT_METHOD(pointer, method) \
mcxt_methods[GetMemoryChunkMethodID(pointer)].method
/*
* GetMemoryChunkMethodID
* Return the MemoryContextMethodID from the uint64 chunk header which
* directly precedes 'pointer'.
*/
static inline MemoryContextMethodID
GetMemoryChunkMethodID(const void *pointer)
{
uint64 header;
/*
* Try to detect bogus pointers handed to us, poorly though we can.
* Presumably, a pointer that isn't MAXALIGNED isn't pointing at an
* allocated chunk.
*/
Assert(pointer == (const void *) MAXALIGN(pointer));
/* Allow access to the uint64 header */
VALGRIND_MAKE_MEM_DEFINED((char *) pointer - sizeof(uint64), sizeof(uint64));
header = *((const uint64 *) ((const char *) pointer - sizeof(uint64)));
/* Disallow access to the uint64 header */
VALGRIND_MAKE_MEM_NOACCESS((char *) pointer - sizeof(uint64), sizeof(uint64));
return (MemoryContextMethodID) (header & MEMORY_CONTEXT_METHODID_MASK);
}
/*
* GetMemoryChunkHeader
* Return the uint64 chunk header which directly precedes 'pointer'.
*
* This is only used after GetMemoryChunkMethodID, so no need for error checks.
*/
static inline uint64
GetMemoryChunkHeader(const void *pointer)
{
uint64 header;
/* Allow access to the uint64 header */
VALGRIND_MAKE_MEM_DEFINED((char *) pointer - sizeof(uint64), sizeof(uint64));
header = *((const uint64 *) ((const char *) pointer - sizeof(uint64)));
/* Disallow access to the uint64 header */
VALGRIND_MAKE_MEM_NOACCESS((char *) pointer - sizeof(uint64), sizeof(uint64));
return header;
}
/*
* MemoryContextTraverseNext
* Helper function to traverse all descendants of a memory context
* without recursion.
*
* Recursion could lead to out-of-stack errors with deep context hierarchies,
* which would be unpleasant in error cleanup code paths.
*
* To process 'context' and all its descendants, use a loop like this:
*
* <process 'context'>
* for (MemoryContext curr = context->firstchild;
* curr != NULL;
* curr = MemoryContextTraverseNext(curr, context))
* {
* <process 'curr'>
* }
*
* This visits all the contexts in pre-order, that is a node is visited
* before its children.
*/
static MemoryContext
MemoryContextTraverseNext(MemoryContext curr, MemoryContext top)
{
/* After processing a node, traverse to its first child if any */
if (curr->firstchild != NULL)
return curr->firstchild;
/*
* After processing a childless node, traverse to its next sibling if
* there is one. If there isn't, traverse back up to the parent (which
* has already been visited, and now so have all its descendants). We're
* done if that is "top", otherwise traverse to its next sibling if any,
* otherwise repeat moving up.
*/
while (curr->nextchild == NULL)
{
curr = curr->parent;
if (curr == top)
return NULL;
}
return curr->nextchild;
}
/*
* Support routines to trap use of invalid memory context method IDs
* (from calling pfree or the like on a bogus pointer). As a possible
* aid in debugging, we report the header word along with the pointer
* address (if we got here, there must be an accessible header word).
*/
static void
BogusFree(void *pointer)
{
elog(ERROR, "pfree called with invalid pointer %p (header 0x%016" PRIx64 ")",
pointer, GetMemoryChunkHeader(pointer));
}
static void *
BogusRealloc(void *pointer, Size size, int flags)
{
elog(ERROR, "repalloc called with invalid pointer %p (header 0x%016" PRIx64 ")",
pointer, GetMemoryChunkHeader(pointer));
return NULL; /* keep compiler quiet */
}
static MemoryContext
BogusGetChunkContext(void *pointer)
{
elog(ERROR, "GetMemoryChunkContext called with invalid pointer %p (header 0x%016" PRIx64 ")",
pointer, GetMemoryChunkHeader(pointer));
return NULL; /* keep compiler quiet */
}
static Size
BogusGetChunkSpace(void *pointer)
{
elog(ERROR, "GetMemoryChunkSpace called with invalid pointer %p (header 0x%016" PRIx64 ")",
pointer, GetMemoryChunkHeader(pointer));
return 0; /* keep compiler quiet */
}
/*****************************************************************************
* EXPORTED ROUTINES *
*****************************************************************************/
/*
* MemoryContextInit
* Start up the memory-context subsystem.
*
* This must be called before creating contexts or allocating memory in
* contexts. TopMemoryContext and ErrorContext are initialized here;
* other contexts must be created afterwards.
*
* In normal multi-backend operation, this is called once during
* postmaster startup, and not at all by individual backend startup
* (since the backends inherit an already-initialized context subsystem
* by virtue of being forked off the postmaster). But in an EXEC_BACKEND
* build, each process must do this for itself.
*
* In a standalone backend this must be called during backend startup.
*/
void
MemoryContextInit(void)
{
Assert(TopMemoryContext == NULL);
/*
* First, initialize TopMemoryContext, which is the parent of all others.
*/
TopMemoryContext = AllocSetContextCreate((MemoryContext) NULL,
"TopMemoryContext",
ALLOCSET_DEFAULT_SIZES);
/*
* Not having any other place to point CurrentMemoryContext, make it point
* to TopMemoryContext. Caller should change this soon!
*/
CurrentMemoryContext = TopMemoryContext;
/*
* Initialize ErrorContext as an AllocSetContext with slow growth rate ---
* we don't really expect much to be allocated in it. More to the point,
* require it to contain at least 8K at all times. This is the only case
* where retained memory in a context is *essential* --- we want to be
* sure ErrorContext still has some memory even if we've run out
* elsewhere! Also, allow allocations in ErrorContext within a critical
* section. Otherwise a PANIC will cause an assertion failure in the error
* reporting code, before printing out the real cause of the failure.
*
* This should be the last step in this function, as elog.c assumes memory
* management works once ErrorContext is non-null.
*/
ErrorContext = AllocSetContextCreate(TopMemoryContext,
"ErrorContext",
8 * 1024,
8 * 1024,
8 * 1024);
MemoryContextAllowInCriticalSection(ErrorContext, true);
}
/*
* MemoryContextReset
* Release all space allocated within a context and delete all its
* descendant contexts (but not the named context itself).
*/
void
MemoryContextReset(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
/* save a function call in common case where there are no children */
if (context->firstchild != NULL)
MemoryContextDeleteChildren(context);
/* save a function call if no pallocs since startup or last reset */
if (!context->isReset)
MemoryContextResetOnly(context);
}
/*
* MemoryContextResetOnly
* Release all space allocated within a context.
* Nothing is done to the context's descendant contexts.
*/
void
MemoryContextResetOnly(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
/* Nothing to do if no pallocs since startup or last reset */
if (!context->isReset)
{
MemoryContextCallResetCallbacks(context);
/*
* If context->ident points into the context's memory, it will become
* a dangling pointer. We could prevent that by setting it to NULL
* here, but that would break valid coding patterns that keep the
* ident elsewhere, e.g. in a parent context. So for now we assume
* the programmer got it right.
*/
context->methods->reset(context);
context->isReset = true;
VALGRIND_DESTROY_MEMPOOL(context);
VALGRIND_CREATE_MEMPOOL(context, 0, false);
}
}
/*
* MemoryContextResetChildren
* Release all space allocated within a context's descendants,
* but don't delete the contexts themselves. The named context
* itself is not touched.
*/
void
MemoryContextResetChildren(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
for (MemoryContext curr = context->firstchild;
curr != NULL;
curr = MemoryContextTraverseNext(curr, context))
{
MemoryContextResetOnly(curr);
}
}
/*
* MemoryContextDelete
* Delete a context and its descendants, and release all space
* allocated therein.
*
* The type-specific delete routine removes all storage for the context,
* but we have to deal with descendant nodes here.
*/
void
MemoryContextDelete(MemoryContext context)
{
MemoryContext curr;
Assert(MemoryContextIsValid(context));
/*
* Delete subcontexts from the bottom up.
*
* Note: Do not use recursion here. A "stack depth limit exceeded" error
* would be unpleasant if we're already in the process of cleaning up from
* transaction abort. We also cannot use MemoryContextTraverseNext() here
* because we modify the tree as we go.
*/
curr = context;
for (;;)
{
MemoryContext parent;
/* Descend down until we find a leaf context with no children */
while (curr->firstchild != NULL)
curr = curr->firstchild;
/*
* We're now at a leaf with no children. Free it and continue from the
* parent. Or if this was the original node, we're all done.
*/
parent = curr->parent;
MemoryContextDeleteOnly(curr);
if (curr == context)
break;
curr = parent;
}
}
/*
* Subroutine of MemoryContextDelete,
* to delete a context that has no children.
* We must also delink the context from its parent, if it has one.
*/
static void
MemoryContextDeleteOnly(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
/* We had better not be deleting TopMemoryContext ... */
Assert(context != TopMemoryContext);
/* And not CurrentMemoryContext, either */
Assert(context != CurrentMemoryContext);
/* All the children should've been deleted already */
Assert(context->firstchild == NULL);
/*
* It's not entirely clear whether 'tis better to do this before or after
* delinking the context; but an error in a callback will likely result in
* leaking the whole context (if it's not a root context) if we do it
* after, so let's do it before.
*/
MemoryContextCallResetCallbacks(context);
/*
* We delink the context from its parent before deleting it, so that if
* there's an error we won't have deleted/busted contexts still attached
* to the context tree. Better a leak than a crash.
*/
MemoryContextSetParent(context, NULL);
/*
* Also reset the context's ident pointer, in case it points into the
* context. This would only matter if someone tries to get stats on the
* (already unlinked) context, which is unlikely, but let's be safe.
*/
context->ident = NULL;
context->methods->delete_context(context);
VALGRIND_DESTROY_MEMPOOL(context);
}
/*
* MemoryContextDeleteChildren
* Delete all the descendants of the named context and release all
* space allocated therein. The named context itself is not touched.
*/
void
MemoryContextDeleteChildren(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
/*
* MemoryContextDelete will delink the child from me, so just iterate as
* long as there is a child.
*/
while (context->firstchild != NULL)
MemoryContextDelete(context->firstchild);
}
/*
* MemoryContextRegisterResetCallback
* Register a function to be called before next context reset/delete.
* Such callbacks will be called in reverse order of registration.
*
* The caller is responsible for allocating a MemoryContextCallback struct
* to hold the info about this callback request, and for filling in the
* "func" and "arg" fields in the struct to show what function to call with
* what argument. Typically the callback struct should be allocated within
* the specified context, since that means it will automatically be freed
* when no longer needed.
*
* There is no API for deregistering a callback once registered. If you
* want it to not do anything anymore, adjust the state pointed to by its
* "arg" to indicate that.
*/
void
MemoryContextRegisterResetCallback(MemoryContext context,
MemoryContextCallback *cb)
{
Assert(MemoryContextIsValid(context));
/* Push onto head so this will be called before older registrants. */
cb->next = context->reset_cbs;
context->reset_cbs = cb;
/* Mark the context as non-reset (it probably is already). */
context->isReset = false;
}
/*
* MemoryContextCallResetCallbacks
* Internal function to call all registered callbacks for context.
*/
static void
MemoryContextCallResetCallbacks(MemoryContext context)
{
MemoryContextCallback *cb;
/*
* We pop each callback from the list before calling. That way, if an
* error occurs inside the callback, we won't try to call it a second time
* in the likely event that we reset or delete the context later.
*/
while ((cb = context->reset_cbs) != NULL)
{
context->reset_cbs = cb->next;
cb->func(cb->arg);
}
}
/*
* MemoryContextSetIdentifier
* Set the identifier string for a memory context.
*
* An identifier can be provided to help distinguish among different contexts
* of the same kind in memory context stats dumps. The identifier string
* must live at least as long as the context it is for; typically it is
* allocated inside that context, so that it automatically goes away on
* context deletion. Pass id = NULL to forget any old identifier.
*/
void
MemoryContextSetIdentifier(MemoryContext context, const char *id)
{
Assert(MemoryContextIsValid(context));
context->ident = id;
}
/*
* MemoryContextSetParent
* Change a context to belong to a new parent (or no parent).
*
* We provide this as an API function because it is sometimes useful to
* change a context's lifespan after creation. For example, a context
* might be created underneath a transient context, filled with data,
* and then reparented underneath CacheMemoryContext to make it long-lived.
* In this way no special effort is needed to get rid of the context in case
* a failure occurs before its contents are completely set up.
*
* Callers often assume that this function cannot fail, so don't put any
* elog(ERROR) calls in it.
*
* A possible caller error is to reparent a context under itself, creating
* a loop in the context graph. We assert here that context != new_parent,
* but checking for multi-level loops seems more trouble than it's worth.
*/
void
MemoryContextSetParent(MemoryContext context, MemoryContext new_parent)
{
Assert(MemoryContextIsValid(context));
Assert(context != new_parent);
/* Fast path if it's got correct parent already */
if (new_parent == context->parent)
return;
/* Delink from existing parent, if any */
if (context->parent)
{
MemoryContext parent = context->parent;
if (context->prevchild != NULL)
context->prevchild->nextchild = context->nextchild;
else
{
Assert(parent->firstchild == context);
parent->firstchild = context->nextchild;
}
if (context->nextchild != NULL)
context->nextchild->prevchild = context->prevchild;
}
/* And relink */
if (new_parent)
{
Assert(MemoryContextIsValid(new_parent));
context->parent = new_parent;
context->prevchild = NULL;
context->nextchild = new_parent->firstchild;
if (new_parent->firstchild != NULL)
new_parent->firstchild->prevchild = context;
new_parent->firstchild = context;
}
else
{
context->parent = NULL;
context->prevchild = NULL;
context->nextchild = NULL;
}
}
/*
* MemoryContextAllowInCriticalSection
* Allow/disallow allocations in this memory context within a critical
* section.
*
* Normally, memory allocations are not allowed within a critical section,
* because a failure would lead to PANIC. There are a few exceptions to
* that, like allocations related to debugging code that is not supposed to
* be enabled in production. This function can be used to exempt specific
* memory contexts from the assertion in palloc().
*/
void
MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
{
Assert(MemoryContextIsValid(context));
context->allowInCritSection = allow;
}
/*
* GetMemoryChunkContext
* Given a currently-allocated chunk, determine the MemoryContext that
* the chunk belongs to.
*/
MemoryContext
GetMemoryChunkContext(void *pointer)
{
return MCXT_METHOD(pointer, get_chunk_context) (pointer);
}
/*
* GetMemoryChunkSpace
* Given a currently-allocated chunk, determine the total space
* it occupies (including all memory-allocation overhead).
*
* This is useful for measuring the total space occupied by a set of
* allocated chunks.
*/
Size
GetMemoryChunkSpace(void *pointer)
{
return MCXT_METHOD(pointer, get_chunk_space) (pointer);
}
/*
* MemoryContextGetParent
* Get the parent context (if any) of the specified context
*/
MemoryContext
MemoryContextGetParent(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
return context->parent;
}
/*
* MemoryContextIsEmpty
* Is a memory context empty of any allocated space?
*/
bool
MemoryContextIsEmpty(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
/*
* For now, we consider a memory context nonempty if it has any children;
* perhaps this should be changed later.
*/
if (context->firstchild != NULL)
return false;
/* Otherwise use the type-specific inquiry */
return context->methods->is_empty(context);
}
/*
* Find the memory allocated to blocks for this memory context. If recurse is
* true, also include children.
*/
Size
MemoryContextMemAllocated(MemoryContext context, bool recurse)
{
Size total = context->mem_allocated;
Assert(MemoryContextIsValid(context));
if (recurse)
{
for (MemoryContext curr = context->firstchild;
curr != NULL;
curr = MemoryContextTraverseNext(curr, context))
{
total += curr->mem_allocated;
}
}
return total;
}
/*
* Return the memory consumption statistics about the given context and its
* children.
*/
void
MemoryContextMemConsumed(MemoryContext context,
MemoryContextCounters *consumed)
{
Assert(MemoryContextIsValid(context));
memset(consumed, 0, sizeof(*consumed));
/* Examine the context itself */
context->methods->stats(context, NULL, NULL, consumed, false);
/* Examine children, using iteration not recursion */
for (MemoryContext curr = context->firstchild;
curr != NULL;
curr = MemoryContextTraverseNext(curr, context))
{
curr->methods->stats(curr, NULL, NULL, consumed, false);
}
}
/*
* MemoryContextStats
* Print statistics about the named context and all its descendants.
*
* This is just a debugging utility, so it's not very fancy. However, we do
* make some effort to summarize when the output would otherwise be very long.
* The statistics are sent to stderr.
*/
void
MemoryContextStats(MemoryContext context)
{
/* Hard-wired limits are usually good enough */
MemoryContextStatsDetail(context, 100, 100, true);
}
/*
* MemoryContextStatsDetail
*
* Entry point for use if you want to vary the number of child contexts shown.
*
* If print_to_stderr is true, print statistics about the memory contexts
* with fprintf(stderr), otherwise use ereport().
*/
void
MemoryContextStatsDetail(MemoryContext context,
int max_level, int max_children,
bool print_to_stderr)
{
MemoryContextCounters grand_totals;
int num_contexts;
PrintDestination print_location;
memset(&grand_totals, 0, sizeof(grand_totals));
if (print_to_stderr)
print_location = PRINT_STATS_TO_STDERR;
else
print_location = PRINT_STATS_TO_LOGS;
/* num_contexts report number of contexts aggregated in the output */
MemoryContextStatsInternal(context, 1, max_level, max_children,
&grand_totals, print_location, &num_contexts);
if (print_to_stderr)
fprintf(stderr,
"Grand total: %zu bytes in %zu blocks; %zu free (%zu chunks); %zu used\n",
grand_totals.totalspace, grand_totals.nblocks,
grand_totals.freespace, grand_totals.freechunks,
grand_totals.totalspace - grand_totals.freespace);
else
{
/*
* Use LOG_SERVER_ONLY to prevent the memory contexts from being sent
* to the connected client.
*
* We don't buffer the information about all memory contexts in a
* backend into StringInfo and log it as one message. That would
* require the buffer to be enlarged, risking an OOM as there could be
* a large number of memory contexts in a backend. Instead, we log
* one message per memory context.
*/
ereport(LOG_SERVER_ONLY,
(errhidestmt(true),
errhidecontext(true),
errmsg_internal("Grand total: %zu bytes in %zu blocks; %zu free (%zu chunks); %zu used",
grand_totals.totalspace, grand_totals.nblocks,
grand_totals.freespace, grand_totals.freechunks,
grand_totals.totalspace - grand_totals.freespace)));
}
}
/*
* MemoryContextStatsInternal
* One recursion level for MemoryContextStats
*
* Print stats for this context if possible, but in any case accumulate counts
* into *totals (if not NULL). The callers should make sure that print_location
* is set to PRINT_STATS_TO_STDERR or PRINT_STATS_TO_LOGS or PRINT_STATS_NONE.
*/
static void
MemoryContextStatsInternal(MemoryContext context, int level,
int max_level, int max_children,
MemoryContextCounters *totals,
PrintDestination print_location, int *num_contexts)
{
MemoryContext child;
int ichild;
Assert(MemoryContextIsValid(context));
/* Examine the context itself */
switch (print_location)
{
case PRINT_STATS_TO_STDERR:
context->methods->stats(context,
MemoryContextStatsPrint,
&level,
totals, true);
break;
case PRINT_STATS_TO_LOGS:
context->methods->stats(context,
MemoryContextStatsPrint,
&level,
totals, false);
break;
case PRINT_STATS_NONE:
/*
* Do not print the statistics if print_location is
* PRINT_STATS_NONE, only compute totals. This is used in
* reporting of memory context statistics via a sql function. Last
* parameter is not relevant.
*/
context->methods->stats(context,
NULL,
NULL,
totals, false);
break;
}
/* Increment the context count for each of the recursive call */
*num_contexts = *num_contexts + 1;
/*
* Examine children.
*
* If we are past the recursion depth limit or already running low on
* stack, do not print them explicitly but just summarize them. Similarly,
* if there are more than max_children of them, we do not print the rest
* explicitly, but just summarize them.
*/
child = context->firstchild;
ichild = 0;
if (level <= max_level && !stack_is_too_deep())
{
for (; child != NULL && ichild < max_children;
child = child->nextchild, ichild++)
{
MemoryContextStatsInternal(child, level + 1,
max_level, max_children,
totals,
print_location, num_contexts);
}
}
if (child != NULL)
{
/* Summarize the rest of the children, avoiding recursion. */
MemoryContextCounters local_totals;
memset(&local_totals, 0, sizeof(local_totals));
ichild = 0;
while (child != NULL)
{
child->methods->stats(child, NULL, NULL, &local_totals, false);
ichild++;
child = MemoryContextTraverseNext(child, context);
}
/*
* Add the count of children contexts which are traversed in the
* non-recursive manner.
*/
*num_contexts = *num_contexts + ichild;
if (print_location == PRINT_STATS_TO_STDERR)
{
for (int i = 0; i < level; i++)
fprintf(stderr, " ");
fprintf(stderr,
"%d more child contexts containing %zu total in %zu blocks; %zu free (%zu chunks); %zu used\n",
ichild,
local_totals.totalspace,
local_totals.nblocks,
local_totals.freespace,
local_totals.freechunks,
local_totals.totalspace - local_totals.freespace);
}
else if (print_location == PRINT_STATS_TO_LOGS)
ereport(LOG_SERVER_ONLY,
(errhidestmt(true),
errhidecontext(true),
errmsg_internal("level: %d; %d more child contexts containing %zu total in %zu blocks; %zu free (%zu chunks); %zu used",
level,
ichild,
local_totals.totalspace,
local_totals.nblocks,
local_totals.freespace,
local_totals.freechunks,
local_totals.totalspace - local_totals.freespace)));
if (totals)
{
totals->nblocks += local_totals.nblocks;
totals->freechunks += local_totals.freechunks;
totals->totalspace += local_totals.totalspace;
totals->freespace += local_totals.freespace;
}
}
}
/*
* MemoryContextStatsPrint
* Print callback used by MemoryContextStatsInternal
*
* For now, the passthru pointer just points to "int level"; later we might
* make that more complicated.
*/
static void
MemoryContextStatsPrint(MemoryContext context, void *passthru,
const char *stats_string,
bool print_to_stderr)
{
int level = *(int *) passthru;
const char *name = context->name;
const char *ident = context->ident;
char truncated_ident[110];
int i;
/*
* It seems preferable to label dynahash contexts with just the hash table
* name. Those are already unique enough, so the "dynahash" part isn't
* very helpful, and this way is more consistent with pre-v11 practice.
*/
if (ident && strcmp(name, "dynahash") == 0)
{
name = ident;
ident = NULL;
}
truncated_ident[0] = '\0';
if (ident)
{
/*
* Some contexts may have very long identifiers (e.g., SQL queries).
* Arbitrarily truncate at 100 bytes, but be careful not to break
* multibyte characters. Also, replace ASCII control characters, such
* as newlines, with spaces.
*/
int idlen = strlen(ident);
bool truncated = false;
strcpy(truncated_ident, ": ");
i = strlen(truncated_ident);
if (idlen > 100)
{
idlen = pg_mbcliplen(ident, idlen, 100);
truncated = true;
}
while (idlen-- > 0)
{
unsigned char c = *ident++;
if (c < ' ')
c = ' ';
truncated_ident[i++] = c;
}
truncated_ident[i] = '\0';
if (truncated)
strcat(truncated_ident, "...");
}
if (print_to_stderr)
{
for (i = 1; i < level; i++)
fprintf(stderr, " ");
fprintf(stderr, "%s: %s%s\n", name, stats_string, truncated_ident);
}
else
ereport(LOG_SERVER_ONLY,
(errhidestmt(true),
errhidecontext(true),
errmsg_internal("level: %d; %s: %s%s",
level, name, stats_string, truncated_ident)));
}
/*
* MemoryContextCheck
* Check all chunks in the named context and its children.
*
* This is just a debugging utility, so it's not fancy.
*/
#ifdef MEMORY_CONTEXT_CHECKING
void
MemoryContextCheck(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
context->methods->check(context);
for (MemoryContext curr = context->firstchild;
curr != NULL;
curr = MemoryContextTraverseNext(curr, context))
{
Assert(MemoryContextIsValid(curr));
curr->methods->check(curr);
}
}
#endif
/*
* MemoryContextCreate
* Context-type-independent part of context creation.
*
* This is only intended to be called by context-type-specific
* context creation routines, not by the unwashed masses.
*
* The memory context creation procedure goes like this:
* 1. Context-type-specific routine makes some initial space allocation,
* including enough space for the context header. If it fails,
* it can ereport() with no damage done.
* 2. Context-type-specific routine sets up all type-specific fields of
* the header (those beyond MemoryContextData proper), as well as any
* other management fields it needs to have a fully valid context.
* Usually, failure in this step is impossible, but if it's possible
* the initial space allocation should be freed before ereport'ing.
* 3. Context-type-specific routine calls MemoryContextCreate() to fill in
* the generic header fields and link the context into the context tree.
* 4. We return to the context-type-specific routine, which finishes
* up type-specific initialization. This routine can now do things
* that might fail (like allocate more memory), so long as it's
* sure the node is left in a state that delete will handle.
*
* node: the as-yet-uninitialized common part of the context header node.
* tag: NodeTag code identifying the memory context type.
* method_id: MemoryContextMethodID of the context-type being created.
* parent: parent context, or NULL if this will be a top-level context.
* name: name of context (must be statically allocated).
*
* Context routines generally assume that MemoryContextCreate can't fail,
* so this can contain Assert but not elog/ereport.
*/
void
MemoryContextCreate(MemoryContext node,
NodeTag tag,
MemoryContextMethodID method_id,
MemoryContext parent,
const char *name)
{
/* Creating new memory contexts is not allowed in a critical section */
Assert(CritSectionCount == 0);
/* Validate parent, to help prevent crazy context linkages */
Assert(parent == NULL || MemoryContextIsValid(parent));
Assert(node != parent);
/* Initialize all standard fields of memory context header */
node->type = tag;
node->isReset = true;
node->methods = &mcxt_methods[method_id];
node->parent = parent;
node->firstchild = NULL;
node->mem_allocated = 0;
node->prevchild = NULL;
node->name = name;
node->ident = NULL;
node->reset_cbs = NULL;
/* OK to link node into context tree */
if (parent)
{
node->nextchild = parent->firstchild;
if (parent->firstchild != NULL)
parent->firstchild->prevchild = node;
parent->firstchild = node;
/* inherit allowInCritSection flag from parent */
node->allowInCritSection = parent->allowInCritSection;
}
else
{
node->nextchild = NULL;
node->allowInCritSection = false;
}
VALGRIND_CREATE_MEMPOOL(node, 0, false);
}
/*
* MemoryContextAllocationFailure
* For use by MemoryContextMethods implementations to handle when malloc
* returns NULL. The behavior is specific to whether MCXT_ALLOC_NO_OOM
* is in 'flags'.
*/
void *
MemoryContextAllocationFailure(MemoryContext context, Size size, int flags)
{
if ((flags & MCXT_ALLOC_NO_OOM) == 0)
{
if (TopMemoryContext)
MemoryContextStats(TopMemoryContext);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory"),
errdetail("Failed on request of size %zu in memory context \"%s\".",
size, context->name)));
}
return NULL;
}
/*
* MemoryContextSizeFailure
* For use by MemoryContextMethods implementations to handle invalid
* memory allocation request sizes.
*/
void
MemoryContextSizeFailure(MemoryContext context, Size size, int flags)
{
elog(ERROR, "invalid memory alloc request size %zu", size);
}
/*
* MemoryContextAlloc
* Allocate space within the specified context.
*
* This could be turned into a macro, but we'd have to import
* nodes/memnodes.h into postgres.h which seems a bad idea.
*/
void *
MemoryContextAlloc(MemoryContext context, Size size)
{
void *ret;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
context->isReset = false;
/*
* For efficiency reasons, we purposefully offload the handling of
* allocation failures to the MemoryContextMethods implementation as this
* allows these checks to be performed only when an actual malloc needs to
* be done to request more memory from the OS. Additionally, not having
* to execute any instructions after this call allows the compiler to use
* the sibling call optimization. If you're considering adding code after
* this call, consider making it the responsibility of the 'alloc'
* function instead.
*/
ret = context->methods->alloc(context, size, 0);
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
return ret;
}
/*
* MemoryContextAllocZero
* Like MemoryContextAlloc, but clears allocated memory
*
* We could just call MemoryContextAlloc then clear the memory, but this
* is a very common combination, so we provide the combined operation.
*/
void *
MemoryContextAllocZero(MemoryContext context, Size size)
{
void *ret;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
context->isReset = false;
ret = context->methods->alloc(context, size, 0);
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
MemSetAligned(ret, 0, size);
return ret;
}
/*
* MemoryContextAllocExtended
* Allocate space within the specified context using the given flags.
*/
void *
MemoryContextAllocExtended(MemoryContext context, Size size, int flags)
{
void *ret;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
if (!((flags & MCXT_ALLOC_HUGE) != 0 ? AllocHugeSizeIsValid(size) :
AllocSizeIsValid(size)))
elog(ERROR, "invalid memory alloc request size %zu", size);
context->isReset = false;
ret = context->methods->alloc(context, size, flags);
if (unlikely(ret == NULL))
return NULL;
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
if ((flags & MCXT_ALLOC_ZERO) != 0)
MemSetAligned(ret, 0, size);
return ret;
}
/*
* HandleLogMemoryContextInterrupt
* Handle receipt of an interrupt indicating logging of memory
* contexts.
*
* All the actual work is deferred to ProcessLogMemoryContextInterrupt(),
* because we cannot safely emit a log message inside the signal handler.
*/
void
HandleLogMemoryContextInterrupt(void)
{
InterruptPending = true;
LogMemoryContextPending = true;
/* latch will be set by procsignal_sigusr1_handler */
}
/*
* HandleGetMemoryContextInterrupt
* Handle receipt of an interrupt indicating a request to publish memory
* contexts statistics.
*
* All the actual work is deferred to ProcessGetMemoryContextInterrupt() as
* this cannot be performed in a signal handler.
*/
void
HandleGetMemoryContextInterrupt(void)
{
InterruptPending = true;
PublishMemoryContextPending = true;
/* latch will be set by procsignal_sigusr1_handler */
}
/*
* ProcessLogMemoryContextInterrupt
* Perform logging of memory contexts of this backend process.
*
* Any backend that participates in ProcSignal signaling must arrange
* to call this function if we see LogMemoryContextPending set.
* It is called from CHECK_FOR_INTERRUPTS(), which is enough because
* the target process for logging of memory contexts is a backend.
*/
void
ProcessLogMemoryContextInterrupt(void)
{
LogMemoryContextPending = false;
/*
* Use LOG_SERVER_ONLY to prevent this message from being sent to the
* connected client.
*/
ereport(LOG_SERVER_ONLY,
(errhidestmt(true),
errhidecontext(true),
errmsg("logging memory contexts of PID %d", MyProcPid)));
/*
* When a backend process is consuming huge memory, logging all its memory
* contexts might overrun available disk space. To prevent this, we limit
* the depth of the hierarchy, as well as the number of child contexts to
* log per parent to 100.
*
* As with MemoryContextStats(), we suppose that practical cases where the
* dump gets long will typically be huge numbers of siblings under the
* same parent context; while the additional debugging value from seeing
* details about individual siblings beyond 100 will not be large.
*/
MemoryContextStatsDetail(TopMemoryContext, 100, 100, false);
}
/*
* ProcessGetMemoryContextInterrupt
* Generate information about memory contexts used by the process.
*
* Performs a breadth first search on the memory context tree, thus parents
* statistics are reported before their children in the monitoring function
* output.
*
* Statistics for all the processes are shared via the same dynamic shared
* area. Statistics written by each process are tracked independently in
* per-process DSA pointers. These pointers are stored in static shared memory.
*
* We calculate maximum number of context's statistics that can be displayed
* using a pre-determined limit for memory available per process for this
* utility maximum size of statistics for each context. The remaining context
* statistics if any are captured as a cumulative total at the end of
* individual context's statistics.
*
* If summary is true, we capture the level 1 and level 2 contexts
* statistics. For that we traverse the memory context tree recursively in
* depth first search manner to cover all the children of a parent context, to
* be able to display a cumulative total of memory consumption by a parent at
* level 2 and all its children.
*/
void
ProcessGetMemoryContextInterrupt(void)
{
List *contexts;
HASHCTL ctl;
HTAB *context_id_lookup;
int context_id = 0;
MemoryStatsEntry *meminfo;
bool summary = false;
int max_stats;
int idx = MyProcNumber;
int stats_count = 0;
int stats_num = 0;
MemoryContextCounters stat;
int num_individual_stats = 0;
PublishMemoryContextPending = false;
/*
* The hash table is used for constructing "path" column of the view,
* similar to its local backend counterpart.
*/
ctl.keysize = sizeof(MemoryContext);
ctl.entrysize = sizeof(MemoryStatsContextId);
ctl.hcxt = CurrentMemoryContext;
context_id_lookup = hash_create("pg_get_remote_backend_memory_contexts",
256,
&ctl,
HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
/* List of contexts to process in the next round - start at the top. */
contexts = list_make1(TopMemoryContext);
/* Compute the number of stats that can fit in the defined limit */
max_stats =
MEMORY_CONTEXT_REPORT_MAX_PER_BACKEND / MAX_MEMORY_CONTEXT_STATS_SIZE;
LWLockAcquire(&memCxtState[idx].lw_lock, LW_EXCLUSIVE);
summary = memCxtState[idx].summary;
LWLockRelease(&memCxtState[idx].lw_lock);
/*
* Traverse the memory context tree to find total number of contexts. If
* summary is requested report the total number of contexts at level 1 and
* 2 from the top. Also, populate the hash table of context ids.
*/
compute_contexts_count_and_ids(contexts, context_id_lookup, &stats_count,
summary);
/*
* Allocate memory in this process's DSA for storing statistics of the
* memory contexts upto max_stats, for contexts that don't fit within a
* limit, a cumulative total is written as the last record in the DSA
* segment.
*/
stats_num = Min(stats_count, max_stats);
LWLockAcquire(&memCxtArea->lw_lock, LW_EXCLUSIVE);
/*
* Create a DSA and send handle to the client process after storing the
* context statistics. If number of contexts exceed a predefined limit
* (1MB), a cumulative total is stored for such contexts.
*/
if (memCxtArea->memstats_dsa_handle == DSA_HANDLE_INVALID)
{
MemoryContext oldcontext = CurrentMemoryContext;
dsa_handle handle;
MemoryContextSwitchTo(TopMemoryContext);
MemoryStatsDsaArea = dsa_create(memCxtArea->lw_lock.tranche);
handle = dsa_get_handle(MemoryStatsDsaArea);
MemoryContextSwitchTo(oldcontext);
dsa_pin_mapping(MemoryStatsDsaArea);
/*
* Pin the DSA area, this is to make sure the area remains attachable
* even if the backend that created it exits. This is done so that the
* statistics are published even if the process exits while a client
* is waiting. Also, other processes that publish statistics will use
* the same area.
*/
dsa_pin(MemoryStatsDsaArea);
/* Set the handle in shared memory */
memCxtArea->memstats_dsa_handle = handle;
}
/*
* If DSA exists, created by another process publishing statistics, attach
* to it.
*/
else if (MemoryStatsDsaArea == NULL)
{
MemoryContext oldcontext = CurrentMemoryContext;
MemoryContextSwitchTo(TopMemoryContext);
MemoryStatsDsaArea = dsa_attach(memCxtArea->memstats_dsa_handle);
MemoryContextSwitchTo(oldcontext);
dsa_pin_mapping(MemoryStatsDsaArea);
}
LWLockRelease(&memCxtArea->lw_lock);
/*
* Hold the process lock to protect writes to process specific memory. Two
* processes publishing statistics do not block each other.
*/
LWLockAcquire(&memCxtState[idx].lw_lock, LW_EXCLUSIVE);
memCxtState[idx].proc_id = MyProcPid;
if (DsaPointerIsValid(memCxtState[idx].memstats_dsa_pointer))
{
/*
* Free any previous allocations, free the name, ident and path
* pointers before freeing the pointer that contains them.
*/
free_memorycontextstate_dsa(MemoryStatsDsaArea, memCxtState[idx].total_stats,
memCxtState[idx].memstats_dsa_pointer);
}
/*
* Assigning total stats before allocating memory so that memory cleanup
* can run if any subsequent dsa_allocate call to allocate name/ident/path
* fails.
*/
memCxtState[idx].total_stats = stats_num;
memCxtState[idx].memstats_dsa_pointer =
dsa_allocate0(MemoryStatsDsaArea, stats_num * sizeof(MemoryStatsEntry));
meminfo = (MemoryStatsEntry *)
dsa_get_address(MemoryStatsDsaArea, memCxtState[idx].memstats_dsa_pointer);
if (summary)
{
int cxt_id = 0;
List *path = NIL;
/* Copy TopMemoryContext statistics to DSA */
memset(&stat, 0, sizeof(stat));
(*TopMemoryContext->methods->stats) (TopMemoryContext, NULL, NULL,
&stat, true);
path = lcons_int(1, path);
PublishMemoryContext(meminfo, cxt_id, TopMemoryContext, path, stat,
1, MemoryStatsDsaArea, 100);
cxt_id = cxt_id + 1;
/*
* Copy statistics for each of TopMemoryContexts children. This
* includes statistics of at most 100 children per node, with each
* child node limited to a depth of 100 in its subtree.
*/
for (MemoryContext c = TopMemoryContext->firstchild; c != NULL;
c = c->nextchild)
{
MemoryContextCounters grand_totals;
int num_contexts = 0;
path = NIL;
memset(&grand_totals, 0, sizeof(grand_totals));
MemoryContextStatsInternal(c, 1, 100, 100, &grand_totals,
PRINT_STATS_NONE, &num_contexts);
path = compute_context_path(c, context_id_lookup);
/*
* Register the stats entry first, that way the cleanup handler
* can reach it in case of allocation failures of one or more
* members.
*/
memCxtState[idx].total_stats = cxt_id++;
PublishMemoryContext(meminfo, cxt_id, c, path,
grand_totals, num_contexts, MemoryStatsDsaArea, 100);
}
memCxtState[idx].total_stats = cxt_id;
/* Notify waiting backends and return */
end_memorycontext_reporting();
hash_destroy(context_id_lookup);
return;
}
foreach_ptr(MemoryContextData, cur, contexts)
{
List *path = NIL;
/*
* Figure out the transient context_id of this context and each of its
* ancestors, to compute a path for this context.
*/
path = compute_context_path(cur, context_id_lookup);
/* Examine the context stats */
memset(&stat, 0, sizeof(stat));
(*cur->methods->stats) (cur, NULL, NULL, &stat, true);
/* Account for saving one statistics slot for cumulative reporting */
if (context_id < (max_stats - 1) || stats_count <= max_stats)
{
/* Copy statistics to DSA memory */
PublishMemoryContext(meminfo, context_id, cur, path, stat, 1, MemoryStatsDsaArea, 100);
}
else
{
meminfo[max_stats - 1].totalspace += stat.totalspace;
meminfo[max_stats - 1].nblocks += stat.nblocks;
meminfo[max_stats - 1].freespace += stat.freespace;
meminfo[max_stats - 1].freechunks += stat.freechunks;
}
/*
* DSA max limit per process is reached, write aggregate of the
* remaining statistics.
*
* We can store contexts from 0 to max_stats - 1. When stats_count is
* greater than max_stats, we stop reporting individual statistics
* when context_id equals max_stats - 2. As we use max_stats - 1 array
* slot for reporting cumulative statistics or "Remaining Totals".
*/
if (stats_count > max_stats && context_id == (max_stats - 2))
{
char *nameptr;
int namelen = strlen("Remaining Totals");
num_individual_stats = context_id + 1;
meminfo[max_stats - 1].name = dsa_allocate(MemoryStatsDsaArea, namelen + 1);
nameptr = dsa_get_address(MemoryStatsDsaArea, meminfo[max_stats - 1].name);
strlcpy(nameptr, "Remaining Totals", namelen + 1);
meminfo[max_stats - 1].ident = InvalidDsaPointer;
meminfo[max_stats - 1].path = InvalidDsaPointer;
meminfo[max_stats - 1].type = 0;
}
context_id++;
}
/*
* Statistics are not aggregated, i.e individual statistics reported when
* stats_count <= max_stats.
*/
if (stats_count <= max_stats)
{
memCxtState[idx].total_stats = context_id;
}
/* Report number of aggregated memory contexts */
else
{
meminfo[max_stats - 1].num_agg_stats = context_id -
num_individual_stats;
/*
* Total stats equals num_individual_stats + 1 record for cumulative
* statistics.
*/
memCxtState[idx].total_stats = num_individual_stats + 1;
}
/* Notify waiting backends and return */
end_memorycontext_reporting();
hash_destroy(context_id_lookup);
}
/*
* Update timestamp and signal all the waiting client backends after copying
* all the statistics.
*/
static void
end_memorycontext_reporting(void)
{
memCxtState[MyProcNumber].stats_timestamp = GetCurrentTimestamp();
LWLockRelease(&memCxtState[MyProcNumber].lw_lock);
ConditionVariableBroadcast(&memCxtState[MyProcNumber].memcxt_cv);
}
/*
* compute_context_path
*
* Append the transient context_id of this context and each of its ancestors
* to a list, in order to compute a path.
*/
static List *
compute_context_path(MemoryContext c, HTAB *context_id_lookup)
{
bool found;
List *path = NIL;
MemoryContext cur_context;
for (cur_context = c; cur_context != NULL; cur_context = cur_context->parent)
{
MemoryStatsContextId *cur_entry;
cur_entry = hash_search(context_id_lookup, &cur_context, HASH_FIND, &found);
if (!found)
elog(ERROR, "hash table corrupted, can't construct path value");
path = lcons_int(cur_entry->context_id, path);
}
return path;
}
/*
* Return the number of contexts allocated currently by the backend
* Assign context ids to each of the contexts.
*/
static void
compute_contexts_count_and_ids(List *contexts, HTAB *context_id_lookup,
int *stats_count, bool summary)
{
foreach_ptr(MemoryContextData, cur, contexts)
{
MemoryStatsContextId *entry;
bool found;
entry = (MemoryStatsContextId *) hash_search(context_id_lookup, &cur,
HASH_ENTER, &found);
Assert(!found);
/*
* context id starts with 1 so increment the stats_count before
* assigning.
*/
entry->context_id = ++(*stats_count);
/* Append the children of the current context to the main list. */
for (MemoryContext c = cur->firstchild; c != NULL; c = c->nextchild)
{
if (summary)
{
entry = (MemoryStatsContextId *) hash_search(context_id_lookup, &c,
HASH_ENTER, &found);
Assert(!found);
entry->context_id = ++(*stats_count);
}
contexts = lappend(contexts, c);
}
/*
* In summary mode only the first two level (from top) contexts are
* displayed.
*/
if (summary)
break;
}
}
/*
* PublishMemoryContext
*
* Copy the memory context statistics of a single context to a DSA memory
*/
static void
PublishMemoryContext(MemoryStatsEntry *memcxt_info, int curr_id,
MemoryContext context, List *path,
MemoryContextCounters stat, int num_contexts,
dsa_area *area, int max_levels)
{
const char *ident = context->ident;
const char *name = context->name;
int *path_list;
/*
* To be consistent with logging output, we label dynahash contexts with
* just the hash table name as with MemoryContextStatsPrint().
*/
if (context->ident && strncmp(context->name, "dynahash", 8) == 0)
{
name = context->ident;
ident = NULL;
}
if (name != NULL)
{
int namelen = strlen(name);
char *nameptr;
if (strlen(name) >= MEMORY_CONTEXT_IDENT_SHMEM_SIZE)
namelen = pg_mbcliplen(name, namelen,
MEMORY_CONTEXT_IDENT_SHMEM_SIZE - 1);
memcxt_info[curr_id].name = dsa_allocate(area, namelen + 1);
nameptr = (char *) dsa_get_address(area, memcxt_info[curr_id].name);
strlcpy(nameptr, name, namelen + 1);
}
else
memcxt_info[curr_id].name = InvalidDsaPointer;
/* Trim and copy the identifier if it is not set to NULL */
if (ident != NULL)
{
int idlen = strlen(context->ident);
char *identptr;
/*
* Some identifiers such as SQL query string can be very long,
* truncate oversize identifiers.
*/
if (idlen >= MEMORY_CONTEXT_IDENT_SHMEM_SIZE)
idlen = pg_mbcliplen(ident, idlen,
MEMORY_CONTEXT_IDENT_SHMEM_SIZE - 1);
memcxt_info[curr_id].ident = dsa_allocate(area, idlen + 1);
identptr = (char *) dsa_get_address(area, memcxt_info[curr_id].ident);
strlcpy(identptr, ident, idlen + 1);
}
else
memcxt_info[curr_id].ident = InvalidDsaPointer;
/* Allocate DSA memory for storing path information */
if (path == NIL)
memcxt_info[curr_id].path = InvalidDsaPointer;
else
{
int levels = Min(list_length(path), max_levels);
memcxt_info[curr_id].path_length = levels;
memcxt_info[curr_id].path = dsa_allocate0(area, levels * sizeof(int));
memcxt_info[curr_id].levels = list_length(path);
path_list = (int *) dsa_get_address(area, memcxt_info[curr_id].path);
foreach_int(i, path)
{
path_list[foreach_current_index(i)] = i;
if (--levels == 0)
break;
}
}
memcxt_info[curr_id].type = context->type;
memcxt_info[curr_id].totalspace = stat.totalspace;
memcxt_info[curr_id].nblocks = stat.nblocks;
memcxt_info[curr_id].freespace = stat.freespace;
memcxt_info[curr_id].freechunks = stat.freechunks;
memcxt_info[curr_id].num_agg_stats = num_contexts;
}
/*
* free_memorycontextstate_dsa
*
* Worker for freeing resources from a MemoryStatsEntry. Callers are
* responsible for ensuring that the DSA pointer is valid.
*/
static void
free_memorycontextstate_dsa(dsa_area *area, int total_stats,
dsa_pointer prev_dsa_pointer)
{
MemoryStatsEntry *meminfo;
meminfo = (MemoryStatsEntry *) dsa_get_address(area, prev_dsa_pointer);
Assert(meminfo != NULL);
for (int i = 0; i < total_stats; i++)
{
if (DsaPointerIsValid(meminfo[i].name))
dsa_free(area, meminfo[i].name);
if (DsaPointerIsValid(meminfo[i].ident))
dsa_free(area, meminfo[i].ident);
if (DsaPointerIsValid(meminfo[i].path))
dsa_free(area, meminfo[i].path);
}
dsa_free(area, memCxtState[MyProcNumber].memstats_dsa_pointer);
memCxtState[MyProcNumber].memstats_dsa_pointer = InvalidDsaPointer;
}
/*
* Free the memory context statistics stored by this process
* in DSA area.
*/
void
AtProcExit_memstats_cleanup(int code, Datum arg)
{
int idx = MyProcNumber;
if (memCxtArea->memstats_dsa_handle == DSA_HANDLE_INVALID)
return;
LWLockAcquire(&memCxtState[idx].lw_lock, LW_EXCLUSIVE);
if (!DsaPointerIsValid(memCxtState[idx].memstats_dsa_pointer))
{
LWLockRelease(&memCxtState[idx].lw_lock);
return;
}
/* If the dsa mapping could not be found, attach to the area */
if (MemoryStatsDsaArea == NULL)
MemoryStatsDsaArea = dsa_attach(memCxtArea->memstats_dsa_handle);
/*
* Free the memory context statistics, free the name, ident and path
* pointers before freeing the pointer that contains these pointers and
* integer statistics.
*/
free_memorycontextstate_dsa(MemoryStatsDsaArea, memCxtState[idx].total_stats,
memCxtState[idx].memstats_dsa_pointer);
dsa_detach(MemoryStatsDsaArea);
LWLockRelease(&memCxtState[idx].lw_lock);
}
void *
palloc(Size size)
{
/* duplicates MemoryContextAlloc to avoid increased overhead */
void *ret;
MemoryContext context = CurrentMemoryContext;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
context->isReset = false;
/*
* For efficiency reasons, we purposefully offload the handling of
* allocation failures to the MemoryContextMethods implementation as this
* allows these checks to be performed only when an actual malloc needs to
* be done to request more memory from the OS. Additionally, not having
* to execute any instructions after this call allows the compiler to use
* the sibling call optimization. If you're considering adding code after
* this call, consider making it the responsibility of the 'alloc'
* function instead.
*/
ret = context->methods->alloc(context, size, 0);
/* We expect OOM to be handled by the alloc function */
Assert(ret != NULL);
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
return ret;
}
void *
palloc0(Size size)
{
/* duplicates MemoryContextAllocZero to avoid increased overhead */
void *ret;
MemoryContext context = CurrentMemoryContext;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
context->isReset = false;
ret = context->methods->alloc(context, size, 0);
/* We expect OOM to be handled by the alloc function */
Assert(ret != NULL);
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
MemSetAligned(ret, 0, size);
return ret;
}
void *
palloc_extended(Size size, int flags)
{
/* duplicates MemoryContextAllocExtended to avoid increased overhead */
void *ret;
MemoryContext context = CurrentMemoryContext;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
context->isReset = false;
ret = context->methods->alloc(context, size, flags);
if (unlikely(ret == NULL))
{
/* NULL can be returned only when using MCXT_ALLOC_NO_OOM */
Assert(flags & MCXT_ALLOC_NO_OOM);
return NULL;
}
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
if ((flags & MCXT_ALLOC_ZERO) != 0)
MemSetAligned(ret, 0, size);
return ret;
}
/*
* MemoryContextAllocAligned
* Allocate 'size' bytes of memory in 'context' aligned to 'alignto'
* bytes.
*
* Currently, we align addresses by requesting additional bytes from the
* MemoryContext's standard allocator function and then aligning the returned
* address by the required alignment. This means that the given MemoryContext
* must support providing us with a chunk of memory that's larger than 'size'.
* For allocators such as Slab, that's not going to work, as slab only allows
* chunks of the size that's specified when the context is created.
*
* 'alignto' must be a power of 2.
* 'flags' may be 0 or set the same as MemoryContextAllocExtended().
*/
void *
MemoryContextAllocAligned(MemoryContext context,
Size size, Size alignto, int flags)
{
MemoryChunk *alignedchunk;
Size alloc_size;
void *unaligned;
void *aligned;
/* wouldn't make much sense to waste that much space */
Assert(alignto < (128 * 1024 * 1024));
/* ensure alignto is a power of 2 */
Assert((alignto & (alignto - 1)) == 0);
/*
* If the alignment requirements are less than what we already guarantee
* then just use the standard allocation function.
*/
if (unlikely(alignto <= MAXIMUM_ALIGNOF))
return MemoryContextAllocExtended(context, size, flags);
/*
* We implement aligned pointers by simply allocating enough memory for
* the requested size plus the alignment and an additional "redirection"
* MemoryChunk. This additional MemoryChunk is required for operations
* such as pfree when used on the pointer returned by this function. We
* use this redirection MemoryChunk in order to find the pointer to the
* memory that was returned by the MemoryContextAllocExtended call below.
* We do that by "borrowing" the block offset field and instead of using
* that to find the offset into the owning block, we use it to find the
* original allocated address.
*
* Here we must allocate enough extra memory so that we can still align
* the pointer returned by MemoryContextAllocExtended and also have enough
* space for the redirection MemoryChunk. Since allocations will already
* be at least aligned by MAXIMUM_ALIGNOF, we can subtract that amount
* from the allocation size to save a little memory.
*/
alloc_size = size + PallocAlignedExtraBytes(alignto);
#ifdef MEMORY_CONTEXT_CHECKING
/* ensure there's space for a sentinel byte */
alloc_size += 1;
#endif
/* perform the actual allocation */
unaligned = MemoryContextAllocExtended(context, alloc_size, flags);
/* set the aligned pointer */
aligned = (void *) TYPEALIGN(alignto, (char *) unaligned +
sizeof(MemoryChunk));
alignedchunk = PointerGetMemoryChunk(aligned);
/*
* We set the redirect MemoryChunk so that the block offset calculation is
* used to point back to the 'unaligned' allocated chunk. This allows us
* to use MemoryChunkGetBlock() to find the unaligned chunk when we need
* to perform operations such as pfree() and repalloc().
*
* We store 'alignto' in the MemoryChunk's 'value' so that we know what
* the alignment was set to should we ever be asked to realloc this
* pointer.
*/
MemoryChunkSetHdrMask(alignedchunk, unaligned, alignto,
MCTX_ALIGNED_REDIRECT_ID);
/* double check we produced a correctly aligned pointer */
Assert((void *) TYPEALIGN(alignto, aligned) == aligned);
#ifdef MEMORY_CONTEXT_CHECKING
alignedchunk->requested_size = size;
/* set mark to catch clobber of "unused" space */
set_sentinel(aligned, size);
#endif
/* Mark the bytes before the redirection header as noaccess */
VALGRIND_MAKE_MEM_NOACCESS(unaligned,
(char *) alignedchunk - (char *) unaligned);
/* Disallow access to the redirection chunk header. */
VALGRIND_MAKE_MEM_NOACCESS(alignedchunk, sizeof(MemoryChunk));
return aligned;
}
/*
* palloc_aligned
* Allocate 'size' bytes returning a pointer that's aligned to the
* 'alignto' boundary.
*
* Currently, we align addresses by requesting additional bytes from the
* MemoryContext's standard allocator function and then aligning the returned
* address by the required alignment. This means that the given MemoryContext
* must support providing us with a chunk of memory that's larger than 'size'.
* For allocators such as Slab, that's not going to work, as slab only allows
* chunks of the size that's specified when the context is created.
*
* 'alignto' must be a power of 2.
* 'flags' may be 0 or set the same as MemoryContextAllocExtended().
*/
void *
palloc_aligned(Size size, Size alignto, int flags)
{
return MemoryContextAllocAligned(CurrentMemoryContext, size, alignto, flags);
}
/*
* pfree
* Release an allocated chunk.
*/
void
pfree(void *pointer)
{
#ifdef USE_VALGRIND
MemoryContextMethodID method = GetMemoryChunkMethodID(pointer);
MemoryContext context = GetMemoryChunkContext(pointer);
#endif
MCXT_METHOD(pointer, free_p) (pointer);
#ifdef USE_VALGRIND
if (method != MCTX_ALIGNED_REDIRECT_ID)
VALGRIND_MEMPOOL_FREE(context, pointer);
#endif
}
/*
* repalloc
* Adjust the size of a previously allocated chunk.
*/
void *
repalloc(void *pointer, Size size)
{
#ifdef USE_VALGRIND
MemoryContextMethodID method = GetMemoryChunkMethodID(pointer);
#endif
#if defined(USE_ASSERT_CHECKING) || defined(USE_VALGRIND)
MemoryContext context = GetMemoryChunkContext(pointer);
#endif
void *ret;
AssertNotInCriticalSection(context);
/* isReset must be false already */
Assert(!context->isReset);
/*
* For efficiency reasons, we purposefully offload the handling of
* allocation failures to the MemoryContextMethods implementation as this
* allows these checks to be performed only when an actual malloc needs to
* be done to request more memory from the OS. Additionally, not having
* to execute any instructions after this call allows the compiler to use
* the sibling call optimization. If you're considering adding code after
* this call, consider making it the responsibility of the 'realloc'
* function instead.
*/
ret = MCXT_METHOD(pointer, realloc) (pointer, size, 0);
#ifdef USE_VALGRIND
if (method != MCTX_ALIGNED_REDIRECT_ID)
VALGRIND_MEMPOOL_CHANGE(context, pointer, ret, size);
#endif
return ret;
}
/*
* repalloc_extended
* Adjust the size of a previously allocated chunk,
* with HUGE and NO_OOM options.
*/
void *
repalloc_extended(void *pointer, Size size, int flags)
{
#if defined(USE_ASSERT_CHECKING) || defined(USE_VALGRIND)
MemoryContext context = GetMemoryChunkContext(pointer);
#endif
void *ret;
AssertNotInCriticalSection(context);
/* isReset must be false already */
Assert(!context->isReset);
/*
* For efficiency reasons, we purposefully offload the handling of
* allocation failures to the MemoryContextMethods implementation as this
* allows these checks to be performed only when an actual malloc needs to
* be done to request more memory from the OS. Additionally, not having
* to execute any instructions after this call allows the compiler to use
* the sibling call optimization. If you're considering adding code after
* this call, consider making it the responsibility of the 'realloc'
* function instead.
*/
ret = MCXT_METHOD(pointer, realloc) (pointer, size, flags);
if (unlikely(ret == NULL))
return NULL;
VALGRIND_MEMPOOL_CHANGE(context, pointer, ret, size);
return ret;
}
/*
* repalloc0
* Adjust the size of a previously allocated chunk and zero out the added
* space.
*/
void *
repalloc0(void *pointer, Size oldsize, Size size)
{
void *ret;
/* catch wrong argument order */
if (unlikely(oldsize > size))
elog(ERROR, "invalid repalloc0 call: oldsize %zu, new size %zu",
oldsize, size);
ret = repalloc(pointer, size);
memset((char *) ret + oldsize, 0, (size - oldsize));
return ret;
}
/*
* MemoryContextAllocHuge
* Allocate (possibly-expansive) space within the specified context.
*
* See considerations in comment at MaxAllocHugeSize.
*/
void *
MemoryContextAllocHuge(MemoryContext context, Size size)
{
void *ret;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
context->isReset = false;
/*
* For efficiency reasons, we purposefully offload the handling of
* allocation failures to the MemoryContextMethods implementation as this
* allows these checks to be performed only when an actual malloc needs to
* be done to request more memory from the OS. Additionally, not having
* to execute any instructions after this call allows the compiler to use
* the sibling call optimization. If you're considering adding code after
* this call, consider making it the responsibility of the 'alloc'
* function instead.
*/
ret = context->methods->alloc(context, size, MCXT_ALLOC_HUGE);
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
return ret;
}
/*
* repalloc_huge
* Adjust the size of a previously allocated chunk, permitting a large
* value. The previous allocation need not have been "huge".
*/
void *
repalloc_huge(void *pointer, Size size)
{
/* this one seems not worth its own implementation */
return repalloc_extended(pointer, size, MCXT_ALLOC_HUGE);
}
/*
* MemoryContextStrdup
* Like strdup(), but allocate from the specified context
*/
char *
MemoryContextStrdup(MemoryContext context, const char *string)
{
char *nstr;
Size len = strlen(string) + 1;
nstr = (char *) MemoryContextAlloc(context, len);
memcpy(nstr, string, len);
return nstr;
}
char *
pstrdup(const char *in)
{
return MemoryContextStrdup(CurrentMemoryContext, in);
}
/*
* pnstrdup
* Like pstrdup(), but append null byte to a
* not-necessarily-null-terminated input string.
*/
char *
pnstrdup(const char *in, Size len)
{
char *out;
len = strnlen(in, len);
out = palloc(len + 1);
memcpy(out, in, len);
out[len] = '\0';
return out;
}
/*
* Make copy of string with all trailing newline characters removed.
*/
char *
pchomp(const char *in)
{
size_t n;
n = strlen(in);
while (n > 0 && in[n - 1] == '\n')
n--;
return pnstrdup(in, n);
}