1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-15 19:15:29 +03:00
postgres/src/backend/executor/nodeWorktablescan.c
Andres Freund 1a0586de36 Introduce notion of different types of slots (without implementing them).
Upcoming work intends to allow pluggable ways to introduce new ways of
storing table data. Accessing those table access methods from the
executor requires TupleTableSlots to be carry tuples in the native
format of such storage methods; otherwise there'll be a significant
conversion overhead.

Different access methods will require different data to store tuples
efficiently (just like virtual, minimal, heap already require fields
in TupleTableSlot). To allow that without requiring additional pointer
indirections, we want to have different structs (embedding
TupleTableSlot) for different types of slots.  Thus different types of
slots are needed, which requires adapting creators of slots.

The slot that most efficiently can represent a type of tuple in an
executor node will often depend on the type of slot a child node
uses. Therefore we need to track the type of slot is returned by
nodes, so parent slots can create slots based on that.

Relatedly, JIT compilation of tuple deforming needs to know which type
of slot a certain expression refers to, so it can create an
appropriate deforming function for the type of tuple in the slot.

But not all nodes will only return one type of slot, e.g. an append
node will potentially return different types of slots for each of its
subplans.

Therefore add function that allows to query the type of a node's
result slot, and whether it'll always be the same type (whether it's
fixed). This can be queried using ExecGetResultSlotOps().

The scan, result, inner, outer type of slots are automatically
inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(),
left/right subtrees respectively. If that's not correct for a node,
that can be overwritten using new fields in PlanState.

This commit does not introduce the actually abstracted implementation
of different kind of TupleTableSlots, that will be left for a followup
commit.  The different types of slots introduced will, for now, still
use the same backing implementation.

While this already partially invalidates the big comment in
tuptable.h, it seems to make more sense to update it later, when the
different TupleTableSlot implementations actually exist.

Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-15 22:00:30 -08:00

224 lines
6.3 KiB
C

/*-------------------------------------------------------------------------
*
* nodeWorktablescan.c
* routines to handle WorkTableScan nodes.
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeWorktablescan.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "executor/execdebug.h"
#include "executor/nodeWorktablescan.h"
static TupleTableSlot *WorkTableScanNext(WorkTableScanState *node);
/* ----------------------------------------------------------------
* WorkTableScanNext
*
* This is a workhorse for ExecWorkTableScan
* ----------------------------------------------------------------
*/
static TupleTableSlot *
WorkTableScanNext(WorkTableScanState *node)
{
TupleTableSlot *slot;
Tuplestorestate *tuplestorestate;
/*
* get information from the estate and scan state
*
* Note: we intentionally do not support backward scan. Although it would
* take only a couple more lines here, it would force nodeRecursiveunion.c
* to create the tuplestore with backward scan enabled, which has a
* performance cost. In practice backward scan is never useful for a
* worktable plan node, since it cannot appear high enough in the plan
* tree of a scrollable cursor to be exposed to a backward-scan
* requirement. So it's not worth expending effort to support it.
*
* Note: we are also assuming that this node is the only reader of the
* worktable. Therefore, we don't need a private read pointer for the
* tuplestore, nor do we need to tell tuplestore_gettupleslot to copy.
*/
Assert(ScanDirectionIsForward(node->ss.ps.state->es_direction));
tuplestorestate = node->rustate->working_table;
/*
* Get the next tuple from tuplestore. Return NULL if no more tuples.
*/
slot = node->ss.ss_ScanTupleSlot;
(void) tuplestore_gettupleslot(tuplestorestate, true, false, slot);
return slot;
}
/*
* WorkTableScanRecheck -- access method routine to recheck a tuple in EvalPlanQual
*/
static bool
WorkTableScanRecheck(WorkTableScanState *node, TupleTableSlot *slot)
{
/* nothing to check */
return true;
}
/* ----------------------------------------------------------------
* ExecWorkTableScan(node)
*
* Scans the worktable sequentially and returns the next qualifying tuple.
* We call the ExecScan() routine and pass it the appropriate
* access method functions.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecWorkTableScan(PlanState *pstate)
{
WorkTableScanState *node = castNode(WorkTableScanState, pstate);
/*
* On the first call, find the ancestor RecursiveUnion's state via the
* Param slot reserved for it. (We can't do this during node init because
* there are corner cases where we'll get the init call before the
* RecursiveUnion does.)
*/
if (node->rustate == NULL)
{
WorkTableScan *plan = (WorkTableScan *) node->ss.ps.plan;
EState *estate = node->ss.ps.state;
ParamExecData *param;
param = &(estate->es_param_exec_vals[plan->wtParam]);
Assert(param->execPlan == NULL);
Assert(!param->isnull);
node->rustate = castNode(RecursiveUnionState, DatumGetPointer(param->value));
Assert(node->rustate);
/*
* The scan tuple type (ie, the rowtype we expect to find in the work
* table) is the same as the result rowtype of the ancestor
* RecursiveUnion node. Note this depends on the assumption that
* RecursiveUnion doesn't allow projection.
*/
ExecAssignScanType(&node->ss,
ExecGetResultType(&node->rustate->ps));
/*
* Now we can initialize the projection info. This must be completed
* before we can call ExecScan().
*/
ExecAssignScanProjectionInfo(&node->ss);
}
return ExecScan(&node->ss,
(ExecScanAccessMtd) WorkTableScanNext,
(ExecScanRecheckMtd) WorkTableScanRecheck);
}
/* ----------------------------------------------------------------
* ExecInitWorkTableScan
* ----------------------------------------------------------------
*/
WorkTableScanState *
ExecInitWorkTableScan(WorkTableScan *node, EState *estate, int eflags)
{
WorkTableScanState *scanstate;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
/*
* WorkTableScan should not have any children.
*/
Assert(outerPlan(node) == NULL);
Assert(innerPlan(node) == NULL);
/*
* create new WorkTableScanState for node
*/
scanstate = makeNode(WorkTableScanState);
scanstate->ss.ps.plan = (Plan *) node;
scanstate->ss.ps.state = estate;
scanstate->ss.ps.ExecProcNode = ExecWorkTableScan;
scanstate->rustate = NULL; /* we'll set this later */
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &scanstate->ss.ps);
/*
* tuple table initialization
*/
ExecInitResultTypeTL(&scanstate->ss.ps);
/* signal that return type is not yet known */
scanstate->ss.ps.resultopsset = true;
scanstate->ss.ps.resultopsfixed = false;
ExecInitScanTupleSlot(estate, &scanstate->ss, NULL, &TTSOpsMinimalTuple);
/*
* initialize child expressions
*/
scanstate->ss.ps.qual =
ExecInitQual(node->scan.plan.qual, (PlanState *) scanstate);
/*
* Do not yet initialize projection info, see ExecWorkTableScan() for
* details.
*/
return scanstate;
}
/* ----------------------------------------------------------------
* ExecEndWorkTableScan
*
* frees any storage allocated through C routines.
* ----------------------------------------------------------------
*/
void
ExecEndWorkTableScan(WorkTableScanState *node)
{
/*
* Free exprcontext
*/
ExecFreeExprContext(&node->ss.ps);
/*
* clean out the tuple table
*/
if (node->ss.ps.ps_ResultTupleSlot)
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
ExecClearTuple(node->ss.ss_ScanTupleSlot);
}
/* ----------------------------------------------------------------
* ExecReScanWorkTableScan
*
* Rescans the relation.
* ----------------------------------------------------------------
*/
void
ExecReScanWorkTableScan(WorkTableScanState *node)
{
if (node->ss.ps.ps_ResultTupleSlot)
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
ExecScanReScan(&node->ss);
/* No need (or way) to rescan if ExecWorkTableScan not called yet */
if (node->rustate)
tuplestore_rescan(node->rustate->working_table);
}