mirror of
https://github.com/postgres/postgres.git
synced 2025-04-22 23:02:54 +03:00
Indeed, the non-static declaration foreseen in my previous commit message is necessary. Per Noah Misch.
3415 lines
75 KiB
C
3415 lines
75 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* float.c
|
|
* Functions for the built-in floating-point types.
|
|
*
|
|
* Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/adt/float.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "libpq/pqformat.h"
|
|
#include "utils/array.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/sortsupport.h"
|
|
|
|
|
|
#ifndef M_PI
|
|
/* from my RH5.2 gcc math.h file - thomas 2000-04-03 */
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
/* Radians per degree, a.k.a. PI / 180 */
|
|
#define RADIANS_PER_DEGREE 0.0174532925199432957692
|
|
|
|
/* Visual C++ etc lacks NAN, and won't accept 0.0/0.0. NAN definition from
|
|
* http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrfNotNumberNANItems.asp
|
|
*/
|
|
#if defined(WIN32) && !defined(NAN)
|
|
static const uint32 nan[2] = {0xffffffff, 0x7fffffff};
|
|
|
|
#define NAN (*(const double *) nan)
|
|
#endif
|
|
|
|
/* not sure what the following should be, but better to make it over-sufficient */
|
|
#define MAXFLOATWIDTH 64
|
|
#define MAXDOUBLEWIDTH 128
|
|
|
|
/*
|
|
* check to see if a float4/8 val has underflowed or overflowed
|
|
*/
|
|
#define CHECKFLOATVAL(val, inf_is_valid, zero_is_valid) \
|
|
do { \
|
|
if (isinf(val) && !(inf_is_valid)) \
|
|
ereport(ERROR, \
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), \
|
|
errmsg("value out of range: overflow"))); \
|
|
\
|
|
if ((val) == 0.0 && !(zero_is_valid)) \
|
|
ereport(ERROR, \
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), \
|
|
errmsg("value out of range: underflow"))); \
|
|
} while(0)
|
|
|
|
|
|
/* Configurable GUC parameter */
|
|
int extra_float_digits = 0; /* Added to DBL_DIG or FLT_DIG */
|
|
|
|
/* Cached constants for degree-based trig functions */
|
|
static bool degree_consts_set = false;
|
|
static float8 sin_30 = 0;
|
|
static float8 one_minus_cos_60 = 0;
|
|
static float8 asin_0_5 = 0;
|
|
static float8 acos_0_5 = 0;
|
|
static float8 atan_1_0 = 0;
|
|
static float8 tan_45 = 0;
|
|
static float8 cot_45 = 0;
|
|
|
|
/* Local function prototypes */
|
|
static int float4_cmp_internal(float4 a, float4 b);
|
|
static int float8_cmp_internal(float8 a, float8 b);
|
|
static double sind_q1(double x);
|
|
static double cosd_q1(double x);
|
|
|
|
/* This is INTENTIONALLY NOT STATIC. Don't "fix" it. */
|
|
void init_degree_constants(float8 thirty, float8 forty_five, float8 sixty,
|
|
float8 one_half, float8 one);
|
|
|
|
#ifndef HAVE_CBRT
|
|
/*
|
|
* Some machines (in particular, some versions of AIX) have an extern
|
|
* declaration for cbrt() in <math.h> but fail to provide the actual
|
|
* function, which causes configure to not set HAVE_CBRT. Furthermore,
|
|
* their compilers spit up at the mismatch between extern declaration
|
|
* and static definition. We work around that here by the expedient
|
|
* of a #define to make the actual name of the static function different.
|
|
*/
|
|
#define cbrt my_cbrt
|
|
static double cbrt(double x);
|
|
#endif /* HAVE_CBRT */
|
|
|
|
|
|
/*
|
|
* Routines to provide reasonably platform-independent handling of
|
|
* infinity and NaN. We assume that isinf() and isnan() are available
|
|
* and work per spec. (On some platforms, we have to supply our own;
|
|
* see src/port.) However, generating an Infinity or NaN in the first
|
|
* place is less well standardized; pre-C99 systems tend not to have C99's
|
|
* INFINITY and NAN macros. We centralize our workarounds for this here.
|
|
*/
|
|
|
|
double
|
|
get_float8_infinity(void)
|
|
{
|
|
#ifdef INFINITY
|
|
/* C99 standard way */
|
|
return (double) INFINITY;
|
|
#else
|
|
|
|
/*
|
|
* On some platforms, HUGE_VAL is an infinity, elsewhere it's just the
|
|
* largest normal double. We assume forcing an overflow will get us a
|
|
* true infinity.
|
|
*/
|
|
return (double) (HUGE_VAL * HUGE_VAL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The funny placements of the two #pragmas is necessary because of a
|
|
* long lived bug in the Microsoft compilers.
|
|
* See http://support.microsoft.com/kb/120968/en-us for details
|
|
*/
|
|
#if (_MSC_VER >= 1800)
|
|
#pragma warning(disable:4756)
|
|
#endif
|
|
float
|
|
get_float4_infinity(void)
|
|
{
|
|
#ifdef INFINITY
|
|
/* C99 standard way */
|
|
return (float) INFINITY;
|
|
#else
|
|
#if (_MSC_VER >= 1800)
|
|
#pragma warning(default:4756)
|
|
#endif
|
|
|
|
/*
|
|
* On some platforms, HUGE_VAL is an infinity, elsewhere it's just the
|
|
* largest normal double. We assume forcing an overflow will get us a
|
|
* true infinity.
|
|
*/
|
|
return (float) (HUGE_VAL * HUGE_VAL);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
get_float8_nan(void)
|
|
{
|
|
/* (double) NAN doesn't work on some NetBSD/MIPS releases */
|
|
#if defined(NAN) && !(defined(__NetBSD__) && defined(__mips__))
|
|
/* C99 standard way */
|
|
return (double) NAN;
|
|
#else
|
|
/* Assume we can get a NAN via zero divide */
|
|
return (double) (0.0 / 0.0);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
get_float4_nan(void)
|
|
{
|
|
#ifdef NAN
|
|
/* C99 standard way */
|
|
return (float) NAN;
|
|
#else
|
|
/* Assume we can get a NAN via zero divide */
|
|
return (float) (0.0 / 0.0);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns -1 if 'val' represents negative infinity, 1 if 'val'
|
|
* represents (positive) infinity, and 0 otherwise. On some platforms,
|
|
* this is equivalent to the isinf() macro, but not everywhere: C99
|
|
* does not specify that isinf() needs to distinguish between positive
|
|
* and negative infinity.
|
|
*/
|
|
int
|
|
is_infinite(double val)
|
|
{
|
|
int inf = isinf(val);
|
|
|
|
if (inf == 0)
|
|
return 0;
|
|
else if (val > 0)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* ========== USER I/O ROUTINES ========== */
|
|
|
|
|
|
/*
|
|
* float4in - converts "num" to float4
|
|
*/
|
|
Datum
|
|
float4in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
char *orig_num;
|
|
double val;
|
|
char *endptr;
|
|
|
|
/*
|
|
* endptr points to the first character _after_ the sequence we recognized
|
|
* as a valid floating point number. orig_num points to the original input
|
|
* string.
|
|
*/
|
|
orig_num = num;
|
|
|
|
/* skip leading whitespace */
|
|
while (*num != '\0' && isspace((unsigned char) *num))
|
|
num++;
|
|
|
|
/*
|
|
* Check for an empty-string input to begin with, to avoid the vagaries of
|
|
* strtod() on different platforms.
|
|
*/
|
|
if (*num == '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type real: \"%s\"",
|
|
orig_num)));
|
|
|
|
errno = 0;
|
|
val = strtod(num, &endptr);
|
|
|
|
/* did we not see anything that looks like a double? */
|
|
if (endptr == num || errno != 0)
|
|
{
|
|
int save_errno = errno;
|
|
|
|
/*
|
|
* C99 requires that strtod() accept NaN, [+-]Infinity, and [+-]Inf,
|
|
* but not all platforms support all of these (and some accept them
|
|
* but set ERANGE anyway...) Therefore, we check for these inputs
|
|
* ourselves if strtod() fails.
|
|
*
|
|
* Note: C99 also requires hexadecimal input as well as some extended
|
|
* forms of NaN, but we consider these forms unportable and don't try
|
|
* to support them. You can use 'em if your strtod() takes 'em.
|
|
*/
|
|
if (pg_strncasecmp(num, "NaN", 3) == 0)
|
|
{
|
|
val = get_float4_nan();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "Infinity", 8) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 8;
|
|
}
|
|
else if (pg_strncasecmp(num, "+Infinity", 9) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
|
|
{
|
|
val = -get_float4_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "inf", 3) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "+inf", 4) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (pg_strncasecmp(num, "-inf", 4) == 0)
|
|
{
|
|
val = -get_float4_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (save_errno == ERANGE)
|
|
{
|
|
/*
|
|
* Some platforms return ERANGE for denormalized numbers (those
|
|
* that are not zero, but are too close to zero to have full
|
|
* precision). We'd prefer not to throw error for that, so try to
|
|
* detect whether it's a "real" out-of-range condition by checking
|
|
* to see if the result is zero or huge.
|
|
*/
|
|
if (val == 0.0 || val >= HUGE_VAL || val <= -HUGE_VAL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("\"%s\" is out of range for type real",
|
|
orig_num)));
|
|
}
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type real: \"%s\"",
|
|
orig_num)));
|
|
}
|
|
#ifdef HAVE_BUGGY_SOLARIS_STRTOD
|
|
else
|
|
{
|
|
/*
|
|
* Many versions of Solaris have a bug wherein strtod sets endptr to
|
|
* point one byte beyond the end of the string when given "inf" or
|
|
* "infinity".
|
|
*/
|
|
if (endptr != num && endptr[-1] == '\0')
|
|
endptr--;
|
|
}
|
|
#endif /* HAVE_BUGGY_SOLARIS_STRTOD */
|
|
|
|
/* skip trailing whitespace */
|
|
while (*endptr != '\0' && isspace((unsigned char) *endptr))
|
|
endptr++;
|
|
|
|
/* if there is any junk left at the end of the string, bail out */
|
|
if (*endptr != '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type real: \"%s\"",
|
|
orig_num)));
|
|
|
|
/*
|
|
* if we get here, we have a legal double, still need to check to see if
|
|
* it's a legal float4
|
|
*/
|
|
CHECKFLOATVAL((float4) val, isinf(val), val == 0);
|
|
|
|
PG_RETURN_FLOAT4((float4) val);
|
|
}
|
|
|
|
/*
|
|
* float4out - converts a float4 number to a string
|
|
* using a standard output format
|
|
*/
|
|
Datum
|
|
float4out(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
char *ascii = (char *) palloc(MAXFLOATWIDTH + 1);
|
|
|
|
if (isnan(num))
|
|
PG_RETURN_CSTRING(strcpy(ascii, "NaN"));
|
|
|
|
switch (is_infinite(num))
|
|
{
|
|
case 1:
|
|
strcpy(ascii, "Infinity");
|
|
break;
|
|
case -1:
|
|
strcpy(ascii, "-Infinity");
|
|
break;
|
|
default:
|
|
{
|
|
int ndig = FLT_DIG + extra_float_digits;
|
|
|
|
if (ndig < 1)
|
|
ndig = 1;
|
|
|
|
snprintf(ascii, MAXFLOATWIDTH + 1, "%.*g", ndig, num);
|
|
}
|
|
}
|
|
|
|
PG_RETURN_CSTRING(ascii);
|
|
}
|
|
|
|
/*
|
|
* float4recv - converts external binary format to float4
|
|
*/
|
|
Datum
|
|
float4recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_FLOAT4(pq_getmsgfloat4(buf));
|
|
}
|
|
|
|
/*
|
|
* float4send - converts float4 to binary format
|
|
*/
|
|
Datum
|
|
float4send(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat4(&buf, num);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
/*
|
|
* float8in - converts "num" to float8
|
|
*/
|
|
Datum
|
|
float8in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
char *orig_num;
|
|
double val;
|
|
char *endptr;
|
|
|
|
/*
|
|
* endptr points to the first character _after_ the sequence we recognized
|
|
* as a valid floating point number. orig_num points to the original input
|
|
* string.
|
|
*/
|
|
orig_num = num;
|
|
|
|
/* skip leading whitespace */
|
|
while (*num != '\0' && isspace((unsigned char) *num))
|
|
num++;
|
|
|
|
/*
|
|
* Check for an empty-string input to begin with, to avoid the vagaries of
|
|
* strtod() on different platforms.
|
|
*/
|
|
if (*num == '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type double precision: \"%s\"",
|
|
orig_num)));
|
|
|
|
errno = 0;
|
|
val = strtod(num, &endptr);
|
|
|
|
/* did we not see anything that looks like a double? */
|
|
if (endptr == num || errno != 0)
|
|
{
|
|
int save_errno = errno;
|
|
|
|
/*
|
|
* C99 requires that strtod() accept NaN, [+-]Infinity, and [+-]Inf,
|
|
* but not all platforms support all of these (and some accept them
|
|
* but set ERANGE anyway...) Therefore, we check for these inputs
|
|
* ourselves if strtod() fails.
|
|
*
|
|
* Note: C99 also requires hexadecimal input as well as some extended
|
|
* forms of NaN, but we consider these forms unportable and don't try
|
|
* to support them. You can use 'em if your strtod() takes 'em.
|
|
*/
|
|
if (pg_strncasecmp(num, "NaN", 3) == 0)
|
|
{
|
|
val = get_float8_nan();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "Infinity", 8) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 8;
|
|
}
|
|
else if (pg_strncasecmp(num, "+Infinity", 9) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
|
|
{
|
|
val = -get_float8_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "inf", 3) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "+inf", 4) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (pg_strncasecmp(num, "-inf", 4) == 0)
|
|
{
|
|
val = -get_float8_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (save_errno == ERANGE)
|
|
{
|
|
/*
|
|
* Some platforms return ERANGE for denormalized numbers (those
|
|
* that are not zero, but are too close to zero to have full
|
|
* precision). We'd prefer not to throw error for that, so try to
|
|
* detect whether it's a "real" out-of-range condition by checking
|
|
* to see if the result is zero or huge.
|
|
*/
|
|
if (val == 0.0 || val >= HUGE_VAL || val <= -HUGE_VAL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("\"%s\" is out of range for type double precision",
|
|
orig_num)));
|
|
}
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type double precision: \"%s\"",
|
|
orig_num)));
|
|
}
|
|
#ifdef HAVE_BUGGY_SOLARIS_STRTOD
|
|
else
|
|
{
|
|
/*
|
|
* Many versions of Solaris have a bug wherein strtod sets endptr to
|
|
* point one byte beyond the end of the string when given "inf" or
|
|
* "infinity".
|
|
*/
|
|
if (endptr != num && endptr[-1] == '\0')
|
|
endptr--;
|
|
}
|
|
#endif /* HAVE_BUGGY_SOLARIS_STRTOD */
|
|
|
|
/* skip trailing whitespace */
|
|
while (*endptr != '\0' && isspace((unsigned char) *endptr))
|
|
endptr++;
|
|
|
|
/* if there is any junk left at the end of the string, bail out */
|
|
if (*endptr != '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type double precision: \"%s\"",
|
|
orig_num)));
|
|
|
|
CHECKFLOATVAL(val, true, true);
|
|
|
|
PG_RETURN_FLOAT8(val);
|
|
}
|
|
|
|
/*
|
|
* float8out - converts float8 number to a string
|
|
* using a standard output format
|
|
*/
|
|
Datum
|
|
float8out(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
char *ascii = (char *) palloc(MAXDOUBLEWIDTH + 1);
|
|
|
|
if (isnan(num))
|
|
PG_RETURN_CSTRING(strcpy(ascii, "NaN"));
|
|
|
|
switch (is_infinite(num))
|
|
{
|
|
case 1:
|
|
strcpy(ascii, "Infinity");
|
|
break;
|
|
case -1:
|
|
strcpy(ascii, "-Infinity");
|
|
break;
|
|
default:
|
|
{
|
|
int ndig = DBL_DIG + extra_float_digits;
|
|
|
|
if (ndig < 1)
|
|
ndig = 1;
|
|
|
|
snprintf(ascii, MAXDOUBLEWIDTH + 1, "%.*g", ndig, num);
|
|
}
|
|
}
|
|
|
|
PG_RETURN_CSTRING(ascii);
|
|
}
|
|
|
|
/*
|
|
* float8recv - converts external binary format to float8
|
|
*/
|
|
Datum
|
|
float8recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_FLOAT8(pq_getmsgfloat8(buf));
|
|
}
|
|
|
|
/*
|
|
* float8send - converts float8 to binary format
|
|
*/
|
|
Datum
|
|
float8send(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat8(&buf, num);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/* ========== PUBLIC ROUTINES ========== */
|
|
|
|
|
|
/*
|
|
* ======================
|
|
* FLOAT4 BASE OPERATIONS
|
|
* ======================
|
|
*/
|
|
|
|
/*
|
|
* float4abs - returns |arg1| (absolute value)
|
|
*/
|
|
Datum
|
|
float4abs(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) fabs(arg1));
|
|
}
|
|
|
|
/*
|
|
* float4um - returns -arg1 (unary minus)
|
|
*/
|
|
Datum
|
|
float4um(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 result;
|
|
|
|
result = -arg1;
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4up(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT4(arg);
|
|
}
|
|
|
|
Datum
|
|
float4larger(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
if (float4_cmp_internal(arg1, arg2) > 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
if (float4_cmp_internal(arg1, arg2) < 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
/*
|
|
* ======================
|
|
* FLOAT8 BASE OPERATIONS
|
|
* ======================
|
|
*/
|
|
|
|
/*
|
|
* float8abs - returns |arg1| (absolute value)
|
|
*/
|
|
Datum
|
|
float8abs(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(fabs(arg1));
|
|
}
|
|
|
|
|
|
/*
|
|
* float8um - returns -arg1 (unary minus)
|
|
*/
|
|
Datum
|
|
float8um(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = -arg1;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8up(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(arg);
|
|
}
|
|
|
|
Datum
|
|
float8larger(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (float8_cmp_internal(arg1, arg2) > 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (float8_cmp_internal(arg1, arg2) < 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================
|
|
* ARITHMETIC OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float4pl - returns arg1 + arg2
|
|
* float4mi - returns arg1 - arg2
|
|
* float4mul - returns arg1 * arg2
|
|
* float4div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float4pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
result = arg1 + arg2;
|
|
|
|
/*
|
|
* There isn't any way to check for underflow of addition/subtraction
|
|
* because numbers near the underflow value have already been rounded to
|
|
* the point where we can't detect that the two values were originally
|
|
* different, e.g. on x86, '1e-45'::float4 == '2e-45'::float4 ==
|
|
* 1.4013e-45.
|
|
*/
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
result = arg1 - arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
result = arg1 * arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4div(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = arg1 / arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
/*
|
|
* float8pl - returns arg1 + arg2
|
|
* float8mi - returns arg1 - arg2
|
|
* float8mul - returns arg1 * arg2
|
|
* float8div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float8pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 + arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 - arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 * arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8div(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = arg1 / arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================
|
|
* COMPARISON OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float4{eq,ne,lt,le,gt,ge} - float4/float4 comparison operations
|
|
*/
|
|
static int
|
|
float4_cmp_internal(float4 a, float4 b)
|
|
{
|
|
/*
|
|
* We consider all NANs to be equal and larger than any non-NAN. This is
|
|
* somewhat arbitrary; the important thing is to have a consistent sort
|
|
* order.
|
|
*/
|
|
if (isnan(a))
|
|
{
|
|
if (isnan(b))
|
|
return 0; /* NAN = NAN */
|
|
else
|
|
return 1; /* NAN > non-NAN */
|
|
}
|
|
else if (isnan(b))
|
|
{
|
|
return -1; /* non-NAN < NAN */
|
|
}
|
|
else
|
|
{
|
|
if (a > b)
|
|
return 1;
|
|
else if (a < b)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float4eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float4ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float4lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float4le(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float4gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float4ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
Datum
|
|
btfloat4cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_INT32(float4_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
static int
|
|
btfloat4fastcmp(Datum x, Datum y, SortSupport ssup)
|
|
{
|
|
float4 arg1 = DatumGetFloat4(x);
|
|
float4 arg2 = DatumGetFloat4(y);
|
|
|
|
return float4_cmp_internal(arg1, arg2);
|
|
}
|
|
|
|
Datum
|
|
btfloat4sortsupport(PG_FUNCTION_ARGS)
|
|
{
|
|
SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
|
|
|
|
ssup->comparator = btfloat4fastcmp;
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
/*
|
|
* float8{eq,ne,lt,le,gt,ge} - float8/float8 comparison operations
|
|
*/
|
|
static int
|
|
float8_cmp_internal(float8 a, float8 b)
|
|
{
|
|
/*
|
|
* We consider all NANs to be equal and larger than any non-NAN. This is
|
|
* somewhat arbitrary; the important thing is to have a consistent sort
|
|
* order.
|
|
*/
|
|
if (isnan(a))
|
|
{
|
|
if (isnan(b))
|
|
return 0; /* NAN = NAN */
|
|
else
|
|
return 1; /* NAN > non-NAN */
|
|
}
|
|
else if (isnan(b))
|
|
{
|
|
return -1; /* non-NAN < NAN */
|
|
}
|
|
else
|
|
{
|
|
if (a > b)
|
|
return 1;
|
|
else if (a < b)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float8eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float8ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float8lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float8le(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float8gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float8ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
Datum
|
|
btfloat8cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
static int
|
|
btfloat8fastcmp(Datum x, Datum y, SortSupport ssup)
|
|
{
|
|
float8 arg1 = DatumGetFloat8(x);
|
|
float8 arg2 = DatumGetFloat8(y);
|
|
|
|
return float8_cmp_internal(arg1, arg2);
|
|
}
|
|
|
|
Datum
|
|
btfloat8sortsupport(PG_FUNCTION_ARGS)
|
|
{
|
|
SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
|
|
|
|
ssup->comparator = btfloat8fastcmp;
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
Datum
|
|
btfloat48cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
/* widen float4 to float8 and then compare */
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
btfloat84cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
/* widen float4 to float8 and then compare */
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
|
|
/*
|
|
* ===================
|
|
* CONVERSION ROUTINES
|
|
* ===================
|
|
*/
|
|
|
|
/*
|
|
* ftod - converts a float4 number to a float8 number
|
|
*/
|
|
Datum
|
|
ftod(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtof - converts a float8 number to a float4 number
|
|
*/
|
|
Datum
|
|
dtof(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
|
|
CHECKFLOATVAL((float4) num, isinf(num), num == 0);
|
|
|
|
PG_RETURN_FLOAT4((float4) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtoi4 - converts a float8 number to an int4 number
|
|
*/
|
|
Datum
|
|
dtoi4(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
int32 result;
|
|
|
|
/* 'Inf' is handled by INT_MAX */
|
|
if (num < INT_MIN || num > INT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
result = (int32) rint(num);
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtoi2 - converts a float8 number to an int2 number
|
|
*/
|
|
Datum
|
|
dtoi2(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
|
|
if (num < SHRT_MIN || num > SHRT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) rint(num));
|
|
}
|
|
|
|
|
|
/*
|
|
* i4tod - converts an int4 number to a float8 number
|
|
*/
|
|
Datum
|
|
i4tod(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 num = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* i2tod - converts an int2 number to a float8 number
|
|
*/
|
|
Datum
|
|
i2tod(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 num = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* ftoi4 - converts a float4 number to an int4 number
|
|
*/
|
|
Datum
|
|
ftoi4(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
if (num < INT_MIN || num > INT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
PG_RETURN_INT32((int32) rint(num));
|
|
}
|
|
|
|
|
|
/*
|
|
* ftoi2 - converts a float4 number to an int2 number
|
|
*/
|
|
Datum
|
|
ftoi2(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
if (num < SHRT_MIN || num > SHRT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) rint(num));
|
|
}
|
|
|
|
|
|
/*
|
|
* i4tof - converts an int4 number to a float4 number
|
|
*/
|
|
Datum
|
|
i4tof(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 num = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* i2tof - converts an int2 number to a float4 number
|
|
*/
|
|
Datum
|
|
i2tof(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 num = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* =======================
|
|
* RANDOM FLOAT8 OPERATORS
|
|
* =======================
|
|
*/
|
|
|
|
/*
|
|
* dround - returns ROUND(arg1)
|
|
*/
|
|
Datum
|
|
dround(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(rint(arg1));
|
|
}
|
|
|
|
/*
|
|
* dceil - returns the smallest integer greater than or
|
|
* equal to the specified float
|
|
*/
|
|
Datum
|
|
dceil(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(ceil(arg1));
|
|
}
|
|
|
|
/*
|
|
* dfloor - returns the largest integer lesser than or
|
|
* equal to the specified float
|
|
*/
|
|
Datum
|
|
dfloor(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(floor(arg1));
|
|
}
|
|
|
|
/*
|
|
* dsign - returns -1 if the argument is less than 0, 0
|
|
* if the argument is equal to 0, and 1 if the
|
|
* argument is greater than zero.
|
|
*/
|
|
Datum
|
|
dsign(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 > 0)
|
|
result = 1.0;
|
|
else if (arg1 < 0)
|
|
result = -1.0;
|
|
else
|
|
result = 0.0;
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* dtrunc - returns truncation-towards-zero of arg1,
|
|
* arg1 >= 0 ... the greatest integer less
|
|
* than or equal to arg1
|
|
* arg1 < 0 ... the least integer greater
|
|
* than or equal to arg1
|
|
*/
|
|
Datum
|
|
dtrunc(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 >= 0)
|
|
result = floor(arg1);
|
|
else
|
|
result = -floor(-arg1);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dsqrt - returns square root of arg1
|
|
*/
|
|
Datum
|
|
dsqrt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("cannot take square root of a negative number")));
|
|
|
|
result = sqrt(arg1);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcbrt - returns cube root of arg1
|
|
*/
|
|
Datum
|
|
dcbrt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = cbrt(arg1);
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dpow - returns pow(arg1,arg2)
|
|
*/
|
|
Datum
|
|
dpow(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
/*
|
|
* The SQL spec requires that we emit a particular SQLSTATE error code for
|
|
* certain error conditions. Specifically, we don't return a
|
|
* divide-by-zero error code for 0 ^ -1.
|
|
*/
|
|
if (arg1 == 0 && arg2 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("zero raised to a negative power is undefined")));
|
|
if (arg1 < 0 && floor(arg2) != arg2)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("a negative number raised to a non-integer power yields a complex result")));
|
|
|
|
/*
|
|
* pow() sets errno only on some platforms, depending on whether it
|
|
* follows _IEEE_, _POSIX_, _XOPEN_, or _SVID_, so we try to avoid using
|
|
* errno. However, some platform/CPU combinations return errno == EDOM
|
|
* and result == Nan for negative arg1 and very large arg2 (they must be
|
|
* using something different from our floor() test to decide it's
|
|
* invalid). Other platforms (HPPA) return errno == ERANGE and a large
|
|
* (HUGE_VAL) but finite result to signal overflow.
|
|
*/
|
|
errno = 0;
|
|
result = pow(arg1, arg2);
|
|
if (errno == EDOM && isnan(result))
|
|
{
|
|
if ((fabs(arg1) > 1 && arg2 >= 0) || (fabs(arg1) < 1 && arg2 < 0))
|
|
/* The sign of Inf is not significant in this case. */
|
|
result = get_float8_infinity();
|
|
else if (fabs(arg1) != 1)
|
|
result = 0;
|
|
else
|
|
result = 1;
|
|
}
|
|
else if (errno == ERANGE && result != 0 && !isinf(result))
|
|
result = get_float8_infinity();
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dexp - returns the exponential function of arg1
|
|
*/
|
|
Datum
|
|
dexp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = exp(arg1);
|
|
if (errno == ERANGE && result != 0 && !isinf(result))
|
|
result = get_float8_infinity();
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), false);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dlog1 - returns the natural logarithm of arg1
|
|
*/
|
|
Datum
|
|
dlog1(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* Emit particular SQLSTATE error codes for ln(). This is required by the
|
|
* SQL standard.
|
|
*/
|
|
if (arg1 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of zero")));
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of a negative number")));
|
|
|
|
result = log(arg1);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 1);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dlog10 - returns the base 10 logarithm of arg1
|
|
*/
|
|
Datum
|
|
dlog10(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* Emit particular SQLSTATE error codes for log(). The SQL spec doesn't
|
|
* define log(), but it does define ln(), so it makes sense to emit the
|
|
* same error code for an analogous error condition.
|
|
*/
|
|
if (arg1 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of zero")));
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of a negative number")));
|
|
|
|
result = log10(arg1);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 1);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dacos - returns the arccos of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dacos(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* The principal branch of the inverse cosine function maps values in the
|
|
* range [-1, 1] to values in the range [0, Pi], so we should reject any
|
|
* inputs outside that range and the result will always be finite.
|
|
*/
|
|
if (arg1 < -1.0 || arg1 > 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
result = acos(arg1);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dasin - returns the arcsin of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dasin(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* The principal branch of the inverse sine function maps values in the
|
|
* range [-1, 1] to values in the range [-Pi/2, Pi/2], so we should reject
|
|
* any inputs outside that range and the result will always be finite.
|
|
*/
|
|
if (arg1 < -1.0 || arg1 > 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
result = asin(arg1);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* datan - returns the arctan of arg1 (radians)
|
|
*/
|
|
Datum
|
|
datan(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* The principal branch of the inverse tangent function maps all inputs to
|
|
* values in the range [-Pi/2, Pi/2], so the result should always be
|
|
* finite, even if the input is infinite.
|
|
*/
|
|
result = atan(arg1);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* atan2 - returns the arctan of arg1/arg2 (radians)
|
|
*/
|
|
Datum
|
|
datan2(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if either input is NaN */
|
|
if (isnan(arg1) || isnan(arg2))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* atan2 maps all inputs to values in the range [-Pi, Pi], so the result
|
|
* should always be finite, even if the inputs are infinite.
|
|
*/
|
|
result = atan2(arg1, arg2);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcos - returns the cosine of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dcos(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* cos() is periodic and so theoretically can work for all finite inputs,
|
|
* but some implementations may choose to throw error if the input is so
|
|
* large that there are no significant digits in the result. So we should
|
|
* check for errors. POSIX allows an error to be reported either via
|
|
* errno or via fetestexcept(), but currently we only support checking
|
|
* errno. (fetestexcept() is rumored to report underflow unreasonably
|
|
* early on some platforms, so it's not clear that believing it would be a
|
|
* net improvement anyway.)
|
|
*
|
|
* For infinite inputs, POSIX specifies that the trigonometric functions
|
|
* should return a domain error; but we won't notice that unless the
|
|
* platform reports via errno, so also explicitly test for infinite
|
|
* inputs.
|
|
*/
|
|
errno = 0;
|
|
result = cos(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcot - returns the cotangent of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dcot(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/* Be sure to throw an error if the input is infinite --- see dcos() */
|
|
errno = 0;
|
|
result = tan(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
result = 1.0 / result;
|
|
CHECKFLOATVAL(result, true /* cot(0) == Inf */ , true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dsin - returns the sine of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dsin(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/* Be sure to throw an error if the input is infinite --- see dcos() */
|
|
errno = 0;
|
|
result = sin(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtan - returns the tangent of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dtan(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/* Be sure to throw an error if the input is infinite --- see dcos() */
|
|
errno = 0;
|
|
result = tan(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, true /* tan(pi/2) == Inf */ , true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/* ========== DEGREE-BASED TRIGONOMETRIC FUNCTIONS ========== */
|
|
|
|
|
|
/*
|
|
* Initialize the cached constants declared at the head of this file
|
|
* (sin_30 etc). The fact that we need those at all, let alone need this
|
|
* Rube-Goldberg-worthy method of initializing them, is because there are
|
|
* compilers out there that will precompute expressions such as sin(constant)
|
|
* using a sin() function different from what will be used at runtime. If we
|
|
* want exact results, we must ensure that none of the scaling constants used
|
|
* in the degree-based trig functions are computed that way.
|
|
*
|
|
* The whole approach fails if init_degree_constants() gets inlined into the
|
|
* call sites, since then constant-folding can happen anyway. Currently it
|
|
* seems sufficient to declare it non-static to prevent that. We have no
|
|
* expectation that other files will call this, but don't tell gcc that.
|
|
*
|
|
* Other hazards we are trying to forestall with this kluge include the
|
|
* possibility that compilers will rearrange the expressions, or compute
|
|
* some intermediate results in registers wider than a standard double.
|
|
*/
|
|
void
|
|
init_degree_constants(float8 thirty, float8 forty_five, float8 sixty,
|
|
float8 one_half, float8 one)
|
|
{
|
|
sin_30 = sin(thirty * RADIANS_PER_DEGREE);
|
|
one_minus_cos_60 = 1.0 - cos(sixty * RADIANS_PER_DEGREE);
|
|
asin_0_5 = asin(one_half);
|
|
acos_0_5 = acos(one_half);
|
|
atan_1_0 = atan(one);
|
|
tan_45 = sind_q1(forty_five) / cosd_q1(forty_five);
|
|
cot_45 = cosd_q1(forty_five) / sind_q1(forty_five);
|
|
degree_consts_set = true;
|
|
}
|
|
|
|
#define INIT_DEGREE_CONSTANTS() \
|
|
do { \
|
|
if (!degree_consts_set) \
|
|
init_degree_constants(30.0, 45.0, 60.0, 0.5, 1.0); \
|
|
} while(0)
|
|
|
|
|
|
/*
|
|
* asind_q1 - returns the inverse sine of x in degrees, for x in
|
|
* the range [0, 1]. The result is an angle in the
|
|
* first quadrant --- [0, 90] degrees.
|
|
*
|
|
* For the 3 special case inputs (0, 0.5 and 1), this
|
|
* function will return exact values (0, 30 and 90
|
|
* degrees respectively).
|
|
*/
|
|
static double
|
|
asind_q1(double x)
|
|
{
|
|
/*
|
|
* Stitch together inverse sine and cosine functions for the ranges [0,
|
|
* 0.5] and (0.5, 1]. Each expression below is guaranteed to return
|
|
* exactly 30 for x=0.5, so the result is a continuous monotonic function
|
|
* over the full range.
|
|
*/
|
|
if (x <= 0.5)
|
|
return (asin(x) / asin_0_5) * 30.0;
|
|
else
|
|
return 90.0 - (acos(x) / acos_0_5) * 60.0;
|
|
}
|
|
|
|
|
|
/*
|
|
* acosd_q1 - returns the inverse cosine of x in degrees, for x in
|
|
* the range [0, 1]. The result is an angle in the
|
|
* first quadrant --- [0, 90] degrees.
|
|
*
|
|
* For the 3 special case inputs (0, 0.5 and 1), this
|
|
* function will return exact values (0, 60 and 90
|
|
* degrees respectively).
|
|
*/
|
|
static double
|
|
acosd_q1(double x)
|
|
{
|
|
/*
|
|
* Stitch together inverse sine and cosine functions for the ranges [0,
|
|
* 0.5] and (0.5, 1]. Each expression below is guaranteed to return
|
|
* exactly 60 for x=0.5, so the result is a continuous monotonic function
|
|
* over the full range.
|
|
*/
|
|
if (x <= 0.5)
|
|
return 90.0 - (asin(x) / asin_0_5) * 30.0;
|
|
else
|
|
return (acos(x) / acos_0_5) * 60.0;
|
|
}
|
|
|
|
|
|
/*
|
|
* dacosd - returns the arccos of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dacosd(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/*
|
|
* The principal branch of the inverse cosine function maps values in the
|
|
* range [-1, 1] to values in the range [0, 180], so we should reject any
|
|
* inputs outside that range and the result will always be finite.
|
|
*/
|
|
if (arg1 < -1.0 || arg1 > 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
if (arg1 >= 0.0)
|
|
result = acosd_q1(arg1);
|
|
else
|
|
result = 90.0 + asind_q1(-arg1);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dasind - returns the arcsin of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dasind(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/*
|
|
* The principal branch of the inverse sine function maps values in the
|
|
* range [-1, 1] to values in the range [-90, 90], so we should reject any
|
|
* inputs outside that range and the result will always be finite.
|
|
*/
|
|
if (arg1 < -1.0 || arg1 > 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
if (arg1 >= 0.0)
|
|
result = asind_q1(arg1);
|
|
else
|
|
result = -asind_q1(-arg1);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* datand - returns the arctan of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
datand(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/*
|
|
* The principal branch of the inverse tangent function maps all inputs to
|
|
* values in the range [-90, 90], so the result should always be finite,
|
|
* even if the input is infinite. Additionally, we take care to ensure
|
|
* than when arg1 is 1, the result is exactly 45.
|
|
*/
|
|
result = (atan(arg1) / atan_1_0) * 45.0;
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* atan2d - returns the arctan of arg1/arg2 (degrees)
|
|
*/
|
|
Datum
|
|
datan2d(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if either input is NaN */
|
|
if (isnan(arg1) || isnan(arg2))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/*
|
|
* atan2d maps all inputs to values in the range [-180, 180], so the
|
|
* result should always be finite, even if the inputs are infinite.
|
|
*/
|
|
result = (atan2(arg1, arg2) / atan_1_0) * 45.0;
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* sind_0_to_30 - returns the sine of an angle that lies between 0 and
|
|
* 30 degrees. This will return exactly 0 when x is 0,
|
|
* and exactly 0.5 when x is 30 degrees.
|
|
*/
|
|
static double
|
|
sind_0_to_30(double x)
|
|
{
|
|
return (sin(x * RADIANS_PER_DEGREE) / sin_30) / 2.0;
|
|
}
|
|
|
|
|
|
/*
|
|
* cosd_0_to_60 - returns the cosine of an angle that lies between 0
|
|
* and 60 degrees. This will return exactly 1 when x
|
|
* is 0, and exactly 0.5 when x is 60 degrees.
|
|
*/
|
|
static double
|
|
cosd_0_to_60(double x)
|
|
{
|
|
return 1.0 - ((1.0 - cos(x * RADIANS_PER_DEGREE)) / one_minus_cos_60) / 2.0;
|
|
}
|
|
|
|
|
|
/*
|
|
* sind_q1 - returns the sine of an angle in the first quadrant
|
|
* (0 to 90 degrees).
|
|
*/
|
|
static double
|
|
sind_q1(double x)
|
|
{
|
|
/*
|
|
* Stitch together the sine and cosine functions for the ranges [0, 30]
|
|
* and (30, 90]. These guarantee to return exact answers at their
|
|
* endpoints, so the overall result is a continuous monotonic function
|
|
* that gives exact results when x = 0, 30 and 90 degrees.
|
|
*/
|
|
if (x <= 30.0)
|
|
return sind_0_to_30(x);
|
|
else
|
|
return cosd_0_to_60(90.0 - x);
|
|
}
|
|
|
|
|
|
/*
|
|
* cosd_q1 - returns the cosine of an angle in the first quadrant
|
|
* (0 to 90 degrees).
|
|
*/
|
|
static double
|
|
cosd_q1(double x)
|
|
{
|
|
/*
|
|
* Stitch together the sine and cosine functions for the ranges [0, 60]
|
|
* and (60, 90]. These guarantee to return exact answers at their
|
|
* endpoints, so the overall result is a continuous monotonic function
|
|
* that gives exact results when x = 0, 60 and 90 degrees.
|
|
*/
|
|
if (x <= 60.0)
|
|
return cosd_0_to_60(x);
|
|
else
|
|
return sind_0_to_30(90.0 - x);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcosd - returns the cosine of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dcosd(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
int sign = 1;
|
|
|
|
/*
|
|
* Per the POSIX spec, return NaN if the input is NaN and throw an error
|
|
* if the input is infinite.
|
|
*/
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
if (isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/* Reduce the range of the input to [0,90] degrees */
|
|
arg1 = fmod(arg1, 360.0);
|
|
|
|
if (arg1 < 0.0)
|
|
{
|
|
/* cosd(-x) = cosd(x) */
|
|
arg1 = -arg1;
|
|
}
|
|
|
|
if (arg1 > 180.0)
|
|
{
|
|
/* cosd(360-x) = cosd(x) */
|
|
arg1 = 360.0 - arg1;
|
|
}
|
|
|
|
if (arg1 > 90.0)
|
|
{
|
|
/* cosd(180-x) = -cosd(x) */
|
|
arg1 = 180.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
result = sign * cosd_q1(arg1);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcotd - returns the cotangent of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dcotd(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
int sign = 1;
|
|
|
|
/*
|
|
* Per the POSIX spec, return NaN if the input is NaN and throw an error
|
|
* if the input is infinite.
|
|
*/
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
if (isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/* Reduce the range of the input to [0,90] degrees */
|
|
arg1 = fmod(arg1, 360.0);
|
|
|
|
if (arg1 < 0.0)
|
|
{
|
|
/* cotd(-x) = -cotd(x) */
|
|
arg1 = -arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 180.0)
|
|
{
|
|
/* cotd(360-x) = -cotd(x) */
|
|
arg1 = 360.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 90.0)
|
|
{
|
|
/* cotd(180-x) = -cotd(x) */
|
|
arg1 = 180.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
result = sign * ((cosd_q1(arg1) / sind_q1(arg1)) / cot_45);
|
|
|
|
/*
|
|
* On some machines we get cotd(270) = minus zero, but this isn't always
|
|
* true. For portability, and because the user constituency for this
|
|
* function probably doesn't want minus zero, force it to plain zero.
|
|
*/
|
|
if (result == 0.0)
|
|
result = 0.0;
|
|
|
|
CHECKFLOATVAL(result, true /* cotd(0) == Inf */ , true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dsind - returns the sine of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dsind(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
int sign = 1;
|
|
|
|
/*
|
|
* Per the POSIX spec, return NaN if the input is NaN and throw an error
|
|
* if the input is infinite.
|
|
*/
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
if (isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/* Reduce the range of the input to [0,90] degrees */
|
|
arg1 = fmod(arg1, 360.0);
|
|
|
|
if (arg1 < 0.0)
|
|
{
|
|
/* sind(-x) = -sind(x) */
|
|
arg1 = -arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 180.0)
|
|
{
|
|
/* sind(360-x) = -sind(x) */
|
|
arg1 = 360.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 90.0)
|
|
{
|
|
/* sind(180-x) = sind(x) */
|
|
arg1 = 180.0 - arg1;
|
|
}
|
|
|
|
result = sign * sind_q1(arg1);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtand - returns the tangent of arg1 (degrees)
|
|
*/
|
|
Datum
|
|
dtand(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
int sign = 1;
|
|
|
|
/*
|
|
* Per the POSIX spec, return NaN if the input is NaN and throw an error
|
|
* if the input is infinite.
|
|
*/
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
if (isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
INIT_DEGREE_CONSTANTS();
|
|
|
|
/* Reduce the range of the input to [0,90] degrees */
|
|
arg1 = fmod(arg1, 360.0);
|
|
|
|
if (arg1 < 0.0)
|
|
{
|
|
/* tand(-x) = -tand(x) */
|
|
arg1 = -arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 180.0)
|
|
{
|
|
/* tand(360-x) = -tand(x) */
|
|
arg1 = 360.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
if (arg1 > 90.0)
|
|
{
|
|
/* tand(180-x) = -tand(x) */
|
|
arg1 = 180.0 - arg1;
|
|
sign = -sign;
|
|
}
|
|
|
|
result = sign * ((sind_q1(arg1) / cosd_q1(arg1)) / tan_45);
|
|
|
|
/*
|
|
* On some machines we get tand(180) = minus zero, but this isn't always
|
|
* true. For portability, and because the user constituency for this
|
|
* function probably doesn't want minus zero, force it to plain zero.
|
|
*/
|
|
if (result == 0.0)
|
|
result = 0.0;
|
|
|
|
CHECKFLOATVAL(result, true /* tand(90) == Inf */ , true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* degrees - returns degrees converted from radians
|
|
*/
|
|
Datum
|
|
degrees(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = arg1 / RADIANS_PER_DEGREE;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dpi - returns the constant PI
|
|
*/
|
|
Datum
|
|
dpi(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(M_PI);
|
|
}
|
|
|
|
|
|
/*
|
|
* radians - returns radians converted from degrees
|
|
*/
|
|
Datum
|
|
radians(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = arg1 * RADIANS_PER_DEGREE;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* drandom - returns a random number
|
|
*/
|
|
Datum
|
|
drandom(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 result;
|
|
|
|
/* result [0.0 - 1.0) */
|
|
result = (double) random() / ((double) MAX_RANDOM_VALUE + 1);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* setseed - set seed for the random number generator
|
|
*/
|
|
Datum
|
|
setseed(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 seed = PG_GETARG_FLOAT8(0);
|
|
int iseed;
|
|
|
|
if (seed < -1 || seed > 1)
|
|
elog(ERROR, "setseed parameter %f out of range [-1,1]", seed);
|
|
|
|
iseed = (int) (seed * MAX_RANDOM_VALUE);
|
|
srandom((unsigned int) iseed);
|
|
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* =========================
|
|
* FLOAT AGGREGATE OPERATORS
|
|
* =========================
|
|
*
|
|
* float8_accum - accumulate for AVG(), variance aggregates, etc.
|
|
* float4_accum - same, but input data is float4
|
|
* float8_avg - produce final result for float AVG()
|
|
* float8_var_samp - produce final result for float VAR_SAMP()
|
|
* float8_var_pop - produce final result for float VAR_POP()
|
|
* float8_stddev_samp - produce final result for float STDDEV_SAMP()
|
|
* float8_stddev_pop - produce final result for float STDDEV_POP()
|
|
*
|
|
* The transition datatype for all these aggregates is a 3-element array
|
|
* of float8, holding the values N, sum(X), sum(X*X) in that order.
|
|
*
|
|
* Note that we represent N as a float to avoid having to build a special
|
|
* datatype. Given a reasonable floating-point implementation, there should
|
|
* be no accuracy loss unless N exceeds 2 ^ 52 or so (by which time the
|
|
* user will have doubtless lost interest anyway...)
|
|
*/
|
|
|
|
static float8 *
|
|
check_float8_array(ArrayType *transarray, const char *caller, int n)
|
|
{
|
|
/*
|
|
* We expect the input to be an N-element float array; verify that. We
|
|
* don't need to use deconstruct_array() since the array data is just
|
|
* going to look like a C array of N float8 values.
|
|
*/
|
|
if (ARR_NDIM(transarray) != 1 ||
|
|
ARR_DIMS(transarray)[0] != n ||
|
|
ARR_HASNULL(transarray) ||
|
|
ARR_ELEMTYPE(transarray) != FLOAT8OID)
|
|
elog(ERROR, "%s: expected %d-element float8 array", caller, n);
|
|
return (float8 *) ARR_DATA_PTR(transarray);
|
|
}
|
|
|
|
Datum
|
|
float8_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 newval = PG_GETARG_FLOAT8(1);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_accum", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
N += 1.0;
|
|
sumX += newval;
|
|
CHECKFLOATVAL(sumX, isinf(transvalues[1]) || isinf(newval), true);
|
|
sumX2 += newval * newval;
|
|
CHECKFLOATVAL(sumX2, isinf(transvalues[2]) || isinf(newval), true);
|
|
|
|
/*
|
|
* If we're invoked as an aggregate, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = sumX;
|
|
transvalues[2] = sumX2;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[3];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(sumX);
|
|
transdatums[2] = Float8GetDatumFast(sumX2);
|
|
|
|
result = construct_array(transdatums, 3,
|
|
FLOAT8OID,
|
|
sizeof(float8), FLOAT8PASSBYVAL, 'd');
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float4_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
|
|
/* do computations as float8 */
|
|
float8 newval = PG_GETARG_FLOAT4(1);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2;
|
|
|
|
transvalues = check_float8_array(transarray, "float4_accum", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
N += 1.0;
|
|
sumX += newval;
|
|
CHECKFLOATVAL(sumX, isinf(transvalues[1]) || isinf(newval), true);
|
|
sumX2 += newval * newval;
|
|
CHECKFLOATVAL(sumX2, isinf(transvalues[2]) || isinf(newval), true);
|
|
|
|
/*
|
|
* If we're invoked as an aggregate, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = sumX;
|
|
transvalues[2] = sumX2;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[3];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(sumX);
|
|
transdatums[2] = Float8GetDatumFast(sumX2);
|
|
|
|
result = construct_array(transdatums, 3,
|
|
FLOAT8OID,
|
|
sizeof(float8), FLOAT8PASSBYVAL, 'd');
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float8_avg(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_avg", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
/* ignore sumX2 */
|
|
|
|
/* SQL defines AVG of no values to be NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(sumX / N);
|
|
}
|
|
|
|
Datum
|
|
float8_var_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_var_pop", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Population variance is undefined when N is 0, so return NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * N));
|
|
}
|
|
|
|
Datum
|
|
float8_var_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_var_samp", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Sample variance is undefined when N is 0 or 1, so return NULL */
|
|
if (N <= 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * (N - 1.0)));
|
|
}
|
|
|
|
Datum
|
|
float8_stddev_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_stddev_pop", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Population stddev is undefined when N is 0, so return NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(sqrt(numerator / (N * N)));
|
|
}
|
|
|
|
Datum
|
|
float8_stddev_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_stddev_samp", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Sample stddev is undefined when N is 0 or 1, so return NULL */
|
|
if (N <= 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(sqrt(numerator / (N * (N - 1.0))));
|
|
}
|
|
|
|
/*
|
|
* =========================
|
|
* SQL2003 BINARY AGGREGATES
|
|
* =========================
|
|
*
|
|
* The transition datatype for all these aggregates is a 6-element array of
|
|
* float8, holding the values N, sum(X), sum(X*X), sum(Y), sum(Y*Y), sum(X*Y)
|
|
* in that order. Note that Y is the first argument to the aggregates!
|
|
*
|
|
* It might seem attractive to optimize this by having multiple accumulator
|
|
* functions that only calculate the sums actually needed. But on most
|
|
* modern machines, a couple of extra floating-point multiplies will be
|
|
* insignificant compared to the other per-tuple overhead, so I've chosen
|
|
* to minimize code space instead.
|
|
*/
|
|
|
|
Datum
|
|
float8_regr_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 newvalY = PG_GETARG_FLOAT8(1);
|
|
float8 newvalX = PG_GETARG_FLOAT8(2);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumY2,
|
|
sumXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_accum", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
sumXY = transvalues[5];
|
|
|
|
N += 1.0;
|
|
sumX += newvalX;
|
|
CHECKFLOATVAL(sumX, isinf(transvalues[1]) || isinf(newvalX), true);
|
|
sumX2 += newvalX * newvalX;
|
|
CHECKFLOATVAL(sumX2, isinf(transvalues[2]) || isinf(newvalX), true);
|
|
sumY += newvalY;
|
|
CHECKFLOATVAL(sumY, isinf(transvalues[3]) || isinf(newvalY), true);
|
|
sumY2 += newvalY * newvalY;
|
|
CHECKFLOATVAL(sumY2, isinf(transvalues[4]) || isinf(newvalY), true);
|
|
sumXY += newvalX * newvalY;
|
|
CHECKFLOATVAL(sumXY, isinf(transvalues[5]) || isinf(newvalX) ||
|
|
isinf(newvalY), true);
|
|
|
|
/*
|
|
* If we're invoked as an aggregate, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = sumX;
|
|
transvalues[2] = sumX2;
|
|
transvalues[3] = sumY;
|
|
transvalues[4] = sumY2;
|
|
transvalues[5] = sumXY;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[6];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(sumX);
|
|
transdatums[2] = Float8GetDatumFast(sumX2);
|
|
transdatums[3] = Float8GetDatumFast(sumY);
|
|
transdatums[4] = Float8GetDatumFast(sumY2);
|
|
transdatums[5] = Float8GetDatumFast(sumXY);
|
|
|
|
result = construct_array(transdatums, 6,
|
|
FLOAT8OID,
|
|
sizeof(float8), FLOAT8PASSBYVAL, 'd');
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float8_regr_sxx(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_sxx", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_syy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumY,
|
|
sumY2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_syy", 6);
|
|
N = transvalues[0];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumY2 - sumY * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumY2) || isinf(sumY), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_sxy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumY,
|
|
sumXY,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_sxy", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
|
|
/* A negative result is valid here */
|
|
|
|
PG_RETURN_FLOAT8(numerator / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_avgx(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_avgx", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(sumX / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_avgy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_avgy", 6);
|
|
N = transvalues[0];
|
|
sumY = transvalues[3];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(sumY / N);
|
|
}
|
|
|
|
Datum
|
|
float8_covar_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumY,
|
|
sumXY,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_covar_pop", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * N));
|
|
}
|
|
|
|
Datum
|
|
float8_covar_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumY,
|
|
sumXY,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_covar_samp", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is <= 1 we should return NULL */
|
|
if (N < 2.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * (N - 1.0)));
|
|
}
|
|
|
|
Datum
|
|
float8_corr(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumY2,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorY,
|
|
numeratorXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_corr", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorY = N * sumY2 - sumY * sumY;
|
|
CHECKFLOATVAL(numeratorY, isinf(sumY2) || isinf(sumY), true);
|
|
numeratorXY = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numeratorXY, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
if (numeratorX <= 0 || numeratorY <= 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(numeratorXY / sqrt(numeratorX * numeratorY));
|
|
}
|
|
|
|
Datum
|
|
float8_regr_r2(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumY2,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorY,
|
|
numeratorXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_r2", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorY = N * sumY2 - sumY * sumY;
|
|
CHECKFLOATVAL(numeratorY, isinf(sumY2) || isinf(sumY), true);
|
|
numeratorXY = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numeratorXY, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
if (numeratorX <= 0)
|
|
PG_RETURN_NULL();
|
|
/* per spec, horizontal line produces 1.0 */
|
|
if (numeratorY <= 0)
|
|
PG_RETURN_FLOAT8(1.0);
|
|
|
|
PG_RETURN_FLOAT8((numeratorXY * numeratorXY) /
|
|
(numeratorX * numeratorY));
|
|
}
|
|
|
|
Datum
|
|
float8_regr_slope(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_slope", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorXY = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numeratorXY, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
if (numeratorX <= 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(numeratorXY / numeratorX);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_intercept(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorXXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_intercept", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorXXY = sumY * sumX2 - sumX * sumXY;
|
|
CHECKFLOATVAL(numeratorXXY, isinf(sumY) || isinf(sumX2) ||
|
|
isinf(sumX) || isinf(sumXY), true);
|
|
if (numeratorX <= 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(numeratorXXY / numeratorX);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================================
|
|
* MIXED-PRECISION ARITHMETIC OPERATORS
|
|
* ====================================
|
|
*/
|
|
|
|
/*
|
|
* float48pl - returns arg1 + arg2
|
|
* float48mi - returns arg1 - arg2
|
|
* float48mul - returns arg1 * arg2
|
|
* float48div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float48pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 + arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float48mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 - arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float48mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 * arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float48div(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = arg1 / arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* float84pl - returns arg1 + arg2
|
|
* float84mi - returns arg1 - arg2
|
|
* float84mul - returns arg1 * arg2
|
|
* float84div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float84pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
result = arg1 + arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float84mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
result = arg1 - arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float84mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
result = arg1 * arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float84div(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = arg1 / arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* ====================
|
|
* COMPARISON OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float48{eq,ne,lt,le,gt,ge} - float4/float8 comparison operations
|
|
*/
|
|
Datum
|
|
float48eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float48ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float48lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float48le(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float48gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float48ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
/*
|
|
* float84{eq,ne,lt,le,gt,ge} - float8/float4 comparison operations
|
|
*/
|
|
Datum
|
|
float84eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float84ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float84lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float84le(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float84gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float84ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
/*
|
|
* Implements the float8 version of the width_bucket() function
|
|
* defined by SQL2003. See also width_bucket_numeric().
|
|
*
|
|
* 'bound1' and 'bound2' are the lower and upper bounds of the
|
|
* histogram's range, respectively. 'count' is the number of buckets
|
|
* in the histogram. width_bucket() returns an integer indicating the
|
|
* bucket number that 'operand' belongs to in an equiwidth histogram
|
|
* with the specified characteristics. An operand smaller than the
|
|
* lower bound is assigned to bucket 0. An operand greater than the
|
|
* upper bound is assigned to an additional bucket (with number
|
|
* count+1). We don't allow "NaN" for any of the float8 inputs, and we
|
|
* don't allow either of the histogram bounds to be +/- infinity.
|
|
*/
|
|
Datum
|
|
width_bucket_float8(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 operand = PG_GETARG_FLOAT8(0);
|
|
float8 bound1 = PG_GETARG_FLOAT8(1);
|
|
float8 bound2 = PG_GETARG_FLOAT8(2);
|
|
int32 count = PG_GETARG_INT32(3);
|
|
int32 result;
|
|
|
|
if (count <= 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("count must be greater than zero")));
|
|
|
|
if (isnan(operand) || isnan(bound1) || isnan(bound2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("operand, lower bound, and upper bound cannot be NaN")));
|
|
|
|
/* Note that we allow "operand" to be infinite */
|
|
if (isinf(bound1) || isinf(bound2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("lower and upper bounds must be finite")));
|
|
|
|
if (bound1 < bound2)
|
|
{
|
|
if (operand < bound1)
|
|
result = 0;
|
|
else if (operand >= bound2)
|
|
{
|
|
result = count + 1;
|
|
/* check for overflow */
|
|
if (result < count)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
}
|
|
else
|
|
result = ((float8) count * (operand - bound1) / (bound2 - bound1)) + 1;
|
|
}
|
|
else if (bound1 > bound2)
|
|
{
|
|
if (operand > bound1)
|
|
result = 0;
|
|
else if (operand <= bound2)
|
|
{
|
|
result = count + 1;
|
|
/* check for overflow */
|
|
if (result < count)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
}
|
|
else
|
|
result = ((float8) count * (bound1 - operand) / (bound1 - bound2)) + 1;
|
|
}
|
|
else
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("lower bound cannot equal upper bound")));
|
|
result = 0; /* keep the compiler quiet */
|
|
}
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/* ========== PRIVATE ROUTINES ========== */
|
|
|
|
#ifndef HAVE_CBRT
|
|
|
|
static double
|
|
cbrt(double x)
|
|
{
|
|
int isneg = (x < 0.0);
|
|
double absx = fabs(x);
|
|
double tmpres = pow(absx, (double) 1.0 / (double) 3.0);
|
|
|
|
/*
|
|
* The result is somewhat inaccurate --- not really pow()'s fault, as the
|
|
* exponent it's handed contains roundoff error. We can improve the
|
|
* accuracy by doing one iteration of Newton's formula. Beware of zero
|
|
* input however.
|
|
*/
|
|
if (tmpres > 0.0)
|
|
tmpres -= (tmpres - absx / (tmpres * tmpres)) / (double) 3.0;
|
|
|
|
return isneg ? -tmpres : tmpres;
|
|
}
|
|
|
|
#endif /* !HAVE_CBRT */
|