mirror of
https://github.com/postgres/postgres.git
synced 2025-05-02 11:44:50 +03:00
621 lines
16 KiB
C
621 lines
16 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* nodeFunctionscan.c
|
|
* Support routines for scanning RangeFunctions (functions in rangetable).
|
|
*
|
|
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/executor/nodeFunctionscan.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
/*
|
|
* INTERFACE ROUTINES
|
|
* ExecFunctionScan scans a function.
|
|
* ExecFunctionNext retrieve next tuple in sequential order.
|
|
* ExecInitFunctionScan creates and initializes a functionscan node.
|
|
* ExecEndFunctionScan releases any storage allocated.
|
|
* ExecReScanFunctionScan rescans the function
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "executor/nodeFunctionscan.h"
|
|
#include "funcapi.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/memutils.h"
|
|
|
|
|
|
/*
|
|
* Runtime data for each function being scanned.
|
|
*/
|
|
typedef struct FunctionScanPerFuncState
|
|
{
|
|
SetExprState *setexpr; /* state of the expression being evaluated */
|
|
TupleDesc tupdesc; /* desc of the function result type */
|
|
int colcount; /* expected number of result columns */
|
|
Tuplestorestate *tstore; /* holds the function result set */
|
|
int64 rowcount; /* # of rows in result set, -1 if not known */
|
|
TupleTableSlot *func_slot; /* function result slot (or NULL) */
|
|
} FunctionScanPerFuncState;
|
|
|
|
static TupleTableSlot *FunctionNext(FunctionScanState *node);
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* Scan Support
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
/* ----------------------------------------------------------------
|
|
* FunctionNext
|
|
*
|
|
* This is a workhorse for ExecFunctionScan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
FunctionNext(FunctionScanState *node)
|
|
{
|
|
EState *estate;
|
|
ScanDirection direction;
|
|
TupleTableSlot *scanslot;
|
|
bool alldone;
|
|
int64 oldpos;
|
|
int funcno;
|
|
int att;
|
|
|
|
/*
|
|
* get information from the estate and scan state
|
|
*/
|
|
estate = node->ss.ps.state;
|
|
direction = estate->es_direction;
|
|
scanslot = node->ss.ss_ScanTupleSlot;
|
|
|
|
if (node->simple)
|
|
{
|
|
/*
|
|
* Fast path for the trivial case: the function return type and scan
|
|
* result type are the same, so we fetch the function result straight
|
|
* into the scan result slot. No need to update ordinality or
|
|
* rowcounts either.
|
|
*/
|
|
Tuplestorestate *tstore = node->funcstates[0].tstore;
|
|
|
|
/*
|
|
* If first time through, read all tuples from function and put them
|
|
* in a tuplestore. Subsequent calls just fetch tuples from
|
|
* tuplestore.
|
|
*/
|
|
if (tstore == NULL)
|
|
{
|
|
node->funcstates[0].tstore = tstore =
|
|
ExecMakeTableFunctionResult(node->funcstates[0].setexpr,
|
|
node->ss.ps.ps_ExprContext,
|
|
node->argcontext,
|
|
node->funcstates[0].tupdesc,
|
|
node->eflags & EXEC_FLAG_BACKWARD);
|
|
|
|
/*
|
|
* paranoia - cope if the function, which may have constructed the
|
|
* tuplestore itself, didn't leave it pointing at the start. This
|
|
* call is fast, so the overhead shouldn't be an issue.
|
|
*/
|
|
tuplestore_rescan(tstore);
|
|
}
|
|
|
|
/*
|
|
* Get the next tuple from tuplestore.
|
|
*/
|
|
(void) tuplestore_gettupleslot(tstore,
|
|
ScanDirectionIsForward(direction),
|
|
false,
|
|
scanslot);
|
|
return scanslot;
|
|
}
|
|
|
|
/*
|
|
* Increment or decrement ordinal counter before checking for end-of-data,
|
|
* so that we can move off either end of the result by 1 (and no more than
|
|
* 1) without losing correct count. See PortalRunSelect for why we can
|
|
* assume that we won't be called repeatedly in the end-of-data state.
|
|
*/
|
|
oldpos = node->ordinal;
|
|
if (ScanDirectionIsForward(direction))
|
|
node->ordinal++;
|
|
else
|
|
node->ordinal--;
|
|
|
|
/*
|
|
* Main loop over functions.
|
|
*
|
|
* We fetch the function results into func_slots (which match the function
|
|
* return types), and then copy the values to scanslot (which matches the
|
|
* scan result type), setting the ordinal column (if any) as well.
|
|
*/
|
|
ExecClearTuple(scanslot);
|
|
att = 0;
|
|
alldone = true;
|
|
for (funcno = 0; funcno < node->nfuncs; funcno++)
|
|
{
|
|
FunctionScanPerFuncState *fs = &node->funcstates[funcno];
|
|
int i;
|
|
|
|
/*
|
|
* If first time through, read all tuples from function and put them
|
|
* in a tuplestore. Subsequent calls just fetch tuples from
|
|
* tuplestore.
|
|
*/
|
|
if (fs->tstore == NULL)
|
|
{
|
|
fs->tstore =
|
|
ExecMakeTableFunctionResult(fs->setexpr,
|
|
node->ss.ps.ps_ExprContext,
|
|
node->argcontext,
|
|
fs->tupdesc,
|
|
node->eflags & EXEC_FLAG_BACKWARD);
|
|
|
|
/*
|
|
* paranoia - cope if the function, which may have constructed the
|
|
* tuplestore itself, didn't leave it pointing at the start. This
|
|
* call is fast, so the overhead shouldn't be an issue.
|
|
*/
|
|
tuplestore_rescan(fs->tstore);
|
|
}
|
|
|
|
/*
|
|
* Get the next tuple from tuplestore.
|
|
*
|
|
* If we have a rowcount for the function, and we know the previous
|
|
* read position was out of bounds, don't try the read. This allows
|
|
* backward scan to work when there are mixed row counts present.
|
|
*/
|
|
if (fs->rowcount != -1 && fs->rowcount < oldpos)
|
|
ExecClearTuple(fs->func_slot);
|
|
else
|
|
(void) tuplestore_gettupleslot(fs->tstore,
|
|
ScanDirectionIsForward(direction),
|
|
false,
|
|
fs->func_slot);
|
|
|
|
if (TupIsNull(fs->func_slot))
|
|
{
|
|
/*
|
|
* If we ran out of data for this function in the forward
|
|
* direction then we now know how many rows it returned. We need
|
|
* to know this in order to handle backwards scans. The row count
|
|
* we store is actually 1+ the actual number, because we have to
|
|
* position the tuplestore 1 off its end sometimes.
|
|
*/
|
|
if (ScanDirectionIsForward(direction) && fs->rowcount == -1)
|
|
fs->rowcount = node->ordinal;
|
|
|
|
/*
|
|
* populate the result cols with nulls
|
|
*/
|
|
for (i = 0; i < fs->colcount; i++)
|
|
{
|
|
scanslot->tts_values[att] = (Datum) 0;
|
|
scanslot->tts_isnull[att] = true;
|
|
att++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* we have a result, so just copy it to the result cols.
|
|
*/
|
|
slot_getallattrs(fs->func_slot);
|
|
|
|
for (i = 0; i < fs->colcount; i++)
|
|
{
|
|
scanslot->tts_values[att] = fs->func_slot->tts_values[i];
|
|
scanslot->tts_isnull[att] = fs->func_slot->tts_isnull[i];
|
|
att++;
|
|
}
|
|
|
|
/*
|
|
* We're not done until every function result is exhausted; we pad
|
|
* the shorter results with nulls until then.
|
|
*/
|
|
alldone = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ordinal col is always last, per spec.
|
|
*/
|
|
if (node->ordinality)
|
|
{
|
|
scanslot->tts_values[att] = Int64GetDatumFast(node->ordinal);
|
|
scanslot->tts_isnull[att] = false;
|
|
}
|
|
|
|
/*
|
|
* If alldone, we just return the previously-cleared scanslot. Otherwise,
|
|
* finish creating the virtual tuple.
|
|
*/
|
|
if (!alldone)
|
|
ExecStoreVirtualTuple(scanslot);
|
|
|
|
return scanslot;
|
|
}
|
|
|
|
/*
|
|
* FunctionRecheck -- access method routine to recheck a tuple in EvalPlanQual
|
|
*/
|
|
static bool
|
|
FunctionRecheck(FunctionScanState *node, TupleTableSlot *slot)
|
|
{
|
|
/* nothing to check */
|
|
return true;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecFunctionScan(node)
|
|
*
|
|
* Scans the function sequentially and returns the next qualifying
|
|
* tuple.
|
|
* We call the ExecScan() routine and pass it the appropriate
|
|
* access method functions.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
ExecFunctionScan(PlanState *pstate)
|
|
{
|
|
FunctionScanState *node = castNode(FunctionScanState, pstate);
|
|
|
|
return ExecScan(&node->ss,
|
|
(ExecScanAccessMtd) FunctionNext,
|
|
(ExecScanRecheckMtd) FunctionRecheck);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitFunctionScan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
FunctionScanState *
|
|
ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags)
|
|
{
|
|
FunctionScanState *scanstate;
|
|
int nfuncs = list_length(node->functions);
|
|
TupleDesc scan_tupdesc;
|
|
int i,
|
|
natts;
|
|
ListCell *lc;
|
|
|
|
/* check for unsupported flags */
|
|
Assert(!(eflags & EXEC_FLAG_MARK));
|
|
|
|
/*
|
|
* FunctionScan should not have any children.
|
|
*/
|
|
Assert(outerPlan(node) == NULL);
|
|
Assert(innerPlan(node) == NULL);
|
|
|
|
/*
|
|
* create new ScanState for node
|
|
*/
|
|
scanstate = makeNode(FunctionScanState);
|
|
scanstate->ss.ps.plan = (Plan *) node;
|
|
scanstate->ss.ps.state = estate;
|
|
scanstate->ss.ps.ExecProcNode = ExecFunctionScan;
|
|
scanstate->eflags = eflags;
|
|
|
|
/*
|
|
* are we adding an ordinality column?
|
|
*/
|
|
scanstate->ordinality = node->funcordinality;
|
|
|
|
scanstate->nfuncs = nfuncs;
|
|
if (nfuncs == 1 && !node->funcordinality)
|
|
scanstate->simple = true;
|
|
else
|
|
scanstate->simple = false;
|
|
|
|
/*
|
|
* Ordinal 0 represents the "before the first row" position.
|
|
*
|
|
* We need to track ordinal position even when not adding an ordinality
|
|
* column to the result, in order to handle backwards scanning properly
|
|
* with multiple functions with different result sizes. (We can't position
|
|
* any individual function's tuplestore any more than 1 place beyond its
|
|
* end, so when scanning backwards, we need to know when to start
|
|
* including the function in the scan again.)
|
|
*/
|
|
scanstate->ordinal = 0;
|
|
|
|
/*
|
|
* Miscellaneous initialization
|
|
*
|
|
* create expression context for node
|
|
*/
|
|
ExecAssignExprContext(estate, &scanstate->ss.ps);
|
|
|
|
scanstate->funcstates = palloc(nfuncs * sizeof(FunctionScanPerFuncState));
|
|
|
|
natts = 0;
|
|
i = 0;
|
|
foreach(lc, node->functions)
|
|
{
|
|
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
|
|
Node *funcexpr = rtfunc->funcexpr;
|
|
int colcount = rtfunc->funccolcount;
|
|
FunctionScanPerFuncState *fs = &scanstate->funcstates[i];
|
|
TypeFuncClass functypclass;
|
|
Oid funcrettype;
|
|
TupleDesc tupdesc;
|
|
|
|
fs->setexpr =
|
|
ExecInitTableFunctionResult((Expr *) funcexpr,
|
|
scanstate->ss.ps.ps_ExprContext,
|
|
&scanstate->ss.ps);
|
|
|
|
/*
|
|
* Don't allocate the tuplestores; the actual calls to the functions
|
|
* do that. NULL means that we have not called the function yet (or
|
|
* need to call it again after a rescan).
|
|
*/
|
|
fs->tstore = NULL;
|
|
fs->rowcount = -1;
|
|
|
|
/*
|
|
* Now determine if the function returns a simple or composite type,
|
|
* and build an appropriate tupdesc. Note that in the composite case,
|
|
* the function may now return more columns than it did when the plan
|
|
* was made; we have to ignore any columns beyond "colcount".
|
|
*/
|
|
functypclass = get_expr_result_type(funcexpr,
|
|
&funcrettype,
|
|
&tupdesc);
|
|
|
|
if (functypclass == TYPEFUNC_COMPOSITE ||
|
|
functypclass == TYPEFUNC_COMPOSITE_DOMAIN)
|
|
{
|
|
/* Composite data type, e.g. a table's row type */
|
|
Assert(tupdesc);
|
|
Assert(tupdesc->natts >= colcount);
|
|
/* Must copy it out of typcache for safety */
|
|
tupdesc = CreateTupleDescCopy(tupdesc);
|
|
}
|
|
else if (functypclass == TYPEFUNC_SCALAR)
|
|
{
|
|
/* Base data type, i.e. scalar */
|
|
tupdesc = CreateTemplateTupleDesc(1);
|
|
TupleDescInitEntry(tupdesc,
|
|
(AttrNumber) 1,
|
|
NULL, /* don't care about the name here */
|
|
funcrettype,
|
|
-1,
|
|
0);
|
|
TupleDescInitEntryCollation(tupdesc,
|
|
(AttrNumber) 1,
|
|
exprCollation(funcexpr));
|
|
}
|
|
else if (functypclass == TYPEFUNC_RECORD)
|
|
{
|
|
tupdesc = BuildDescFromLists(rtfunc->funccolnames,
|
|
rtfunc->funccoltypes,
|
|
rtfunc->funccoltypmods,
|
|
rtfunc->funccolcollations);
|
|
|
|
/*
|
|
* For RECORD results, make sure a typmod has been assigned. (The
|
|
* function should do this for itself, but let's cover things in
|
|
* case it doesn't.)
|
|
*/
|
|
BlessTupleDesc(tupdesc);
|
|
}
|
|
else
|
|
{
|
|
/* crummy error message, but parser should have caught this */
|
|
elog(ERROR, "function in FROM has unsupported return type");
|
|
}
|
|
|
|
fs->tupdesc = tupdesc;
|
|
fs->colcount = colcount;
|
|
|
|
/*
|
|
* We only need separate slots for the function results if we are
|
|
* doing ordinality or multiple functions; otherwise, we'll fetch
|
|
* function results directly into the scan slot.
|
|
*/
|
|
if (!scanstate->simple)
|
|
{
|
|
fs->func_slot = ExecInitExtraTupleSlot(estate, fs->tupdesc,
|
|
&TTSOpsMinimalTuple);
|
|
}
|
|
else
|
|
fs->func_slot = NULL;
|
|
|
|
natts += colcount;
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Create the combined TupleDesc
|
|
*
|
|
* If there is just one function without ordinality, the scan result
|
|
* tupdesc is the same as the function result tupdesc --- except that we
|
|
* may stuff new names into it below, so drop any rowtype label.
|
|
*/
|
|
if (scanstate->simple)
|
|
{
|
|
scan_tupdesc = CreateTupleDescCopy(scanstate->funcstates[0].tupdesc);
|
|
scan_tupdesc->tdtypeid = RECORDOID;
|
|
scan_tupdesc->tdtypmod = -1;
|
|
}
|
|
else
|
|
{
|
|
AttrNumber attno = 0;
|
|
|
|
if (node->funcordinality)
|
|
natts++;
|
|
|
|
scan_tupdesc = CreateTemplateTupleDesc(natts);
|
|
|
|
for (i = 0; i < nfuncs; i++)
|
|
{
|
|
TupleDesc tupdesc = scanstate->funcstates[i].tupdesc;
|
|
int colcount = scanstate->funcstates[i].colcount;
|
|
int j;
|
|
|
|
for (j = 1; j <= colcount; j++)
|
|
TupleDescCopyEntry(scan_tupdesc, ++attno, tupdesc, j);
|
|
}
|
|
|
|
/* If doing ordinality, add a column of type "bigint" at the end */
|
|
if (node->funcordinality)
|
|
{
|
|
TupleDescInitEntry(scan_tupdesc,
|
|
++attno,
|
|
NULL, /* don't care about the name here */
|
|
INT8OID,
|
|
-1,
|
|
0);
|
|
}
|
|
|
|
Assert(attno == natts);
|
|
}
|
|
|
|
/*
|
|
* Initialize scan slot and type.
|
|
*/
|
|
ExecInitScanTupleSlot(estate, &scanstate->ss, scan_tupdesc,
|
|
&TTSOpsMinimalTuple);
|
|
|
|
/*
|
|
* Initialize result slot, type and projection.
|
|
*/
|
|
ExecInitResultTypeTL(&scanstate->ss.ps);
|
|
ExecAssignScanProjectionInfo(&scanstate->ss);
|
|
|
|
/*
|
|
* initialize child expressions
|
|
*/
|
|
scanstate->ss.ps.qual =
|
|
ExecInitQual(node->scan.plan.qual, (PlanState *) scanstate);
|
|
|
|
/*
|
|
* Create a memory context that ExecMakeTableFunctionResult can use to
|
|
* evaluate function arguments in. We can't use the per-tuple context for
|
|
* this because it gets reset too often; but we don't want to leak
|
|
* evaluation results into the query-lifespan context either. We just
|
|
* need one context, because we evaluate each function separately.
|
|
*/
|
|
scanstate->argcontext = AllocSetContextCreate(CurrentMemoryContext,
|
|
"Table function arguments",
|
|
ALLOCSET_DEFAULT_SIZES);
|
|
|
|
return scanstate;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndFunctionScan
|
|
*
|
|
* frees any storage allocated through C routines.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndFunctionScan(FunctionScanState *node)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Free the exprcontext
|
|
*/
|
|
ExecFreeExprContext(&node->ss.ps);
|
|
|
|
/*
|
|
* clean out the tuple table
|
|
*/
|
|
if (node->ss.ps.ps_ResultTupleSlot)
|
|
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
|
ExecClearTuple(node->ss.ss_ScanTupleSlot);
|
|
|
|
/*
|
|
* Release slots and tuplestore resources
|
|
*/
|
|
for (i = 0; i < node->nfuncs; i++)
|
|
{
|
|
FunctionScanPerFuncState *fs = &node->funcstates[i];
|
|
|
|
if (fs->func_slot)
|
|
ExecClearTuple(fs->func_slot);
|
|
|
|
if (fs->tstore != NULL)
|
|
{
|
|
tuplestore_end(node->funcstates[i].tstore);
|
|
fs->tstore = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecReScanFunctionScan
|
|
*
|
|
* Rescans the relation.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecReScanFunctionScan(FunctionScanState *node)
|
|
{
|
|
FunctionScan *scan = (FunctionScan *) node->ss.ps.plan;
|
|
int i;
|
|
Bitmapset *chgparam = node->ss.ps.chgParam;
|
|
|
|
if (node->ss.ps.ps_ResultTupleSlot)
|
|
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
|
for (i = 0; i < node->nfuncs; i++)
|
|
{
|
|
FunctionScanPerFuncState *fs = &node->funcstates[i];
|
|
|
|
if (fs->func_slot)
|
|
ExecClearTuple(fs->func_slot);
|
|
}
|
|
|
|
ExecScanReScan(&node->ss);
|
|
|
|
/*
|
|
* Here we have a choice whether to drop the tuplestores (and recompute
|
|
* the function outputs) or just rescan them. We must recompute if an
|
|
* expression contains changed parameters, else we rescan.
|
|
*
|
|
* XXX maybe we should recompute if the function is volatile? But in
|
|
* general the executor doesn't conditionalize its actions on that.
|
|
*/
|
|
if (chgparam)
|
|
{
|
|
ListCell *lc;
|
|
|
|
i = 0;
|
|
foreach(lc, scan->functions)
|
|
{
|
|
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
|
|
|
|
if (bms_overlap(chgparam, rtfunc->funcparams))
|
|
{
|
|
if (node->funcstates[i].tstore != NULL)
|
|
{
|
|
tuplestore_end(node->funcstates[i].tstore);
|
|
node->funcstates[i].tstore = NULL;
|
|
}
|
|
node->funcstates[i].rowcount = -1;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* Reset ordinality counter */
|
|
node->ordinal = 0;
|
|
|
|
/* Make sure we rewind any remaining tuplestores */
|
|
for (i = 0; i < node->nfuncs; i++)
|
|
{
|
|
if (node->funcstates[i].tstore != NULL)
|
|
tuplestore_rescan(node->funcstates[i].tstore);
|
|
}
|
|
}
|