mirror of
https://github.com/postgres/postgres.git
synced 2025-04-20 00:42:27 +03:00
6527 lines
169 KiB
C
6527 lines
169 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* arrayfuncs.c
|
|
* Support functions for arrays.
|
|
*
|
|
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/adt/arrayfuncs.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#ifdef _MSC_VER
|
|
#include <float.h> /* for _isnan */
|
|
#endif
|
|
#include <math.h>
|
|
|
|
#include "access/htup_details.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "funcapi.h"
|
|
#include "libpq/pqformat.h"
|
|
#include "utils/array.h"
|
|
#include "utils/arrayaccess.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/datum.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/typcache.h"
|
|
|
|
|
|
/*
|
|
* GUC parameter
|
|
*/
|
|
bool Array_nulls = true;
|
|
|
|
/*
|
|
* Local definitions
|
|
*/
|
|
#define ASSGN "="
|
|
|
|
#define AARR_FREE_IF_COPY(array,n) \
|
|
do { \
|
|
if (!VARATT_IS_EXPANDED_HEADER(array)) \
|
|
PG_FREE_IF_COPY(array, n); \
|
|
} while (0)
|
|
|
|
typedef enum
|
|
{
|
|
ARRAY_NO_LEVEL,
|
|
ARRAY_LEVEL_STARTED,
|
|
ARRAY_ELEM_STARTED,
|
|
ARRAY_ELEM_COMPLETED,
|
|
ARRAY_QUOTED_ELEM_STARTED,
|
|
ARRAY_QUOTED_ELEM_COMPLETED,
|
|
ARRAY_ELEM_DELIMITED,
|
|
ARRAY_LEVEL_COMPLETED,
|
|
ARRAY_LEVEL_DELIMITED
|
|
} ArrayParseState;
|
|
|
|
/* Working state for array_iterate() */
|
|
typedef struct ArrayIteratorData
|
|
{
|
|
/* basic info about the array, set up during array_create_iterator() */
|
|
ArrayType *arr; /* array we're iterating through */
|
|
bits8 *nullbitmap; /* its null bitmap, if any */
|
|
int nitems; /* total number of elements in array */
|
|
int16 typlen; /* element type's length */
|
|
bool typbyval; /* element type's byval property */
|
|
char typalign; /* element type's align property */
|
|
|
|
/* information about the requested slice size */
|
|
int slice_ndim; /* slice dimension, or 0 if not slicing */
|
|
int slice_len; /* number of elements per slice */
|
|
int *slice_dims; /* slice dims array */
|
|
int *slice_lbound; /* slice lbound array */
|
|
Datum *slice_values; /* workspace of length slice_len */
|
|
bool *slice_nulls; /* workspace of length slice_len */
|
|
|
|
/* current position information, updated on each iteration */
|
|
char *data_ptr; /* our current position in the array */
|
|
int current_item; /* the item # we're at in the array */
|
|
} ArrayIteratorData;
|
|
|
|
static bool array_isspace(char ch);
|
|
static int ArrayCount(const char *str, int *dim, char typdelim);
|
|
static void ReadArrayStr(char *arrayStr, const char *origStr,
|
|
int nitems, int ndim, int *dim,
|
|
FmgrInfo *inputproc, Oid typioparam, int32 typmod,
|
|
char typdelim,
|
|
int typlen, bool typbyval, char typalign,
|
|
Datum *values, bool *nulls,
|
|
bool *hasnulls, int32 *nbytes);
|
|
static void ReadArrayBinary(StringInfo buf, int nitems,
|
|
FmgrInfo *receiveproc, Oid typioparam, int32 typmod,
|
|
int typlen, bool typbyval, char typalign,
|
|
Datum *values, bool *nulls,
|
|
bool *hasnulls, int32 *nbytes);
|
|
static Datum array_get_element_expanded(Datum arraydatum,
|
|
int nSubscripts, int *indx,
|
|
int arraytyplen,
|
|
int elmlen, bool elmbyval, char elmalign,
|
|
bool *isNull);
|
|
static Datum array_set_element_expanded(Datum arraydatum,
|
|
int nSubscripts, int *indx,
|
|
Datum dataValue, bool isNull,
|
|
int arraytyplen,
|
|
int elmlen, bool elmbyval, char elmalign);
|
|
static bool array_get_isnull(const bits8 *nullbitmap, int offset);
|
|
static void array_set_isnull(bits8 *nullbitmap, int offset, bool isNull);
|
|
static Datum ArrayCast(char *value, bool byval, int len);
|
|
static int ArrayCastAndSet(Datum src,
|
|
int typlen, bool typbyval, char typalign,
|
|
char *dest);
|
|
static char *array_seek(char *ptr, int offset, bits8 *nullbitmap, int nitems,
|
|
int typlen, bool typbyval, char typalign);
|
|
static int array_nelems_size(char *ptr, int offset, bits8 *nullbitmap,
|
|
int nitems, int typlen, bool typbyval, char typalign);
|
|
static int array_copy(char *destptr, int nitems,
|
|
char *srcptr, int offset, bits8 *nullbitmap,
|
|
int typlen, bool typbyval, char typalign);
|
|
static int array_slice_size(char *arraydataptr, bits8 *arraynullsptr,
|
|
int ndim, int *dim, int *lb,
|
|
int *st, int *endp,
|
|
int typlen, bool typbyval, char typalign);
|
|
static void array_extract_slice(ArrayType *newarray,
|
|
int ndim, int *dim, int *lb,
|
|
char *arraydataptr, bits8 *arraynullsptr,
|
|
int *st, int *endp,
|
|
int typlen, bool typbyval, char typalign);
|
|
static void array_insert_slice(ArrayType *destArray, ArrayType *origArray,
|
|
ArrayType *srcArray,
|
|
int ndim, int *dim, int *lb,
|
|
int *st, int *endp,
|
|
int typlen, bool typbyval, char typalign);
|
|
static int array_cmp(FunctionCallInfo fcinfo);
|
|
static ArrayType *create_array_envelope(int ndims, int *dimv, int *lbv, int nbytes,
|
|
Oid elmtype, int dataoffset);
|
|
static ArrayType *array_fill_internal(ArrayType *dims, ArrayType *lbs,
|
|
Datum value, bool isnull, Oid elmtype,
|
|
FunctionCallInfo fcinfo);
|
|
static ArrayType *array_replace_internal(ArrayType *array,
|
|
Datum search, bool search_isnull,
|
|
Datum replace, bool replace_isnull,
|
|
bool remove, Oid collation,
|
|
FunctionCallInfo fcinfo);
|
|
static int width_bucket_array_float8(Datum operand, ArrayType *thresholds);
|
|
static int width_bucket_array_fixed(Datum operand,
|
|
ArrayType *thresholds,
|
|
Oid collation,
|
|
TypeCacheEntry *typentry);
|
|
static int width_bucket_array_variable(Datum operand,
|
|
ArrayType *thresholds,
|
|
Oid collation,
|
|
TypeCacheEntry *typentry);
|
|
|
|
|
|
/*
|
|
* array_in :
|
|
* converts an array from the external format in "string" to
|
|
* its internal format.
|
|
*
|
|
* return value :
|
|
* the internal representation of the input array
|
|
*/
|
|
Datum
|
|
array_in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *string = PG_GETARG_CSTRING(0); /* external form */
|
|
Oid element_type = PG_GETARG_OID(1); /* type of an array
|
|
* element */
|
|
int32 typmod = PG_GETARG_INT32(2); /* typmod for array elements */
|
|
int typlen;
|
|
bool typbyval;
|
|
char typalign;
|
|
char typdelim;
|
|
Oid typioparam;
|
|
char *string_save,
|
|
*p;
|
|
int i,
|
|
nitems;
|
|
Datum *dataPtr;
|
|
bool *nullsPtr;
|
|
bool hasnulls;
|
|
int32 nbytes;
|
|
int32 dataoffset;
|
|
ArrayType *retval;
|
|
int ndim,
|
|
dim[MAXDIM],
|
|
lBound[MAXDIM];
|
|
ArrayMetaState *my_extra;
|
|
|
|
/*
|
|
* We arrange to look up info about element type, including its input
|
|
* conversion proc, only once per series of calls, assuming the element
|
|
* type doesn't change underneath us.
|
|
*/
|
|
my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
|
|
if (my_extra == NULL)
|
|
{
|
|
fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
|
|
sizeof(ArrayMetaState));
|
|
my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
|
|
my_extra->element_type = ~element_type;
|
|
}
|
|
|
|
if (my_extra->element_type != element_type)
|
|
{
|
|
/*
|
|
* Get info about element type, including its input conversion proc
|
|
*/
|
|
get_type_io_data(element_type, IOFunc_input,
|
|
&my_extra->typlen, &my_extra->typbyval,
|
|
&my_extra->typalign, &my_extra->typdelim,
|
|
&my_extra->typioparam, &my_extra->typiofunc);
|
|
fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc,
|
|
fcinfo->flinfo->fn_mcxt);
|
|
my_extra->element_type = element_type;
|
|
}
|
|
typlen = my_extra->typlen;
|
|
typbyval = my_extra->typbyval;
|
|
typalign = my_extra->typalign;
|
|
typdelim = my_extra->typdelim;
|
|
typioparam = my_extra->typioparam;
|
|
|
|
/* Make a modifiable copy of the input */
|
|
string_save = pstrdup(string);
|
|
|
|
/*
|
|
* If the input string starts with dimension info, read and use that.
|
|
* Otherwise, we require the input to be in curly-brace style, and we
|
|
* prescan the input to determine dimensions.
|
|
*
|
|
* Dimension info takes the form of one or more [n] or [m:n] items. The
|
|
* outer loop iterates once per dimension item.
|
|
*/
|
|
p = string_save;
|
|
ndim = 0;
|
|
for (;;)
|
|
{
|
|
char *q;
|
|
int ub;
|
|
|
|
/*
|
|
* Note: we currently allow whitespace between, but not within,
|
|
* dimension items.
|
|
*/
|
|
while (array_isspace(*p))
|
|
p++;
|
|
if (*p != '[')
|
|
break; /* no more dimension items */
|
|
p++;
|
|
if (ndim >= MAXDIM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)",
|
|
ndim + 1, MAXDIM)));
|
|
|
|
for (q = p; isdigit((unsigned char) *q) || (*q == '-') || (*q == '+'); q++)
|
|
/* skip */ ;
|
|
if (q == p) /* no digits? */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", string),
|
|
errdetail("\"[\" must introduce explicitly-specified array dimensions.")));
|
|
|
|
if (*q == ':')
|
|
{
|
|
/* [m:n] format */
|
|
*q = '\0';
|
|
lBound[ndim] = atoi(p);
|
|
p = q + 1;
|
|
for (q = p; isdigit((unsigned char) *q) || (*q == '-') || (*q == '+'); q++)
|
|
/* skip */ ;
|
|
if (q == p) /* no digits? */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", string),
|
|
errdetail("Missing array dimension value.")));
|
|
}
|
|
else
|
|
{
|
|
/* [n] format */
|
|
lBound[ndim] = 1;
|
|
}
|
|
if (*q != ']')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", string),
|
|
errdetail("Missing \"%s\" after array dimensions.",
|
|
"]")));
|
|
|
|
*q = '\0';
|
|
ub = atoi(p);
|
|
p = q + 1;
|
|
if (ub < lBound[ndim])
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("upper bound cannot be less than lower bound")));
|
|
|
|
dim[ndim] = ub - lBound[ndim] + 1;
|
|
ndim++;
|
|
}
|
|
|
|
if (ndim == 0)
|
|
{
|
|
/* No array dimensions, so intuit dimensions from brace structure */
|
|
if (*p != '{')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", string),
|
|
errdetail("Array value must start with \"{\" or dimension information.")));
|
|
ndim = ArrayCount(p, dim, typdelim);
|
|
for (i = 0; i < ndim; i++)
|
|
lBound[i] = 1;
|
|
}
|
|
else
|
|
{
|
|
int ndim_braces,
|
|
dim_braces[MAXDIM];
|
|
|
|
/* If array dimensions are given, expect '=' operator */
|
|
if (strncmp(p, ASSGN, strlen(ASSGN)) != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", string),
|
|
errdetail("Missing \"%s\" after array dimensions.",
|
|
ASSGN)));
|
|
p += strlen(ASSGN);
|
|
while (array_isspace(*p))
|
|
p++;
|
|
|
|
/*
|
|
* intuit dimensions from brace structure -- it better match what we
|
|
* were given
|
|
*/
|
|
if (*p != '{')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", string),
|
|
errdetail("Array contents must start with \"{\".")));
|
|
ndim_braces = ArrayCount(p, dim_braces, typdelim);
|
|
if (ndim_braces != ndim)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", string),
|
|
errdetail("Specified array dimensions do not match array contents.")));
|
|
for (i = 0; i < ndim; ++i)
|
|
{
|
|
if (dim[i] != dim_braces[i])
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", string),
|
|
errdetail("Specified array dimensions do not match array contents.")));
|
|
}
|
|
}
|
|
|
|
#ifdef ARRAYDEBUG
|
|
printf("array_in- ndim %d (", ndim);
|
|
for (i = 0; i < ndim; i++)
|
|
{
|
|
printf(" %d", dim[i]);
|
|
};
|
|
printf(") for %s\n", string);
|
|
#endif
|
|
|
|
/* This checks for overflow of the array dimensions */
|
|
nitems = ArrayGetNItems(ndim, dim);
|
|
/* Empty array? */
|
|
if (nitems == 0)
|
|
PG_RETURN_ARRAYTYPE_P(construct_empty_array(element_type));
|
|
|
|
dataPtr = (Datum *) palloc(nitems * sizeof(Datum));
|
|
nullsPtr = (bool *) palloc(nitems * sizeof(bool));
|
|
ReadArrayStr(p, string,
|
|
nitems, ndim, dim,
|
|
&my_extra->proc, typioparam, typmod,
|
|
typdelim,
|
|
typlen, typbyval, typalign,
|
|
dataPtr, nullsPtr,
|
|
&hasnulls, &nbytes);
|
|
if (hasnulls)
|
|
{
|
|
dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems);
|
|
nbytes += dataoffset;
|
|
}
|
|
else
|
|
{
|
|
dataoffset = 0; /* marker for no null bitmap */
|
|
nbytes += ARR_OVERHEAD_NONULLS(ndim);
|
|
}
|
|
retval = (ArrayType *) palloc0(nbytes);
|
|
SET_VARSIZE(retval, nbytes);
|
|
retval->ndim = ndim;
|
|
retval->dataoffset = dataoffset;
|
|
|
|
/*
|
|
* This comes from the array's pg_type.typelem (which points to the base
|
|
* data type's pg_type.oid) and stores system oids in user tables. This
|
|
* oid must be preserved by binary upgrades.
|
|
*/
|
|
retval->elemtype = element_type;
|
|
memcpy(ARR_DIMS(retval), dim, ndim * sizeof(int));
|
|
memcpy(ARR_LBOUND(retval), lBound, ndim * sizeof(int));
|
|
|
|
CopyArrayEls(retval,
|
|
dataPtr, nullsPtr, nitems,
|
|
typlen, typbyval, typalign,
|
|
true);
|
|
|
|
pfree(dataPtr);
|
|
pfree(nullsPtr);
|
|
pfree(string_save);
|
|
|
|
PG_RETURN_ARRAYTYPE_P(retval);
|
|
}
|
|
|
|
/*
|
|
* array_isspace() --- a non-locale-dependent isspace()
|
|
*
|
|
* We used to use isspace() for parsing array values, but that has
|
|
* undesirable results: an array value might be silently interpreted
|
|
* differently depending on the locale setting. Now we just hard-wire
|
|
* the traditional ASCII definition of isspace().
|
|
*/
|
|
static bool
|
|
array_isspace(char ch)
|
|
{
|
|
if (ch == ' ' ||
|
|
ch == '\t' ||
|
|
ch == '\n' ||
|
|
ch == '\r' ||
|
|
ch == '\v' ||
|
|
ch == '\f')
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* ArrayCount
|
|
* Determines the dimensions for an array string.
|
|
*
|
|
* Returns number of dimensions as function result. The axis lengths are
|
|
* returned in dim[], which must be of size MAXDIM.
|
|
*/
|
|
static int
|
|
ArrayCount(const char *str, int *dim, char typdelim)
|
|
{
|
|
int nest_level = 0,
|
|
i;
|
|
int ndim = 1,
|
|
temp[MAXDIM],
|
|
nelems[MAXDIM],
|
|
nelems_last[MAXDIM];
|
|
bool in_quotes = false;
|
|
bool eoArray = false;
|
|
bool empty_array = true;
|
|
const char *ptr;
|
|
ArrayParseState parse_state = ARRAY_NO_LEVEL;
|
|
|
|
for (i = 0; i < MAXDIM; ++i)
|
|
{
|
|
temp[i] = dim[i] = nelems_last[i] = 0;
|
|
nelems[i] = 1;
|
|
}
|
|
|
|
ptr = str;
|
|
while (!eoArray)
|
|
{
|
|
bool itemdone = false;
|
|
|
|
while (!itemdone)
|
|
{
|
|
if (parse_state == ARRAY_ELEM_STARTED ||
|
|
parse_state == ARRAY_QUOTED_ELEM_STARTED)
|
|
empty_array = false;
|
|
|
|
switch (*ptr)
|
|
{
|
|
case '\0':
|
|
/* Signal a premature end of the string */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", str),
|
|
errdetail("Unexpected end of input.")));
|
|
break;
|
|
case '\\':
|
|
|
|
/*
|
|
* An escape must be after a level start, after an element
|
|
* start, or after an element delimiter. In any case we
|
|
* now must be past an element start.
|
|
*/
|
|
if (parse_state != ARRAY_LEVEL_STARTED &&
|
|
parse_state != ARRAY_ELEM_STARTED &&
|
|
parse_state != ARRAY_QUOTED_ELEM_STARTED &&
|
|
parse_state != ARRAY_ELEM_DELIMITED)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", str),
|
|
errdetail("Unexpected \"%c\" character.",
|
|
'\\')));
|
|
if (parse_state != ARRAY_QUOTED_ELEM_STARTED)
|
|
parse_state = ARRAY_ELEM_STARTED;
|
|
/* skip the escaped character */
|
|
if (*(ptr + 1))
|
|
ptr++;
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", str),
|
|
errdetail("Unexpected end of input.")));
|
|
break;
|
|
case '"':
|
|
|
|
/*
|
|
* A quote must be after a level start, after a quoted
|
|
* element start, or after an element delimiter. In any
|
|
* case we now must be past an element start.
|
|
*/
|
|
if (parse_state != ARRAY_LEVEL_STARTED &&
|
|
parse_state != ARRAY_QUOTED_ELEM_STARTED &&
|
|
parse_state != ARRAY_ELEM_DELIMITED)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", str),
|
|
errdetail("Unexpected array element.")));
|
|
in_quotes = !in_quotes;
|
|
if (in_quotes)
|
|
parse_state = ARRAY_QUOTED_ELEM_STARTED;
|
|
else
|
|
parse_state = ARRAY_QUOTED_ELEM_COMPLETED;
|
|
break;
|
|
case '{':
|
|
if (!in_quotes)
|
|
{
|
|
/*
|
|
* A left brace can occur if no nesting has occurred
|
|
* yet, after a level start, or after a level
|
|
* delimiter.
|
|
*/
|
|
if (parse_state != ARRAY_NO_LEVEL &&
|
|
parse_state != ARRAY_LEVEL_STARTED &&
|
|
parse_state != ARRAY_LEVEL_DELIMITED)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", str),
|
|
errdetail("Unexpected \"%c\" character.",
|
|
'{')));
|
|
parse_state = ARRAY_LEVEL_STARTED;
|
|
if (nest_level >= MAXDIM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)",
|
|
nest_level + 1, MAXDIM)));
|
|
temp[nest_level] = 0;
|
|
nest_level++;
|
|
if (ndim < nest_level)
|
|
ndim = nest_level;
|
|
}
|
|
break;
|
|
case '}':
|
|
if (!in_quotes)
|
|
{
|
|
/*
|
|
* A right brace can occur after an element start, an
|
|
* element completion, a quoted element completion, or
|
|
* a level completion.
|
|
*/
|
|
if (parse_state != ARRAY_ELEM_STARTED &&
|
|
parse_state != ARRAY_ELEM_COMPLETED &&
|
|
parse_state != ARRAY_QUOTED_ELEM_COMPLETED &&
|
|
parse_state != ARRAY_LEVEL_COMPLETED &&
|
|
!(nest_level == 1 && parse_state == ARRAY_LEVEL_STARTED))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", str),
|
|
errdetail("Unexpected \"%c\" character.",
|
|
'}')));
|
|
parse_state = ARRAY_LEVEL_COMPLETED;
|
|
if (nest_level == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", str),
|
|
errdetail("Unmatched \"%c\" character.", '}')));
|
|
nest_level--;
|
|
|
|
if (nelems_last[nest_level] != 0 &&
|
|
nelems[nest_level] != nelems_last[nest_level])
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", str),
|
|
errdetail("Multidimensional arrays must have "
|
|
"sub-arrays with matching "
|
|
"dimensions.")));
|
|
nelems_last[nest_level] = nelems[nest_level];
|
|
nelems[nest_level] = 1;
|
|
if (nest_level == 0)
|
|
eoArray = itemdone = true;
|
|
else
|
|
{
|
|
/*
|
|
* We don't set itemdone here; see comments in
|
|
* ReadArrayStr
|
|
*/
|
|
temp[nest_level - 1]++;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
if (!in_quotes)
|
|
{
|
|
if (*ptr == typdelim)
|
|
{
|
|
/*
|
|
* Delimiters can occur after an element start, an
|
|
* element completion, a quoted element
|
|
* completion, or a level completion.
|
|
*/
|
|
if (parse_state != ARRAY_ELEM_STARTED &&
|
|
parse_state != ARRAY_ELEM_COMPLETED &&
|
|
parse_state != ARRAY_QUOTED_ELEM_COMPLETED &&
|
|
parse_state != ARRAY_LEVEL_COMPLETED)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", str),
|
|
errdetail("Unexpected \"%c\" character.",
|
|
typdelim)));
|
|
if (parse_state == ARRAY_LEVEL_COMPLETED)
|
|
parse_state = ARRAY_LEVEL_DELIMITED;
|
|
else
|
|
parse_state = ARRAY_ELEM_DELIMITED;
|
|
itemdone = true;
|
|
nelems[nest_level - 1]++;
|
|
}
|
|
else if (!array_isspace(*ptr))
|
|
{
|
|
/*
|
|
* Other non-space characters must be after a
|
|
* level start, after an element start, or after
|
|
* an element delimiter. In any case we now must
|
|
* be past an element start.
|
|
*/
|
|
if (parse_state != ARRAY_LEVEL_STARTED &&
|
|
parse_state != ARRAY_ELEM_STARTED &&
|
|
parse_state != ARRAY_ELEM_DELIMITED)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", str),
|
|
errdetail("Unexpected array element.")));
|
|
parse_state = ARRAY_ELEM_STARTED;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
if (!itemdone)
|
|
ptr++;
|
|
}
|
|
temp[ndim - 1]++;
|
|
ptr++;
|
|
}
|
|
|
|
/* only whitespace is allowed after the closing brace */
|
|
while (*ptr)
|
|
{
|
|
if (!array_isspace(*ptr++))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"", str),
|
|
errdetail("Junk after closing right brace.")));
|
|
}
|
|
|
|
/* special case for an empty array */
|
|
if (empty_array)
|
|
return 0;
|
|
|
|
for (i = 0; i < ndim; ++i)
|
|
dim[i] = temp[i];
|
|
|
|
return ndim;
|
|
}
|
|
|
|
/*
|
|
* ReadArrayStr :
|
|
* parses the array string pointed to by "arrayStr" and converts the values
|
|
* to internal format. Unspecified elements are initialized to nulls.
|
|
* The array dimensions must already have been determined.
|
|
*
|
|
* Inputs:
|
|
* arrayStr: the string to parse.
|
|
* CAUTION: the contents of "arrayStr" will be modified!
|
|
* origStr: the unmodified input string, used only in error messages.
|
|
* nitems: total number of array elements, as already determined.
|
|
* ndim: number of array dimensions
|
|
* dim[]: array axis lengths
|
|
* inputproc: type-specific input procedure for element datatype.
|
|
* typioparam, typmod: auxiliary values to pass to inputproc.
|
|
* typdelim: the value delimiter (type-specific).
|
|
* typlen, typbyval, typalign: storage parameters of element datatype.
|
|
*
|
|
* Outputs:
|
|
* values[]: filled with converted data values.
|
|
* nulls[]: filled with is-null markers.
|
|
* *hasnulls: set TRUE iff there are any null elements.
|
|
* *nbytes: set to total size of data area needed (including alignment
|
|
* padding but not including array header overhead).
|
|
*
|
|
* Note that values[] and nulls[] are allocated by the caller, and must have
|
|
* nitems elements.
|
|
*/
|
|
static void
|
|
ReadArrayStr(char *arrayStr,
|
|
const char *origStr,
|
|
int nitems,
|
|
int ndim,
|
|
int *dim,
|
|
FmgrInfo *inputproc,
|
|
Oid typioparam,
|
|
int32 typmod,
|
|
char typdelim,
|
|
int typlen,
|
|
bool typbyval,
|
|
char typalign,
|
|
Datum *values,
|
|
bool *nulls,
|
|
bool *hasnulls,
|
|
int32 *nbytes)
|
|
{
|
|
int i,
|
|
nest_level = 0;
|
|
char *srcptr;
|
|
bool in_quotes = false;
|
|
bool eoArray = false;
|
|
bool hasnull;
|
|
int32 totbytes;
|
|
int indx[MAXDIM],
|
|
prod[MAXDIM];
|
|
|
|
mda_get_prod(ndim, dim, prod);
|
|
MemSet(indx, 0, sizeof(indx));
|
|
|
|
/* Initialize is-null markers to true */
|
|
memset(nulls, true, nitems * sizeof(bool));
|
|
|
|
/*
|
|
* We have to remove " and \ characters to create a clean item value to
|
|
* pass to the datatype input routine. We overwrite each item value
|
|
* in-place within arrayStr to do this. srcptr is the current scan point,
|
|
* and dstptr is where we are copying to.
|
|
*
|
|
* We also want to suppress leading and trailing unquoted whitespace. We
|
|
* use the leadingspace flag to suppress leading space. Trailing space is
|
|
* tracked by using dstendptr to point to the last significant output
|
|
* character.
|
|
*
|
|
* The error checking in this routine is mostly pro-forma, since we expect
|
|
* that ArrayCount() already validated the string. So we don't bother
|
|
* with errdetail messages.
|
|
*/
|
|
srcptr = arrayStr;
|
|
while (!eoArray)
|
|
{
|
|
bool itemdone = false;
|
|
bool leadingspace = true;
|
|
bool hasquoting = false;
|
|
char *itemstart;
|
|
char *dstptr;
|
|
char *dstendptr;
|
|
|
|
i = -1;
|
|
itemstart = dstptr = dstendptr = srcptr;
|
|
|
|
while (!itemdone)
|
|
{
|
|
switch (*srcptr)
|
|
{
|
|
case '\0':
|
|
/* Signal a premature end of the string */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"",
|
|
origStr)));
|
|
break;
|
|
case '\\':
|
|
/* Skip backslash, copy next character as-is. */
|
|
srcptr++;
|
|
if (*srcptr == '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"",
|
|
origStr)));
|
|
*dstptr++ = *srcptr++;
|
|
/* Treat the escaped character as non-whitespace */
|
|
leadingspace = false;
|
|
dstendptr = dstptr;
|
|
hasquoting = true; /* can't be a NULL marker */
|
|
break;
|
|
case '"':
|
|
in_quotes = !in_quotes;
|
|
if (in_quotes)
|
|
leadingspace = false;
|
|
else
|
|
{
|
|
/*
|
|
* Advance dstendptr when we exit in_quotes; this
|
|
* saves having to do it in all the other in_quotes
|
|
* cases.
|
|
*/
|
|
dstendptr = dstptr;
|
|
}
|
|
hasquoting = true; /* can't be a NULL marker */
|
|
srcptr++;
|
|
break;
|
|
case '{':
|
|
if (!in_quotes)
|
|
{
|
|
if (nest_level >= ndim)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"",
|
|
origStr)));
|
|
nest_level++;
|
|
indx[nest_level - 1] = 0;
|
|
srcptr++;
|
|
}
|
|
else
|
|
*dstptr++ = *srcptr++;
|
|
break;
|
|
case '}':
|
|
if (!in_quotes)
|
|
{
|
|
if (nest_level == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"",
|
|
origStr)));
|
|
if (i == -1)
|
|
i = ArrayGetOffset0(ndim, indx, prod);
|
|
indx[nest_level - 1] = 0;
|
|
nest_level--;
|
|
if (nest_level == 0)
|
|
eoArray = itemdone = true;
|
|
else
|
|
indx[nest_level - 1]++;
|
|
srcptr++;
|
|
}
|
|
else
|
|
*dstptr++ = *srcptr++;
|
|
break;
|
|
default:
|
|
if (in_quotes)
|
|
*dstptr++ = *srcptr++;
|
|
else if (*srcptr == typdelim)
|
|
{
|
|
if (i == -1)
|
|
i = ArrayGetOffset0(ndim, indx, prod);
|
|
itemdone = true;
|
|
indx[ndim - 1]++;
|
|
srcptr++;
|
|
}
|
|
else if (array_isspace(*srcptr))
|
|
{
|
|
/*
|
|
* If leading space, drop it immediately. Else, copy
|
|
* but don't advance dstendptr.
|
|
*/
|
|
if (leadingspace)
|
|
srcptr++;
|
|
else
|
|
*dstptr++ = *srcptr++;
|
|
}
|
|
else
|
|
{
|
|
*dstptr++ = *srcptr++;
|
|
leadingspace = false;
|
|
dstendptr = dstptr;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
Assert(dstptr < srcptr);
|
|
*dstendptr = '\0';
|
|
|
|
if (i < 0 || i >= nitems)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("malformed array literal: \"%s\"",
|
|
origStr)));
|
|
|
|
if (Array_nulls && !hasquoting &&
|
|
pg_strcasecmp(itemstart, "NULL") == 0)
|
|
{
|
|
/* it's a NULL item */
|
|
values[i] = InputFunctionCall(inputproc, NULL,
|
|
typioparam, typmod);
|
|
nulls[i] = true;
|
|
}
|
|
else
|
|
{
|
|
values[i] = InputFunctionCall(inputproc, itemstart,
|
|
typioparam, typmod);
|
|
nulls[i] = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for nulls, compute total data space needed
|
|
*/
|
|
hasnull = false;
|
|
totbytes = 0;
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
if (nulls[i])
|
|
hasnull = true;
|
|
else
|
|
{
|
|
/* let's just make sure data is not toasted */
|
|
if (typlen == -1)
|
|
values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i]));
|
|
totbytes = att_addlength_datum(totbytes, typlen, values[i]);
|
|
totbytes = att_align_nominal(totbytes, typalign);
|
|
/* check for overflow of total request */
|
|
if (!AllocSizeIsValid(totbytes))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("array size exceeds the maximum allowed (%d)",
|
|
(int) MaxAllocSize)));
|
|
}
|
|
}
|
|
*hasnulls = hasnull;
|
|
*nbytes = totbytes;
|
|
}
|
|
|
|
|
|
/*
|
|
* Copy data into an array object from a temporary array of Datums.
|
|
*
|
|
* array: array object (with header fields already filled in)
|
|
* values: array of Datums to be copied
|
|
* nulls: array of is-null flags (can be NULL if no nulls)
|
|
* nitems: number of Datums to be copied
|
|
* typbyval, typlen, typalign: info about element datatype
|
|
* freedata: if TRUE and element type is pass-by-ref, pfree data values
|
|
* referenced by Datums after copying them.
|
|
*
|
|
* If the input data is of varlena type, the caller must have ensured that
|
|
* the values are not toasted. (Doing it here doesn't work since the
|
|
* caller has already allocated space for the array...)
|
|
*/
|
|
void
|
|
CopyArrayEls(ArrayType *array,
|
|
Datum *values,
|
|
bool *nulls,
|
|
int nitems,
|
|
int typlen,
|
|
bool typbyval,
|
|
char typalign,
|
|
bool freedata)
|
|
{
|
|
char *p = ARR_DATA_PTR(array);
|
|
bits8 *bitmap = ARR_NULLBITMAP(array);
|
|
int bitval = 0;
|
|
int bitmask = 1;
|
|
int i;
|
|
|
|
if (typbyval)
|
|
freedata = false;
|
|
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
if (nulls && nulls[i])
|
|
{
|
|
if (!bitmap) /* shouldn't happen */
|
|
elog(ERROR, "null array element where not supported");
|
|
/* bitmap bit stays 0 */
|
|
}
|
|
else
|
|
{
|
|
bitval |= bitmask;
|
|
p += ArrayCastAndSet(values[i], typlen, typbyval, typalign, p);
|
|
if (freedata)
|
|
pfree(DatumGetPointer(values[i]));
|
|
}
|
|
if (bitmap)
|
|
{
|
|
bitmask <<= 1;
|
|
if (bitmask == 0x100)
|
|
{
|
|
*bitmap++ = bitval;
|
|
bitval = 0;
|
|
bitmask = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bitmap && bitmask != 1)
|
|
*bitmap = bitval;
|
|
}
|
|
|
|
/*
|
|
* array_out :
|
|
* takes the internal representation of an array and returns a string
|
|
* containing the array in its external format.
|
|
*/
|
|
Datum
|
|
array_out(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *v = PG_GETARG_ANY_ARRAY(0);
|
|
Oid element_type = AARR_ELEMTYPE(v);
|
|
int typlen;
|
|
bool typbyval;
|
|
char typalign;
|
|
char typdelim;
|
|
char *p,
|
|
*tmp,
|
|
*retval,
|
|
**values,
|
|
dims_str[(MAXDIM * 33) + 2];
|
|
|
|
/*
|
|
* 33 per dim since we assume 15 digits per number + ':' +'[]'
|
|
*
|
|
* +2 allows for assignment operator + trailing null
|
|
*/
|
|
bool *needquotes,
|
|
needdims = false;
|
|
int nitems,
|
|
overall_length,
|
|
i,
|
|
j,
|
|
k,
|
|
indx[MAXDIM];
|
|
int ndim,
|
|
*dims,
|
|
*lb;
|
|
array_iter iter;
|
|
ArrayMetaState *my_extra;
|
|
|
|
/*
|
|
* We arrange to look up info about element type, including its output
|
|
* conversion proc, only once per series of calls, assuming the element
|
|
* type doesn't change underneath us.
|
|
*/
|
|
my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
|
|
if (my_extra == NULL)
|
|
{
|
|
fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
|
|
sizeof(ArrayMetaState));
|
|
my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
|
|
my_extra->element_type = ~element_type;
|
|
}
|
|
|
|
if (my_extra->element_type != element_type)
|
|
{
|
|
/*
|
|
* Get info about element type, including its output conversion proc
|
|
*/
|
|
get_type_io_data(element_type, IOFunc_output,
|
|
&my_extra->typlen, &my_extra->typbyval,
|
|
&my_extra->typalign, &my_extra->typdelim,
|
|
&my_extra->typioparam, &my_extra->typiofunc);
|
|
fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc,
|
|
fcinfo->flinfo->fn_mcxt);
|
|
my_extra->element_type = element_type;
|
|
}
|
|
typlen = my_extra->typlen;
|
|
typbyval = my_extra->typbyval;
|
|
typalign = my_extra->typalign;
|
|
typdelim = my_extra->typdelim;
|
|
|
|
ndim = AARR_NDIM(v);
|
|
dims = AARR_DIMS(v);
|
|
lb = AARR_LBOUND(v);
|
|
nitems = ArrayGetNItems(ndim, dims);
|
|
|
|
if (nitems == 0)
|
|
{
|
|
retval = pstrdup("{}");
|
|
PG_RETURN_CSTRING(retval);
|
|
}
|
|
|
|
/*
|
|
* we will need to add explicit dimensions if any dimension has a lower
|
|
* bound other than one
|
|
*/
|
|
for (i = 0; i < ndim; i++)
|
|
{
|
|
if (lb[i] != 1)
|
|
{
|
|
needdims = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert all values to string form, count total space needed (including
|
|
* any overhead such as escaping backslashes), and detect whether each
|
|
* item needs double quotes.
|
|
*/
|
|
values = (char **) palloc(nitems * sizeof(char *));
|
|
needquotes = (bool *) palloc(nitems * sizeof(bool));
|
|
overall_length = 1; /* don't forget to count \0 at end. */
|
|
|
|
array_iter_setup(&iter, v);
|
|
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
Datum itemvalue;
|
|
bool isnull;
|
|
bool needquote;
|
|
|
|
/* Get source element, checking for NULL */
|
|
itemvalue = array_iter_next(&iter, &isnull, i,
|
|
typlen, typbyval, typalign);
|
|
|
|
if (isnull)
|
|
{
|
|
values[i] = pstrdup("NULL");
|
|
overall_length += 4;
|
|
needquote = false;
|
|
}
|
|
else
|
|
{
|
|
values[i] = OutputFunctionCall(&my_extra->proc, itemvalue);
|
|
|
|
/* count data plus backslashes; detect chars needing quotes */
|
|
if (values[i][0] == '\0')
|
|
needquote = true; /* force quotes for empty string */
|
|
else if (pg_strcasecmp(values[i], "NULL") == 0)
|
|
needquote = true; /* force quotes for literal NULL */
|
|
else
|
|
needquote = false;
|
|
|
|
for (tmp = values[i]; *tmp != '\0'; tmp++)
|
|
{
|
|
char ch = *tmp;
|
|
|
|
overall_length += 1;
|
|
if (ch == '"' || ch == '\\')
|
|
{
|
|
needquote = true;
|
|
overall_length += 1;
|
|
}
|
|
else if (ch == '{' || ch == '}' || ch == typdelim ||
|
|
array_isspace(ch))
|
|
needquote = true;
|
|
}
|
|
}
|
|
|
|
needquotes[i] = needquote;
|
|
|
|
/* Count the pair of double quotes, if needed */
|
|
if (needquote)
|
|
overall_length += 2;
|
|
/* and the comma */
|
|
overall_length += 1;
|
|
}
|
|
|
|
/*
|
|
* count total number of curly braces in output string
|
|
*/
|
|
for (i = j = 0, k = 1; i < ndim; i++)
|
|
k *= dims[i], j += k;
|
|
|
|
dims_str[0] = '\0';
|
|
|
|
/* add explicit dimensions if required */
|
|
if (needdims)
|
|
{
|
|
char *ptr = dims_str;
|
|
|
|
for (i = 0; i < ndim; i++)
|
|
{
|
|
sprintf(ptr, "[%d:%d]", lb[i], lb[i] + dims[i] - 1);
|
|
ptr += strlen(ptr);
|
|
}
|
|
*ptr++ = *ASSGN;
|
|
*ptr = '\0';
|
|
}
|
|
|
|
retval = (char *) palloc(strlen(dims_str) + overall_length + 2 * j);
|
|
p = retval;
|
|
|
|
#define APPENDSTR(str) (strcpy(p, (str)), p += strlen(p))
|
|
#define APPENDCHAR(ch) (*p++ = (ch), *p = '\0')
|
|
|
|
if (needdims)
|
|
APPENDSTR(dims_str);
|
|
APPENDCHAR('{');
|
|
for (i = 0; i < ndim; i++)
|
|
indx[i] = 0;
|
|
j = 0;
|
|
k = 0;
|
|
do
|
|
{
|
|
for (i = j; i < ndim - 1; i++)
|
|
APPENDCHAR('{');
|
|
|
|
if (needquotes[k])
|
|
{
|
|
APPENDCHAR('"');
|
|
for (tmp = values[k]; *tmp; tmp++)
|
|
{
|
|
char ch = *tmp;
|
|
|
|
if (ch == '"' || ch == '\\')
|
|
*p++ = '\\';
|
|
*p++ = ch;
|
|
}
|
|
*p = '\0';
|
|
APPENDCHAR('"');
|
|
}
|
|
else
|
|
APPENDSTR(values[k]);
|
|
pfree(values[k++]);
|
|
|
|
for (i = ndim - 1; i >= 0; i--)
|
|
{
|
|
indx[i] = (indx[i] + 1) % dims[i];
|
|
if (indx[i])
|
|
{
|
|
APPENDCHAR(typdelim);
|
|
break;
|
|
}
|
|
else
|
|
APPENDCHAR('}');
|
|
}
|
|
j = i;
|
|
} while (j != -1);
|
|
|
|
#undef APPENDSTR
|
|
#undef APPENDCHAR
|
|
|
|
pfree(values);
|
|
pfree(needquotes);
|
|
|
|
PG_RETURN_CSTRING(retval);
|
|
}
|
|
|
|
/*
|
|
* array_recv :
|
|
* converts an array from the external binary format to
|
|
* its internal format.
|
|
*
|
|
* return value :
|
|
* the internal representation of the input array
|
|
*/
|
|
Datum
|
|
array_recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
Oid spec_element_type = PG_GETARG_OID(1); /* type of an array
|
|
* element */
|
|
int32 typmod = PG_GETARG_INT32(2); /* typmod for array elements */
|
|
Oid element_type;
|
|
int typlen;
|
|
bool typbyval;
|
|
char typalign;
|
|
Oid typioparam;
|
|
int i,
|
|
nitems;
|
|
Datum *dataPtr;
|
|
bool *nullsPtr;
|
|
bool hasnulls;
|
|
int32 nbytes;
|
|
int32 dataoffset;
|
|
ArrayType *retval;
|
|
int ndim,
|
|
flags,
|
|
dim[MAXDIM],
|
|
lBound[MAXDIM];
|
|
ArrayMetaState *my_extra;
|
|
|
|
/* Get the array header information */
|
|
ndim = pq_getmsgint(buf, 4);
|
|
if (ndim < 0) /* we do allow zero-dimension arrays */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("invalid number of dimensions: %d", ndim)));
|
|
if (ndim > MAXDIM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)",
|
|
ndim, MAXDIM)));
|
|
|
|
flags = pq_getmsgint(buf, 4);
|
|
if (flags != 0 && flags != 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("invalid array flags")));
|
|
|
|
element_type = pq_getmsgint(buf, sizeof(Oid));
|
|
if (element_type != spec_element_type)
|
|
{
|
|
/* XXX Can we allow taking the input element type in any cases? */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("wrong element type")));
|
|
}
|
|
|
|
for (i = 0; i < ndim; i++)
|
|
{
|
|
dim[i] = pq_getmsgint(buf, 4);
|
|
lBound[i] = pq_getmsgint(buf, 4);
|
|
|
|
/*
|
|
* Check overflow of upper bound. (ArrayNItems() below checks that
|
|
* dim[i] >= 0)
|
|
*/
|
|
if (dim[i] != 0)
|
|
{
|
|
int ub = lBound[i] + dim[i] - 1;
|
|
|
|
if (lBound[i] > ub)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
}
|
|
}
|
|
|
|
/* This checks for overflow of array dimensions */
|
|
nitems = ArrayGetNItems(ndim, dim);
|
|
|
|
/*
|
|
* We arrange to look up info about element type, including its receive
|
|
* conversion proc, only once per series of calls, assuming the element
|
|
* type doesn't change underneath us.
|
|
*/
|
|
my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
|
|
if (my_extra == NULL)
|
|
{
|
|
fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
|
|
sizeof(ArrayMetaState));
|
|
my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
|
|
my_extra->element_type = ~element_type;
|
|
}
|
|
|
|
if (my_extra->element_type != element_type)
|
|
{
|
|
/* Get info about element type, including its receive proc */
|
|
get_type_io_data(element_type, IOFunc_receive,
|
|
&my_extra->typlen, &my_extra->typbyval,
|
|
&my_extra->typalign, &my_extra->typdelim,
|
|
&my_extra->typioparam, &my_extra->typiofunc);
|
|
if (!OidIsValid(my_extra->typiofunc))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmsg("no binary input function available for type %s",
|
|
format_type_be(element_type))));
|
|
fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc,
|
|
fcinfo->flinfo->fn_mcxt);
|
|
my_extra->element_type = element_type;
|
|
}
|
|
|
|
if (nitems == 0)
|
|
{
|
|
/* Return empty array ... but not till we've validated element_type */
|
|
PG_RETURN_ARRAYTYPE_P(construct_empty_array(element_type));
|
|
}
|
|
|
|
typlen = my_extra->typlen;
|
|
typbyval = my_extra->typbyval;
|
|
typalign = my_extra->typalign;
|
|
typioparam = my_extra->typioparam;
|
|
|
|
dataPtr = (Datum *) palloc(nitems * sizeof(Datum));
|
|
nullsPtr = (bool *) palloc(nitems * sizeof(bool));
|
|
ReadArrayBinary(buf, nitems,
|
|
&my_extra->proc, typioparam, typmod,
|
|
typlen, typbyval, typalign,
|
|
dataPtr, nullsPtr,
|
|
&hasnulls, &nbytes);
|
|
if (hasnulls)
|
|
{
|
|
dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems);
|
|
nbytes += dataoffset;
|
|
}
|
|
else
|
|
{
|
|
dataoffset = 0; /* marker for no null bitmap */
|
|
nbytes += ARR_OVERHEAD_NONULLS(ndim);
|
|
}
|
|
retval = (ArrayType *) palloc0(nbytes);
|
|
SET_VARSIZE(retval, nbytes);
|
|
retval->ndim = ndim;
|
|
retval->dataoffset = dataoffset;
|
|
retval->elemtype = element_type;
|
|
memcpy(ARR_DIMS(retval), dim, ndim * sizeof(int));
|
|
memcpy(ARR_LBOUND(retval), lBound, ndim * sizeof(int));
|
|
|
|
CopyArrayEls(retval,
|
|
dataPtr, nullsPtr, nitems,
|
|
typlen, typbyval, typalign,
|
|
true);
|
|
|
|
pfree(dataPtr);
|
|
pfree(nullsPtr);
|
|
|
|
PG_RETURN_ARRAYTYPE_P(retval);
|
|
}
|
|
|
|
/*
|
|
* ReadArrayBinary:
|
|
* collect the data elements of an array being read in binary style.
|
|
*
|
|
* Inputs:
|
|
* buf: the data buffer to read from.
|
|
* nitems: total number of array elements (already read).
|
|
* receiveproc: type-specific receive procedure for element datatype.
|
|
* typioparam, typmod: auxiliary values to pass to receiveproc.
|
|
* typlen, typbyval, typalign: storage parameters of element datatype.
|
|
*
|
|
* Outputs:
|
|
* values[]: filled with converted data values.
|
|
* nulls[]: filled with is-null markers.
|
|
* *hasnulls: set TRUE iff there are any null elements.
|
|
* *nbytes: set to total size of data area needed (including alignment
|
|
* padding but not including array header overhead).
|
|
*
|
|
* Note that values[] and nulls[] are allocated by the caller, and must have
|
|
* nitems elements.
|
|
*/
|
|
static void
|
|
ReadArrayBinary(StringInfo buf,
|
|
int nitems,
|
|
FmgrInfo *receiveproc,
|
|
Oid typioparam,
|
|
int32 typmod,
|
|
int typlen,
|
|
bool typbyval,
|
|
char typalign,
|
|
Datum *values,
|
|
bool *nulls,
|
|
bool *hasnulls,
|
|
int32 *nbytes)
|
|
{
|
|
int i;
|
|
bool hasnull;
|
|
int32 totbytes;
|
|
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
int itemlen;
|
|
StringInfoData elem_buf;
|
|
char csave;
|
|
|
|
/* Get and check the item length */
|
|
itemlen = pq_getmsgint(buf, 4);
|
|
if (itemlen < -1 || itemlen > (buf->len - buf->cursor))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("insufficient data left in message")));
|
|
|
|
if (itemlen == -1)
|
|
{
|
|
/* -1 length means NULL */
|
|
values[i] = ReceiveFunctionCall(receiveproc, NULL,
|
|
typioparam, typmod);
|
|
nulls[i] = true;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Rather than copying data around, we just set up a phony StringInfo
|
|
* pointing to the correct portion of the input buffer. We assume we
|
|
* can scribble on the input buffer so as to maintain the convention
|
|
* that StringInfos have a trailing null.
|
|
*/
|
|
elem_buf.data = &buf->data[buf->cursor];
|
|
elem_buf.maxlen = itemlen + 1;
|
|
elem_buf.len = itemlen;
|
|
elem_buf.cursor = 0;
|
|
|
|
buf->cursor += itemlen;
|
|
|
|
csave = buf->data[buf->cursor];
|
|
buf->data[buf->cursor] = '\0';
|
|
|
|
/* Now call the element's receiveproc */
|
|
values[i] = ReceiveFunctionCall(receiveproc, &elem_buf,
|
|
typioparam, typmod);
|
|
nulls[i] = false;
|
|
|
|
/* Trouble if it didn't eat the whole buffer */
|
|
if (elem_buf.cursor != itemlen)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("improper binary format in array element %d",
|
|
i + 1)));
|
|
|
|
buf->data[buf->cursor] = csave;
|
|
}
|
|
|
|
/*
|
|
* Check for nulls, compute total data space needed
|
|
*/
|
|
hasnull = false;
|
|
totbytes = 0;
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
if (nulls[i])
|
|
hasnull = true;
|
|
else
|
|
{
|
|
/* let's just make sure data is not toasted */
|
|
if (typlen == -1)
|
|
values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i]));
|
|
totbytes = att_addlength_datum(totbytes, typlen, values[i]);
|
|
totbytes = att_align_nominal(totbytes, typalign);
|
|
/* check for overflow of total request */
|
|
if (!AllocSizeIsValid(totbytes))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("array size exceeds the maximum allowed (%d)",
|
|
(int) MaxAllocSize)));
|
|
}
|
|
}
|
|
*hasnulls = hasnull;
|
|
*nbytes = totbytes;
|
|
}
|
|
|
|
|
|
/*
|
|
* array_send :
|
|
* takes the internal representation of an array and returns a bytea
|
|
* containing the array in its external binary format.
|
|
*/
|
|
Datum
|
|
array_send(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *v = PG_GETARG_ANY_ARRAY(0);
|
|
Oid element_type = AARR_ELEMTYPE(v);
|
|
int typlen;
|
|
bool typbyval;
|
|
char typalign;
|
|
int nitems,
|
|
i;
|
|
int ndim,
|
|
*dim,
|
|
*lb;
|
|
StringInfoData buf;
|
|
array_iter iter;
|
|
ArrayMetaState *my_extra;
|
|
|
|
/*
|
|
* We arrange to look up info about element type, including its send
|
|
* conversion proc, only once per series of calls, assuming the element
|
|
* type doesn't change underneath us.
|
|
*/
|
|
my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
|
|
if (my_extra == NULL)
|
|
{
|
|
fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
|
|
sizeof(ArrayMetaState));
|
|
my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
|
|
my_extra->element_type = ~element_type;
|
|
}
|
|
|
|
if (my_extra->element_type != element_type)
|
|
{
|
|
/* Get info about element type, including its send proc */
|
|
get_type_io_data(element_type, IOFunc_send,
|
|
&my_extra->typlen, &my_extra->typbyval,
|
|
&my_extra->typalign, &my_extra->typdelim,
|
|
&my_extra->typioparam, &my_extra->typiofunc);
|
|
if (!OidIsValid(my_extra->typiofunc))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmsg("no binary output function available for type %s",
|
|
format_type_be(element_type))));
|
|
fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc,
|
|
fcinfo->flinfo->fn_mcxt);
|
|
my_extra->element_type = element_type;
|
|
}
|
|
typlen = my_extra->typlen;
|
|
typbyval = my_extra->typbyval;
|
|
typalign = my_extra->typalign;
|
|
|
|
ndim = AARR_NDIM(v);
|
|
dim = AARR_DIMS(v);
|
|
lb = AARR_LBOUND(v);
|
|
nitems = ArrayGetNItems(ndim, dim);
|
|
|
|
pq_begintypsend(&buf);
|
|
|
|
/* Send the array header information */
|
|
pq_sendint(&buf, ndim, 4);
|
|
pq_sendint(&buf, AARR_HASNULL(v) ? 1 : 0, 4);
|
|
pq_sendint(&buf, element_type, sizeof(Oid));
|
|
for (i = 0; i < ndim; i++)
|
|
{
|
|
pq_sendint(&buf, dim[i], 4);
|
|
pq_sendint(&buf, lb[i], 4);
|
|
}
|
|
|
|
/* Send the array elements using the element's own sendproc */
|
|
array_iter_setup(&iter, v);
|
|
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
Datum itemvalue;
|
|
bool isnull;
|
|
|
|
/* Get source element, checking for NULL */
|
|
itemvalue = array_iter_next(&iter, &isnull, i,
|
|
typlen, typbyval, typalign);
|
|
|
|
if (isnull)
|
|
{
|
|
/* -1 length means a NULL */
|
|
pq_sendint(&buf, -1, 4);
|
|
}
|
|
else
|
|
{
|
|
bytea *outputbytes;
|
|
|
|
outputbytes = SendFunctionCall(&my_extra->proc, itemvalue);
|
|
pq_sendint(&buf, VARSIZE(outputbytes) - VARHDRSZ, 4);
|
|
pq_sendbytes(&buf, VARDATA(outputbytes),
|
|
VARSIZE(outputbytes) - VARHDRSZ);
|
|
pfree(outputbytes);
|
|
}
|
|
}
|
|
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
/*
|
|
* array_ndims :
|
|
* returns the number of dimensions of the array pointed to by "v"
|
|
*/
|
|
Datum
|
|
array_ndims(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *v = PG_GETARG_ANY_ARRAY(0);
|
|
|
|
/* Sanity check: does it look like an array at all? */
|
|
if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_INT32(AARR_NDIM(v));
|
|
}
|
|
|
|
/*
|
|
* array_dims :
|
|
* returns the dimensions of the array pointed to by "v", as a "text"
|
|
*/
|
|
Datum
|
|
array_dims(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *v = PG_GETARG_ANY_ARRAY(0);
|
|
char *p;
|
|
int i;
|
|
int *dimv,
|
|
*lb;
|
|
|
|
/*
|
|
* 33 since we assume 15 digits per number + ':' +'[]'
|
|
*
|
|
* +1 for trailing null
|
|
*/
|
|
char buf[MAXDIM * 33 + 1];
|
|
|
|
/* Sanity check: does it look like an array at all? */
|
|
if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM)
|
|
PG_RETURN_NULL();
|
|
|
|
dimv = AARR_DIMS(v);
|
|
lb = AARR_LBOUND(v);
|
|
|
|
p = buf;
|
|
for (i = 0; i < AARR_NDIM(v); i++)
|
|
{
|
|
sprintf(p, "[%d:%d]", lb[i], dimv[i] + lb[i] - 1);
|
|
p += strlen(p);
|
|
}
|
|
|
|
PG_RETURN_TEXT_P(cstring_to_text(buf));
|
|
}
|
|
|
|
/*
|
|
* array_lower :
|
|
* returns the lower dimension, of the DIM requested, for
|
|
* the array pointed to by "v", as an int4
|
|
*/
|
|
Datum
|
|
array_lower(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *v = PG_GETARG_ANY_ARRAY(0);
|
|
int reqdim = PG_GETARG_INT32(1);
|
|
int *lb;
|
|
int result;
|
|
|
|
/* Sanity check: does it look like an array at all? */
|
|
if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Sanity check: was the requested dim valid */
|
|
if (reqdim <= 0 || reqdim > AARR_NDIM(v))
|
|
PG_RETURN_NULL();
|
|
|
|
lb = AARR_LBOUND(v);
|
|
result = lb[reqdim - 1];
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/*
|
|
* array_upper :
|
|
* returns the upper dimension, of the DIM requested, for
|
|
* the array pointed to by "v", as an int4
|
|
*/
|
|
Datum
|
|
array_upper(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *v = PG_GETARG_ANY_ARRAY(0);
|
|
int reqdim = PG_GETARG_INT32(1);
|
|
int *dimv,
|
|
*lb;
|
|
int result;
|
|
|
|
/* Sanity check: does it look like an array at all? */
|
|
if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Sanity check: was the requested dim valid */
|
|
if (reqdim <= 0 || reqdim > AARR_NDIM(v))
|
|
PG_RETURN_NULL();
|
|
|
|
lb = AARR_LBOUND(v);
|
|
dimv = AARR_DIMS(v);
|
|
|
|
result = dimv[reqdim - 1] + lb[reqdim - 1] - 1;
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/*
|
|
* array_length :
|
|
* returns the length, of the dimension requested, for
|
|
* the array pointed to by "v", as an int4
|
|
*/
|
|
Datum
|
|
array_length(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *v = PG_GETARG_ANY_ARRAY(0);
|
|
int reqdim = PG_GETARG_INT32(1);
|
|
int *dimv;
|
|
int result;
|
|
|
|
/* Sanity check: does it look like an array at all? */
|
|
if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM)
|
|
PG_RETURN_NULL();
|
|
|
|
/* Sanity check: was the requested dim valid */
|
|
if (reqdim <= 0 || reqdim > AARR_NDIM(v))
|
|
PG_RETURN_NULL();
|
|
|
|
dimv = AARR_DIMS(v);
|
|
|
|
result = dimv[reqdim - 1];
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/*
|
|
* array_cardinality:
|
|
* returns the total number of elements in an array
|
|
*/
|
|
Datum
|
|
array_cardinality(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *v = PG_GETARG_ANY_ARRAY(0);
|
|
|
|
PG_RETURN_INT32(ArrayGetNItems(AARR_NDIM(v), AARR_DIMS(v)));
|
|
}
|
|
|
|
|
|
/*
|
|
* array_get_element :
|
|
* This routine takes an array datum and a subscript array and returns
|
|
* the referenced item as a Datum. Note that for a pass-by-reference
|
|
* datatype, the returned Datum is a pointer into the array object.
|
|
*
|
|
* This handles both ordinary varlena arrays and fixed-length arrays.
|
|
*
|
|
* Inputs:
|
|
* arraydatum: the array object (mustn't be NULL)
|
|
* nSubscripts: number of subscripts supplied
|
|
* indx[]: the subscript values
|
|
* arraytyplen: pg_type.typlen for the array type
|
|
* elmlen: pg_type.typlen for the array's element type
|
|
* elmbyval: pg_type.typbyval for the array's element type
|
|
* elmalign: pg_type.typalign for the array's element type
|
|
*
|
|
* Outputs:
|
|
* The return value is the element Datum.
|
|
* *isNull is set to indicate whether the element is NULL.
|
|
*/
|
|
Datum
|
|
array_get_element(Datum arraydatum,
|
|
int nSubscripts,
|
|
int *indx,
|
|
int arraytyplen,
|
|
int elmlen,
|
|
bool elmbyval,
|
|
char elmalign,
|
|
bool *isNull)
|
|
{
|
|
int i,
|
|
ndim,
|
|
*dim,
|
|
*lb,
|
|
offset,
|
|
fixedDim[1],
|
|
fixedLb[1];
|
|
char *arraydataptr,
|
|
*retptr;
|
|
bits8 *arraynullsptr;
|
|
|
|
if (arraytyplen > 0)
|
|
{
|
|
/*
|
|
* fixed-length arrays -- these are assumed to be 1-d, 0-based
|
|
*/
|
|
ndim = 1;
|
|
fixedDim[0] = arraytyplen / elmlen;
|
|
fixedLb[0] = 0;
|
|
dim = fixedDim;
|
|
lb = fixedLb;
|
|
arraydataptr = (char *) DatumGetPointer(arraydatum);
|
|
arraynullsptr = NULL;
|
|
}
|
|
else if (VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(arraydatum)))
|
|
{
|
|
/* expanded array: let's do this in a separate function */
|
|
return array_get_element_expanded(arraydatum,
|
|
nSubscripts,
|
|
indx,
|
|
arraytyplen,
|
|
elmlen,
|
|
elmbyval,
|
|
elmalign,
|
|
isNull);
|
|
}
|
|
else
|
|
{
|
|
/* detoast array if necessary, producing normal varlena input */
|
|
ArrayType *array = DatumGetArrayTypeP(arraydatum);
|
|
|
|
ndim = ARR_NDIM(array);
|
|
dim = ARR_DIMS(array);
|
|
lb = ARR_LBOUND(array);
|
|
arraydataptr = ARR_DATA_PTR(array);
|
|
arraynullsptr = ARR_NULLBITMAP(array);
|
|
}
|
|
|
|
/*
|
|
* Return NULL for invalid subscript
|
|
*/
|
|
if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM)
|
|
{
|
|
*isNull = true;
|
|
return (Datum) 0;
|
|
}
|
|
for (i = 0; i < ndim; i++)
|
|
{
|
|
if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i]))
|
|
{
|
|
*isNull = true;
|
|
return (Datum) 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the element number
|
|
*/
|
|
offset = ArrayGetOffset(nSubscripts, dim, lb, indx);
|
|
|
|
/*
|
|
* Check for NULL array element
|
|
*/
|
|
if (array_get_isnull(arraynullsptr, offset))
|
|
{
|
|
*isNull = true;
|
|
return (Datum) 0;
|
|
}
|
|
|
|
/*
|
|
* OK, get the element
|
|
*/
|
|
*isNull = false;
|
|
retptr = array_seek(arraydataptr, 0, arraynullsptr, offset,
|
|
elmlen, elmbyval, elmalign);
|
|
return ArrayCast(retptr, elmbyval, elmlen);
|
|
}
|
|
|
|
/*
|
|
* Implementation of array_get_element() for an expanded array
|
|
*/
|
|
static Datum
|
|
array_get_element_expanded(Datum arraydatum,
|
|
int nSubscripts, int *indx,
|
|
int arraytyplen,
|
|
int elmlen, bool elmbyval, char elmalign,
|
|
bool *isNull)
|
|
{
|
|
ExpandedArrayHeader *eah;
|
|
int i,
|
|
ndim,
|
|
*dim,
|
|
*lb,
|
|
offset;
|
|
Datum *dvalues;
|
|
bool *dnulls;
|
|
|
|
eah = (ExpandedArrayHeader *) DatumGetEOHP(arraydatum);
|
|
Assert(eah->ea_magic == EA_MAGIC);
|
|
|
|
/* sanity-check caller's info against object */
|
|
Assert(arraytyplen == -1);
|
|
Assert(elmlen == eah->typlen);
|
|
Assert(elmbyval == eah->typbyval);
|
|
Assert(elmalign == eah->typalign);
|
|
|
|
ndim = eah->ndims;
|
|
dim = eah->dims;
|
|
lb = eah->lbound;
|
|
|
|
/*
|
|
* Return NULL for invalid subscript
|
|
*/
|
|
if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM)
|
|
{
|
|
*isNull = true;
|
|
return (Datum) 0;
|
|
}
|
|
for (i = 0; i < ndim; i++)
|
|
{
|
|
if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i]))
|
|
{
|
|
*isNull = true;
|
|
return (Datum) 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the element number
|
|
*/
|
|
offset = ArrayGetOffset(nSubscripts, dim, lb, indx);
|
|
|
|
/*
|
|
* Deconstruct array if we didn't already. Note that we apply this even
|
|
* if the input is nominally read-only: it should be safe enough.
|
|
*/
|
|
deconstruct_expanded_array(eah);
|
|
|
|
dvalues = eah->dvalues;
|
|
dnulls = eah->dnulls;
|
|
|
|
/*
|
|
* Check for NULL array element
|
|
*/
|
|
if (dnulls && dnulls[offset])
|
|
{
|
|
*isNull = true;
|
|
return (Datum) 0;
|
|
}
|
|
|
|
/*
|
|
* OK, get the element. It's OK to return a pass-by-ref value as a
|
|
* pointer into the expanded array, for the same reason that regular
|
|
* array_get_element can return a pointer into flat arrays: the value is
|
|
* assumed not to change for as long as the Datum reference can exist.
|
|
*/
|
|
*isNull = false;
|
|
return dvalues[offset];
|
|
}
|
|
|
|
/*
|
|
* array_get_slice :
|
|
* This routine takes an array and a range of indices (upperIndex and
|
|
* lowerIndx), creates a new array structure for the referred elements
|
|
* and returns a pointer to it.
|
|
*
|
|
* This handles both ordinary varlena arrays and fixed-length arrays.
|
|
*
|
|
* Inputs:
|
|
* arraydatum: the array object (mustn't be NULL)
|
|
* nSubscripts: number of subscripts supplied (must be same for upper/lower)
|
|
* upperIndx[]: the upper subscript values
|
|
* lowerIndx[]: the lower subscript values
|
|
* upperProvided[]: true for provided upper subscript values
|
|
* lowerProvided[]: true for provided lower subscript values
|
|
* arraytyplen: pg_type.typlen for the array type
|
|
* elmlen: pg_type.typlen for the array's element type
|
|
* elmbyval: pg_type.typbyval for the array's element type
|
|
* elmalign: pg_type.typalign for the array's element type
|
|
*
|
|
* Outputs:
|
|
* The return value is the new array Datum (it's never NULL)
|
|
*
|
|
* Omitted upper and lower subscript values are replaced by the corresponding
|
|
* array bound.
|
|
*
|
|
* NOTE: we assume it is OK to scribble on the provided subscript arrays
|
|
* lowerIndx[] and upperIndx[]. These are generally just temporaries.
|
|
*/
|
|
Datum
|
|
array_get_slice(Datum arraydatum,
|
|
int nSubscripts,
|
|
int *upperIndx,
|
|
int *lowerIndx,
|
|
bool *upperProvided,
|
|
bool *lowerProvided,
|
|
int arraytyplen,
|
|
int elmlen,
|
|
bool elmbyval,
|
|
char elmalign)
|
|
{
|
|
ArrayType *array;
|
|
ArrayType *newarray;
|
|
int i,
|
|
ndim,
|
|
*dim,
|
|
*lb,
|
|
*newlb;
|
|
int fixedDim[1],
|
|
fixedLb[1];
|
|
Oid elemtype;
|
|
char *arraydataptr;
|
|
bits8 *arraynullsptr;
|
|
int32 dataoffset;
|
|
int bytes,
|
|
span[MAXDIM];
|
|
|
|
if (arraytyplen > 0)
|
|
{
|
|
/*
|
|
* fixed-length arrays -- currently, cannot slice these because parser
|
|
* labels output as being of the fixed-length array type! Code below
|
|
* shows how we could support it if the parser were changed to label
|
|
* output as a suitable varlena array type.
|
|
*/
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("slices of fixed-length arrays not implemented")));
|
|
|
|
/*
|
|
* fixed-length arrays -- these are assumed to be 1-d, 0-based
|
|
*
|
|
* XXX where would we get the correct ELEMTYPE from?
|
|
*/
|
|
ndim = 1;
|
|
fixedDim[0] = arraytyplen / elmlen;
|
|
fixedLb[0] = 0;
|
|
dim = fixedDim;
|
|
lb = fixedLb;
|
|
elemtype = InvalidOid; /* XXX */
|
|
arraydataptr = (char *) DatumGetPointer(arraydatum);
|
|
arraynullsptr = NULL;
|
|
}
|
|
else
|
|
{
|
|
/* detoast input array if necessary */
|
|
array = DatumGetArrayTypeP(arraydatum);
|
|
|
|
ndim = ARR_NDIM(array);
|
|
dim = ARR_DIMS(array);
|
|
lb = ARR_LBOUND(array);
|
|
elemtype = ARR_ELEMTYPE(array);
|
|
arraydataptr = ARR_DATA_PTR(array);
|
|
arraynullsptr = ARR_NULLBITMAP(array);
|
|
}
|
|
|
|
/*
|
|
* Check provided subscripts. A slice exceeding the current array limits
|
|
* is silently truncated to the array limits. If we end up with an empty
|
|
* slice, return an empty array.
|
|
*/
|
|
if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM)
|
|
return PointerGetDatum(construct_empty_array(elemtype));
|
|
|
|
for (i = 0; i < nSubscripts; i++)
|
|
{
|
|
if (!lowerProvided[i] || lowerIndx[i] < lb[i])
|
|
lowerIndx[i] = lb[i];
|
|
if (!upperProvided[i] || upperIndx[i] >= (dim[i] + lb[i]))
|
|
upperIndx[i] = dim[i] + lb[i] - 1;
|
|
if (lowerIndx[i] > upperIndx[i])
|
|
return PointerGetDatum(construct_empty_array(elemtype));
|
|
}
|
|
/* fill any missing subscript positions with full array range */
|
|
for (; i < ndim; i++)
|
|
{
|
|
lowerIndx[i] = lb[i];
|
|
upperIndx[i] = dim[i] + lb[i] - 1;
|
|
if (lowerIndx[i] > upperIndx[i])
|
|
return PointerGetDatum(construct_empty_array(elemtype));
|
|
}
|
|
|
|
mda_get_range(ndim, span, lowerIndx, upperIndx);
|
|
|
|
bytes = array_slice_size(arraydataptr, arraynullsptr,
|
|
ndim, dim, lb,
|
|
lowerIndx, upperIndx,
|
|
elmlen, elmbyval, elmalign);
|
|
|
|
/*
|
|
* Currently, we put a null bitmap in the result if the source has one;
|
|
* could be smarter ...
|
|
*/
|
|
if (arraynullsptr)
|
|
{
|
|
dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, ArrayGetNItems(ndim, span));
|
|
bytes += dataoffset;
|
|
}
|
|
else
|
|
{
|
|
dataoffset = 0; /* marker for no null bitmap */
|
|
bytes += ARR_OVERHEAD_NONULLS(ndim);
|
|
}
|
|
|
|
newarray = (ArrayType *) palloc0(bytes);
|
|
SET_VARSIZE(newarray, bytes);
|
|
newarray->ndim = ndim;
|
|
newarray->dataoffset = dataoffset;
|
|
newarray->elemtype = elemtype;
|
|
memcpy(ARR_DIMS(newarray), span, ndim * sizeof(int));
|
|
|
|
/*
|
|
* Lower bounds of the new array are set to 1. Formerly (before 7.3) we
|
|
* copied the given lowerIndx values ... but that seems confusing.
|
|
*/
|
|
newlb = ARR_LBOUND(newarray);
|
|
for (i = 0; i < ndim; i++)
|
|
newlb[i] = 1;
|
|
|
|
array_extract_slice(newarray,
|
|
ndim, dim, lb,
|
|
arraydataptr, arraynullsptr,
|
|
lowerIndx, upperIndx,
|
|
elmlen, elmbyval, elmalign);
|
|
|
|
return PointerGetDatum(newarray);
|
|
}
|
|
|
|
/*
|
|
* array_set_element :
|
|
* This routine sets the value of one array element (specified by
|
|
* a subscript array) to a new value specified by "dataValue".
|
|
*
|
|
* This handles both ordinary varlena arrays and fixed-length arrays.
|
|
*
|
|
* Inputs:
|
|
* arraydatum: the initial array object (mustn't be NULL)
|
|
* nSubscripts: number of subscripts supplied
|
|
* indx[]: the subscript values
|
|
* dataValue: the datum to be inserted at the given position
|
|
* isNull: whether dataValue is NULL
|
|
* arraytyplen: pg_type.typlen for the array type
|
|
* elmlen: pg_type.typlen for the array's element type
|
|
* elmbyval: pg_type.typbyval for the array's element type
|
|
* elmalign: pg_type.typalign for the array's element type
|
|
*
|
|
* Result:
|
|
* A new array is returned, just like the old except for the one
|
|
* modified entry. The original array object is not changed,
|
|
* unless what is passed is a read-write reference to an expanded
|
|
* array object; in that case the expanded array is updated in-place.
|
|
*
|
|
* For one-dimensional arrays only, we allow the array to be extended
|
|
* by assigning to a position outside the existing subscript range; any
|
|
* positions between the existing elements and the new one are set to NULLs.
|
|
* (XXX TODO: allow a corresponding behavior for multidimensional arrays)
|
|
*
|
|
* NOTE: For assignments, we throw an error for invalid subscripts etc,
|
|
* rather than returning a NULL as the fetch operations do.
|
|
*/
|
|
Datum
|
|
array_set_element(Datum arraydatum,
|
|
int nSubscripts,
|
|
int *indx,
|
|
Datum dataValue,
|
|
bool isNull,
|
|
int arraytyplen,
|
|
int elmlen,
|
|
bool elmbyval,
|
|
char elmalign)
|
|
{
|
|
ArrayType *array;
|
|
ArrayType *newarray;
|
|
int i,
|
|
ndim,
|
|
dim[MAXDIM],
|
|
lb[MAXDIM],
|
|
offset;
|
|
char *elt_ptr;
|
|
bool newhasnulls;
|
|
bits8 *oldnullbitmap;
|
|
int oldnitems,
|
|
newnitems,
|
|
olddatasize,
|
|
newsize,
|
|
olditemlen,
|
|
newitemlen,
|
|
overheadlen,
|
|
oldoverheadlen,
|
|
addedbefore,
|
|
addedafter,
|
|
lenbefore,
|
|
lenafter;
|
|
|
|
if (arraytyplen > 0)
|
|
{
|
|
/*
|
|
* fixed-length arrays -- these are assumed to be 1-d, 0-based. We
|
|
* cannot extend them, either.
|
|
*/
|
|
char *resultarray;
|
|
|
|
if (nSubscripts != 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("wrong number of array subscripts")));
|
|
|
|
if (indx[0] < 0 || indx[0] * elmlen >= arraytyplen)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("array subscript out of range")));
|
|
|
|
if (isNull)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
|
|
errmsg("cannot assign null value to an element of a fixed-length array")));
|
|
|
|
resultarray = (char *) palloc(arraytyplen);
|
|
memcpy(resultarray, DatumGetPointer(arraydatum), arraytyplen);
|
|
elt_ptr = (char *) resultarray + indx[0] * elmlen;
|
|
ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, elt_ptr);
|
|
return PointerGetDatum(resultarray);
|
|
}
|
|
|
|
if (nSubscripts <= 0 || nSubscripts > MAXDIM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("wrong number of array subscripts")));
|
|
|
|
/* make sure item to be inserted is not toasted */
|
|
if (elmlen == -1 && !isNull)
|
|
dataValue = PointerGetDatum(PG_DETOAST_DATUM(dataValue));
|
|
|
|
if (VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(arraydatum)))
|
|
{
|
|
/* expanded array: let's do this in a separate function */
|
|
return array_set_element_expanded(arraydatum,
|
|
nSubscripts,
|
|
indx,
|
|
dataValue,
|
|
isNull,
|
|
arraytyplen,
|
|
elmlen,
|
|
elmbyval,
|
|
elmalign);
|
|
}
|
|
|
|
/* detoast input array if necessary */
|
|
array = DatumGetArrayTypeP(arraydatum);
|
|
|
|
ndim = ARR_NDIM(array);
|
|
|
|
/*
|
|
* if number of dims is zero, i.e. an empty array, create an array with
|
|
* nSubscripts dimensions, and set the lower bounds to the supplied
|
|
* subscripts
|
|
*/
|
|
if (ndim == 0)
|
|
{
|
|
Oid elmtype = ARR_ELEMTYPE(array);
|
|
|
|
for (i = 0; i < nSubscripts; i++)
|
|
{
|
|
dim[i] = 1;
|
|
lb[i] = indx[i];
|
|
}
|
|
|
|
return PointerGetDatum(construct_md_array(&dataValue, &isNull,
|
|
nSubscripts, dim, lb,
|
|
elmtype,
|
|
elmlen, elmbyval, elmalign));
|
|
}
|
|
|
|
if (ndim != nSubscripts)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("wrong number of array subscripts")));
|
|
|
|
/* copy dim/lb since we may modify them */
|
|
memcpy(dim, ARR_DIMS(array), ndim * sizeof(int));
|
|
memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int));
|
|
|
|
newhasnulls = (ARR_HASNULL(array) || isNull);
|
|
addedbefore = addedafter = 0;
|
|
|
|
/*
|
|
* Check subscripts
|
|
*/
|
|
if (ndim == 1)
|
|
{
|
|
if (indx[0] < lb[0])
|
|
{
|
|
addedbefore = lb[0] - indx[0];
|
|
dim[0] += addedbefore;
|
|
lb[0] = indx[0];
|
|
if (addedbefore > 1)
|
|
newhasnulls = true; /* will insert nulls */
|
|
}
|
|
if (indx[0] >= (dim[0] + lb[0]))
|
|
{
|
|
addedafter = indx[0] - (dim[0] + lb[0]) + 1;
|
|
dim[0] += addedafter;
|
|
if (addedafter > 1)
|
|
newhasnulls = true; /* will insert nulls */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* XXX currently we do not support extending multi-dimensional arrays
|
|
* during assignment
|
|
*/
|
|
for (i = 0; i < ndim; i++)
|
|
{
|
|
if (indx[i] < lb[i] ||
|
|
indx[i] >= (dim[i] + lb[i]))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("array subscript out of range")));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute sizes of items and areas to copy
|
|
*/
|
|
newnitems = ArrayGetNItems(ndim, dim);
|
|
if (newhasnulls)
|
|
overheadlen = ARR_OVERHEAD_WITHNULLS(ndim, newnitems);
|
|
else
|
|
overheadlen = ARR_OVERHEAD_NONULLS(ndim);
|
|
oldnitems = ArrayGetNItems(ndim, ARR_DIMS(array));
|
|
oldnullbitmap = ARR_NULLBITMAP(array);
|
|
oldoverheadlen = ARR_DATA_OFFSET(array);
|
|
olddatasize = ARR_SIZE(array) - oldoverheadlen;
|
|
if (addedbefore)
|
|
{
|
|
offset = 0;
|
|
lenbefore = 0;
|
|
olditemlen = 0;
|
|
lenafter = olddatasize;
|
|
}
|
|
else if (addedafter)
|
|
{
|
|
offset = oldnitems;
|
|
lenbefore = olddatasize;
|
|
olditemlen = 0;
|
|
lenafter = 0;
|
|
}
|
|
else
|
|
{
|
|
offset = ArrayGetOffset(nSubscripts, dim, lb, indx);
|
|
elt_ptr = array_seek(ARR_DATA_PTR(array), 0, oldnullbitmap, offset,
|
|
elmlen, elmbyval, elmalign);
|
|
lenbefore = (int) (elt_ptr - ARR_DATA_PTR(array));
|
|
if (array_get_isnull(oldnullbitmap, offset))
|
|
olditemlen = 0;
|
|
else
|
|
{
|
|
olditemlen = att_addlength_pointer(0, elmlen, elt_ptr);
|
|
olditemlen = att_align_nominal(olditemlen, elmalign);
|
|
}
|
|
lenafter = (int) (olddatasize - lenbefore - olditemlen);
|
|
}
|
|
|
|
if (isNull)
|
|
newitemlen = 0;
|
|
else
|
|
{
|
|
newitemlen = att_addlength_datum(0, elmlen, dataValue);
|
|
newitemlen = att_align_nominal(newitemlen, elmalign);
|
|
}
|
|
|
|
newsize = overheadlen + lenbefore + newitemlen + lenafter;
|
|
|
|
/*
|
|
* OK, create the new array and fill in header/dimensions
|
|
*/
|
|
newarray = (ArrayType *) palloc0(newsize);
|
|
SET_VARSIZE(newarray, newsize);
|
|
newarray->ndim = ndim;
|
|
newarray->dataoffset = newhasnulls ? overheadlen : 0;
|
|
newarray->elemtype = ARR_ELEMTYPE(array);
|
|
memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int));
|
|
memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int));
|
|
|
|
/*
|
|
* Fill in data
|
|
*/
|
|
memcpy((char *) newarray + overheadlen,
|
|
(char *) array + oldoverheadlen,
|
|
lenbefore);
|
|
if (!isNull)
|
|
ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign,
|
|
(char *) newarray + overheadlen + lenbefore);
|
|
memcpy((char *) newarray + overheadlen + lenbefore + newitemlen,
|
|
(char *) array + oldoverheadlen + lenbefore + olditemlen,
|
|
lenafter);
|
|
|
|
/*
|
|
* Fill in nulls bitmap if needed
|
|
*
|
|
* Note: it's possible we just replaced the last NULL with a non-NULL, and
|
|
* could get rid of the bitmap. Seems not worth testing for though.
|
|
*/
|
|
if (newhasnulls)
|
|
{
|
|
bits8 *newnullbitmap = ARR_NULLBITMAP(newarray);
|
|
|
|
/* Zero the bitmap to take care of marking inserted positions null */
|
|
MemSet(newnullbitmap, 0, (newnitems + 7) / 8);
|
|
/* Fix the inserted value */
|
|
if (addedafter)
|
|
array_set_isnull(newnullbitmap, newnitems - 1, isNull);
|
|
else
|
|
array_set_isnull(newnullbitmap, offset, isNull);
|
|
/* Fix the copied range(s) */
|
|
if (addedbefore)
|
|
array_bitmap_copy(newnullbitmap, addedbefore,
|
|
oldnullbitmap, 0,
|
|
oldnitems);
|
|
else
|
|
{
|
|
array_bitmap_copy(newnullbitmap, 0,
|
|
oldnullbitmap, 0,
|
|
offset);
|
|
if (addedafter == 0)
|
|
array_bitmap_copy(newnullbitmap, offset + 1,
|
|
oldnullbitmap, offset + 1,
|
|
oldnitems - offset - 1);
|
|
}
|
|
}
|
|
|
|
return PointerGetDatum(newarray);
|
|
}
|
|
|
|
/*
|
|
* Implementation of array_set_element() for an expanded array
|
|
*
|
|
* Note: as with any operation on a read/write expanded object, we must
|
|
* take pains not to leave the object in a corrupt state if we fail partway
|
|
* through.
|
|
*/
|
|
static Datum
|
|
array_set_element_expanded(Datum arraydatum,
|
|
int nSubscripts, int *indx,
|
|
Datum dataValue, bool isNull,
|
|
int arraytyplen,
|
|
int elmlen, bool elmbyval, char elmalign)
|
|
{
|
|
ExpandedArrayHeader *eah;
|
|
Datum *dvalues;
|
|
bool *dnulls;
|
|
int i,
|
|
ndim,
|
|
dim[MAXDIM],
|
|
lb[MAXDIM],
|
|
offset;
|
|
bool dimschanged,
|
|
newhasnulls;
|
|
int addedbefore,
|
|
addedafter;
|
|
char *oldValue;
|
|
|
|
/* Convert to R/W object if not so already */
|
|
eah = DatumGetExpandedArray(arraydatum);
|
|
|
|
/* Sanity-check caller's info against object; we don't use it otherwise */
|
|
Assert(arraytyplen == -1);
|
|
Assert(elmlen == eah->typlen);
|
|
Assert(elmbyval == eah->typbyval);
|
|
Assert(elmalign == eah->typalign);
|
|
|
|
/*
|
|
* Copy dimension info into local storage. This allows us to modify the
|
|
* dimensions if needed, while not messing up the expanded value if we
|
|
* fail partway through.
|
|
*/
|
|
ndim = eah->ndims;
|
|
Assert(ndim >= 0 && ndim <= MAXDIM);
|
|
memcpy(dim, eah->dims, ndim * sizeof(int));
|
|
memcpy(lb, eah->lbound, ndim * sizeof(int));
|
|
dimschanged = false;
|
|
|
|
/*
|
|
* if number of dims is zero, i.e. an empty array, create an array with
|
|
* nSubscripts dimensions, and set the lower bounds to the supplied
|
|
* subscripts.
|
|
*/
|
|
if (ndim == 0)
|
|
{
|
|
/*
|
|
* Allocate adequate space for new dimension info. This is harmless
|
|
* if we fail later.
|
|
*/
|
|
Assert(nSubscripts > 0 && nSubscripts <= MAXDIM);
|
|
eah->dims = (int *) MemoryContextAllocZero(eah->hdr.eoh_context,
|
|
nSubscripts * sizeof(int));
|
|
eah->lbound = (int *) MemoryContextAllocZero(eah->hdr.eoh_context,
|
|
nSubscripts * sizeof(int));
|
|
|
|
/* Update local copies of dimension info */
|
|
ndim = nSubscripts;
|
|
for (i = 0; i < nSubscripts; i++)
|
|
{
|
|
dim[i] = 0;
|
|
lb[i] = indx[i];
|
|
}
|
|
dimschanged = true;
|
|
}
|
|
else if (ndim != nSubscripts)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("wrong number of array subscripts")));
|
|
|
|
/*
|
|
* Deconstruct array if we didn't already. (Someday maybe add a special
|
|
* case path for fixed-length, no-nulls cases, where we can overwrite an
|
|
* element in place without ever deconstructing. But today is not that
|
|
* day.)
|
|
*/
|
|
deconstruct_expanded_array(eah);
|
|
|
|
/*
|
|
* Copy new element into array's context, if needed (we assume it's
|
|
* already detoasted, so no junk should be created). If we fail further
|
|
* down, this memory is leaked, but that's reasonably harmless.
|
|
*/
|
|
if (!eah->typbyval && !isNull)
|
|
{
|
|
MemoryContext oldcxt = MemoryContextSwitchTo(eah->hdr.eoh_context);
|
|
|
|
dataValue = datumCopy(dataValue, false, eah->typlen);
|
|
MemoryContextSwitchTo(oldcxt);
|
|
}
|
|
|
|
dvalues = eah->dvalues;
|
|
dnulls = eah->dnulls;
|
|
|
|
newhasnulls = ((dnulls != NULL) || isNull);
|
|
addedbefore = addedafter = 0;
|
|
|
|
/*
|
|
* Check subscripts (this logic matches original array_set_element)
|
|
*/
|
|
if (ndim == 1)
|
|
{
|
|
if (indx[0] < lb[0])
|
|
{
|
|
addedbefore = lb[0] - indx[0];
|
|
dim[0] += addedbefore;
|
|
lb[0] = indx[0];
|
|
dimschanged = true;
|
|
if (addedbefore > 1)
|
|
newhasnulls = true; /* will insert nulls */
|
|
}
|
|
if (indx[0] >= (dim[0] + lb[0]))
|
|
{
|
|
addedafter = indx[0] - (dim[0] + lb[0]) + 1;
|
|
dim[0] += addedafter;
|
|
dimschanged = true;
|
|
if (addedafter > 1)
|
|
newhasnulls = true; /* will insert nulls */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* XXX currently we do not support extending multi-dimensional arrays
|
|
* during assignment
|
|
*/
|
|
for (i = 0; i < ndim; i++)
|
|
{
|
|
if (indx[i] < lb[i] ||
|
|
indx[i] >= (dim[i] + lb[i]))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("array subscript out of range")));
|
|
}
|
|
}
|
|
|
|
/* Now we can calculate linear offset of target item in array */
|
|
offset = ArrayGetOffset(nSubscripts, dim, lb, indx);
|
|
|
|
/* Physically enlarge existing dvalues/dnulls arrays if needed */
|
|
if (dim[0] > eah->dvalueslen)
|
|
{
|
|
/* We want some extra space if we're enlarging */
|
|
int newlen = dim[0] + dim[0] / 8;
|
|
|
|
newlen = Max(newlen, dim[0]); /* integer overflow guard */
|
|
eah->dvalues = dvalues = (Datum *)
|
|
repalloc(dvalues, newlen * sizeof(Datum));
|
|
if (dnulls)
|
|
eah->dnulls = dnulls = (bool *)
|
|
repalloc(dnulls, newlen * sizeof(bool));
|
|
eah->dvalueslen = newlen;
|
|
}
|
|
|
|
/*
|
|
* If we need a nulls bitmap and don't already have one, create it, being
|
|
* sure to mark all existing entries as not null.
|
|
*/
|
|
if (newhasnulls && dnulls == NULL)
|
|
eah->dnulls = dnulls = (bool *)
|
|
MemoryContextAllocZero(eah->hdr.eoh_context,
|
|
eah->dvalueslen * sizeof(bool));
|
|
|
|
/*
|
|
* We now have all the needed space allocated, so we're ready to make
|
|
* irreversible changes. Be very wary of allowing failure below here.
|
|
*/
|
|
|
|
/* Flattened value will no longer represent array accurately */
|
|
eah->fvalue = NULL;
|
|
/* And we don't know the flattened size either */
|
|
eah->flat_size = 0;
|
|
|
|
/* Update dimensionality info if needed */
|
|
if (dimschanged)
|
|
{
|
|
eah->ndims = ndim;
|
|
memcpy(eah->dims, dim, ndim * sizeof(int));
|
|
memcpy(eah->lbound, lb, ndim * sizeof(int));
|
|
}
|
|
|
|
/* Reposition items if needed, and fill addedbefore items with nulls */
|
|
if (addedbefore > 0)
|
|
{
|
|
memmove(dvalues + addedbefore, dvalues, eah->nelems * sizeof(Datum));
|
|
for (i = 0; i < addedbefore; i++)
|
|
dvalues[i] = (Datum) 0;
|
|
if (dnulls)
|
|
{
|
|
memmove(dnulls + addedbefore, dnulls, eah->nelems * sizeof(bool));
|
|
for (i = 0; i < addedbefore; i++)
|
|
dnulls[i] = true;
|
|
}
|
|
eah->nelems += addedbefore;
|
|
}
|
|
|
|
/* fill addedafter items with nulls */
|
|
if (addedafter > 0)
|
|
{
|
|
for (i = 0; i < addedafter; i++)
|
|
dvalues[eah->nelems + i] = (Datum) 0;
|
|
if (dnulls)
|
|
{
|
|
for (i = 0; i < addedafter; i++)
|
|
dnulls[eah->nelems + i] = true;
|
|
}
|
|
eah->nelems += addedafter;
|
|
}
|
|
|
|
/* Grab old element value for pfree'ing, if needed. */
|
|
if (!eah->typbyval && (dnulls == NULL || !dnulls[offset]))
|
|
oldValue = (char *) DatumGetPointer(dvalues[offset]);
|
|
else
|
|
oldValue = NULL;
|
|
|
|
/* And finally we can insert the new element. */
|
|
dvalues[offset] = dataValue;
|
|
if (dnulls)
|
|
dnulls[offset] = isNull;
|
|
|
|
/*
|
|
* Free old element if needed; this keeps repeated element replacements
|
|
* from bloating the array's storage. If the pfree somehow fails, it
|
|
* won't corrupt the array.
|
|
*/
|
|
if (oldValue)
|
|
{
|
|
/* Don't try to pfree a part of the original flat array */
|
|
if (oldValue < eah->fstartptr || oldValue >= eah->fendptr)
|
|
pfree(oldValue);
|
|
}
|
|
|
|
/* Done, return standard TOAST pointer for object */
|
|
return EOHPGetRWDatum(&eah->hdr);
|
|
}
|
|
|
|
/*
|
|
* array_set_slice :
|
|
* This routine sets the value of a range of array locations (specified
|
|
* by upper and lower subscript values) to new values passed as
|
|
* another array.
|
|
*
|
|
* This handles both ordinary varlena arrays and fixed-length arrays.
|
|
*
|
|
* Inputs:
|
|
* arraydatum: the initial array object (mustn't be NULL)
|
|
* nSubscripts: number of subscripts supplied (must be same for upper/lower)
|
|
* upperIndx[]: the upper subscript values
|
|
* lowerIndx[]: the lower subscript values
|
|
* upperProvided[]: true for provided upper subscript values
|
|
* lowerProvided[]: true for provided lower subscript values
|
|
* srcArrayDatum: the source for the inserted values
|
|
* isNull: indicates whether srcArrayDatum is NULL
|
|
* arraytyplen: pg_type.typlen for the array type
|
|
* elmlen: pg_type.typlen for the array's element type
|
|
* elmbyval: pg_type.typbyval for the array's element type
|
|
* elmalign: pg_type.typalign for the array's element type
|
|
*
|
|
* Result:
|
|
* A new array is returned, just like the old except for the
|
|
* modified range. The original array object is not changed.
|
|
*
|
|
* Omitted upper and lower subscript values are replaced by the corresponding
|
|
* array bound.
|
|
*
|
|
* For one-dimensional arrays only, we allow the array to be extended
|
|
* by assigning to positions outside the existing subscript range; any
|
|
* positions between the existing elements and the new ones are set to NULLs.
|
|
* (XXX TODO: allow a corresponding behavior for multidimensional arrays)
|
|
*
|
|
* NOTE: we assume it is OK to scribble on the provided index arrays
|
|
* lowerIndx[] and upperIndx[]. These are generally just temporaries.
|
|
*
|
|
* NOTE: For assignments, we throw an error for silly subscripts etc,
|
|
* rather than returning a NULL or empty array as the fetch operations do.
|
|
*/
|
|
Datum
|
|
array_set_slice(Datum arraydatum,
|
|
int nSubscripts,
|
|
int *upperIndx,
|
|
int *lowerIndx,
|
|
bool *upperProvided,
|
|
bool *lowerProvided,
|
|
Datum srcArrayDatum,
|
|
bool isNull,
|
|
int arraytyplen,
|
|
int elmlen,
|
|
bool elmbyval,
|
|
char elmalign)
|
|
{
|
|
ArrayType *array;
|
|
ArrayType *srcArray;
|
|
ArrayType *newarray;
|
|
int i,
|
|
ndim,
|
|
dim[MAXDIM],
|
|
lb[MAXDIM],
|
|
span[MAXDIM];
|
|
bool newhasnulls;
|
|
int nitems,
|
|
nsrcitems,
|
|
olddatasize,
|
|
newsize,
|
|
olditemsize,
|
|
newitemsize,
|
|
overheadlen,
|
|
oldoverheadlen,
|
|
addedbefore,
|
|
addedafter,
|
|
lenbefore,
|
|
lenafter,
|
|
itemsbefore,
|
|
itemsafter,
|
|
nolditems;
|
|
|
|
/* Currently, assignment from a NULL source array is a no-op */
|
|
if (isNull)
|
|
return arraydatum;
|
|
|
|
if (arraytyplen > 0)
|
|
{
|
|
/*
|
|
* fixed-length arrays -- not got round to doing this...
|
|
*/
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("updates on slices of fixed-length arrays not implemented")));
|
|
}
|
|
|
|
/* detoast arrays if necessary */
|
|
array = DatumGetArrayTypeP(arraydatum);
|
|
srcArray = DatumGetArrayTypeP(srcArrayDatum);
|
|
|
|
/* note: we assume srcArray contains no toasted elements */
|
|
|
|
ndim = ARR_NDIM(array);
|
|
|
|
/*
|
|
* if number of dims is zero, i.e. an empty array, create an array with
|
|
* nSubscripts dimensions, and set the upper and lower bounds to the
|
|
* supplied subscripts
|
|
*/
|
|
if (ndim == 0)
|
|
{
|
|
Datum *dvalues;
|
|
bool *dnulls;
|
|
int nelems;
|
|
Oid elmtype = ARR_ELEMTYPE(array);
|
|
|
|
deconstruct_array(srcArray, elmtype, elmlen, elmbyval, elmalign,
|
|
&dvalues, &dnulls, &nelems);
|
|
|
|
for (i = 0; i < nSubscripts; i++)
|
|
{
|
|
if (!upperProvided[i] || !lowerProvided[i])
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("array slice subscript must provide both boundaries"),
|
|
errdetail("When assigning to a slice of an empty array value,"
|
|
" slice boundaries must be fully specified.")));
|
|
|
|
dim[i] = 1 + upperIndx[i] - lowerIndx[i];
|
|
lb[i] = lowerIndx[i];
|
|
}
|
|
|
|
/* complain if too few source items; we ignore extras, however */
|
|
if (nelems < ArrayGetNItems(nSubscripts, dim))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("source array too small")));
|
|
|
|
return PointerGetDatum(construct_md_array(dvalues, dnulls, nSubscripts,
|
|
dim, lb, elmtype,
|
|
elmlen, elmbyval, elmalign));
|
|
}
|
|
|
|
if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("wrong number of array subscripts")));
|
|
|
|
/* copy dim/lb since we may modify them */
|
|
memcpy(dim, ARR_DIMS(array), ndim * sizeof(int));
|
|
memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int));
|
|
|
|
newhasnulls = (ARR_HASNULL(array) || ARR_HASNULL(srcArray));
|
|
addedbefore = addedafter = 0;
|
|
|
|
/*
|
|
* Check subscripts
|
|
*/
|
|
if (ndim == 1)
|
|
{
|
|
Assert(nSubscripts == 1);
|
|
if (!lowerProvided[0])
|
|
lowerIndx[0] = lb[0];
|
|
if (!upperProvided[0])
|
|
upperIndx[0] = dim[0] + lb[0] - 1;
|
|
if (lowerIndx[0] > upperIndx[0])
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("upper bound cannot be less than lower bound")));
|
|
if (lowerIndx[0] < lb[0])
|
|
{
|
|
if (upperIndx[0] < lb[0] - 1)
|
|
newhasnulls = true; /* will insert nulls */
|
|
addedbefore = lb[0] - lowerIndx[0];
|
|
dim[0] += addedbefore;
|
|
lb[0] = lowerIndx[0];
|
|
}
|
|
if (upperIndx[0] >= (dim[0] + lb[0]))
|
|
{
|
|
if (lowerIndx[0] > (dim[0] + lb[0]))
|
|
newhasnulls = true; /* will insert nulls */
|
|
addedafter = upperIndx[0] - (dim[0] + lb[0]) + 1;
|
|
dim[0] += addedafter;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* XXX currently we do not support extending multi-dimensional arrays
|
|
* during assignment
|
|
*/
|
|
for (i = 0; i < nSubscripts; i++)
|
|
{
|
|
if (!lowerProvided[i])
|
|
lowerIndx[i] = lb[i];
|
|
if (!upperProvided[i])
|
|
upperIndx[i] = dim[i] + lb[i] - 1;
|
|
if (lowerIndx[i] > upperIndx[i])
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("upper bound cannot be less than lower bound")));
|
|
if (lowerIndx[i] < lb[i] ||
|
|
upperIndx[i] >= (dim[i] + lb[i]))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("array subscript out of range")));
|
|
}
|
|
/* fill any missing subscript positions with full array range */
|
|
for (; i < ndim; i++)
|
|
{
|
|
lowerIndx[i] = lb[i];
|
|
upperIndx[i] = dim[i] + lb[i] - 1;
|
|
if (lowerIndx[i] > upperIndx[i])
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("upper bound cannot be less than lower bound")));
|
|
}
|
|
}
|
|
|
|
/* Do this mainly to check for overflow */
|
|
nitems = ArrayGetNItems(ndim, dim);
|
|
|
|
/*
|
|
* Make sure source array has enough entries. Note we ignore the shape of
|
|
* the source array and just read entries serially.
|
|
*/
|
|
mda_get_range(ndim, span, lowerIndx, upperIndx);
|
|
nsrcitems = ArrayGetNItems(ndim, span);
|
|
if (nsrcitems > ArrayGetNItems(ARR_NDIM(srcArray), ARR_DIMS(srcArray)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("source array too small")));
|
|
|
|
/*
|
|
* Compute space occupied by new entries, space occupied by replaced
|
|
* entries, and required space for new array.
|
|
*/
|
|
if (newhasnulls)
|
|
overheadlen = ARR_OVERHEAD_WITHNULLS(ndim, nitems);
|
|
else
|
|
overheadlen = ARR_OVERHEAD_NONULLS(ndim);
|
|
newitemsize = array_nelems_size(ARR_DATA_PTR(srcArray), 0,
|
|
ARR_NULLBITMAP(srcArray), nsrcitems,
|
|
elmlen, elmbyval, elmalign);
|
|
oldoverheadlen = ARR_DATA_OFFSET(array);
|
|
olddatasize = ARR_SIZE(array) - oldoverheadlen;
|
|
if (ndim > 1)
|
|
{
|
|
/*
|
|
* here we do not need to cope with extension of the array; it would
|
|
* be a lot more complicated if we had to do so...
|
|
*/
|
|
olditemsize = array_slice_size(ARR_DATA_PTR(array),
|
|
ARR_NULLBITMAP(array),
|
|
ndim, dim, lb,
|
|
lowerIndx, upperIndx,
|
|
elmlen, elmbyval, elmalign);
|
|
lenbefore = lenafter = 0; /* keep compiler quiet */
|
|
itemsbefore = itemsafter = nolditems = 0;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* here we must allow for possibility of slice larger than orig array
|
|
* and/or not adjacent to orig array subscripts
|
|
*/
|
|
int oldlb = ARR_LBOUND(array)[0];
|
|
int oldub = oldlb + ARR_DIMS(array)[0] - 1;
|
|
int slicelb = Max(oldlb, lowerIndx[0]);
|
|
int sliceub = Min(oldub, upperIndx[0]);
|
|
char *oldarraydata = ARR_DATA_PTR(array);
|
|
bits8 *oldarraybitmap = ARR_NULLBITMAP(array);
|
|
|
|
/* count/size of old array entries that will go before the slice */
|
|
itemsbefore = Min(slicelb, oldub + 1) - oldlb;
|
|
lenbefore = array_nelems_size(oldarraydata, 0, oldarraybitmap,
|
|
itemsbefore,
|
|
elmlen, elmbyval, elmalign);
|
|
/* count/size of old array entries that will be replaced by slice */
|
|
if (slicelb > sliceub)
|
|
{
|
|
nolditems = 0;
|
|
olditemsize = 0;
|
|
}
|
|
else
|
|
{
|
|
nolditems = sliceub - slicelb + 1;
|
|
olditemsize = array_nelems_size(oldarraydata + lenbefore,
|
|
itemsbefore, oldarraybitmap,
|
|
nolditems,
|
|
elmlen, elmbyval, elmalign);
|
|
}
|
|
/* count/size of old array entries that will go after the slice */
|
|
itemsafter = oldub + 1 - Max(sliceub + 1, oldlb);
|
|
lenafter = olddatasize - lenbefore - olditemsize;
|
|
}
|
|
|
|
newsize = overheadlen + olddatasize - olditemsize + newitemsize;
|
|
|
|
newarray = (ArrayType *) palloc0(newsize);
|
|
SET_VARSIZE(newarray, newsize);
|
|
newarray->ndim = ndim;
|
|
newarray->dataoffset = newhasnulls ? overheadlen : 0;
|
|
newarray->elemtype = ARR_ELEMTYPE(array);
|
|
memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int));
|
|
memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int));
|
|
|
|
if (ndim > 1)
|
|
{
|
|
/*
|
|
* here we do not need to cope with extension of the array; it would
|
|
* be a lot more complicated if we had to do so...
|
|
*/
|
|
array_insert_slice(newarray, array, srcArray,
|
|
ndim, dim, lb,
|
|
lowerIndx, upperIndx,
|
|
elmlen, elmbyval, elmalign);
|
|
}
|
|
else
|
|
{
|
|
/* fill in data */
|
|
memcpy((char *) newarray + overheadlen,
|
|
(char *) array + oldoverheadlen,
|
|
lenbefore);
|
|
memcpy((char *) newarray + overheadlen + lenbefore,
|
|
ARR_DATA_PTR(srcArray),
|
|
newitemsize);
|
|
memcpy((char *) newarray + overheadlen + lenbefore + newitemsize,
|
|
(char *) array + oldoverheadlen + lenbefore + olditemsize,
|
|
lenafter);
|
|
/* fill in nulls bitmap if needed */
|
|
if (newhasnulls)
|
|
{
|
|
bits8 *newnullbitmap = ARR_NULLBITMAP(newarray);
|
|
bits8 *oldnullbitmap = ARR_NULLBITMAP(array);
|
|
|
|
/* Zero the bitmap to handle marking inserted positions null */
|
|
MemSet(newnullbitmap, 0, (nitems + 7) / 8);
|
|
array_bitmap_copy(newnullbitmap, addedbefore,
|
|
oldnullbitmap, 0,
|
|
itemsbefore);
|
|
array_bitmap_copy(newnullbitmap, lowerIndx[0] - lb[0],
|
|
ARR_NULLBITMAP(srcArray), 0,
|
|
nsrcitems);
|
|
array_bitmap_copy(newnullbitmap, addedbefore + itemsbefore + nolditems,
|
|
oldnullbitmap, itemsbefore + nolditems,
|
|
itemsafter);
|
|
}
|
|
}
|
|
|
|
return PointerGetDatum(newarray);
|
|
}
|
|
|
|
/*
|
|
* array_ref : backwards compatibility wrapper for array_get_element
|
|
*
|
|
* This only works for detoasted/flattened varlena arrays, since the array
|
|
* argument is declared as "ArrayType *". However there's enough code like
|
|
* that to justify preserving this API.
|
|
*/
|
|
Datum
|
|
array_ref(ArrayType *array, int nSubscripts, int *indx,
|
|
int arraytyplen, int elmlen, bool elmbyval, char elmalign,
|
|
bool *isNull)
|
|
{
|
|
return array_get_element(PointerGetDatum(array), nSubscripts, indx,
|
|
arraytyplen, elmlen, elmbyval, elmalign,
|
|
isNull);
|
|
}
|
|
|
|
/*
|
|
* array_set : backwards compatibility wrapper for array_set_element
|
|
*
|
|
* This only works for detoasted/flattened varlena arrays, since the array
|
|
* argument and result are declared as "ArrayType *". However there's enough
|
|
* code like that to justify preserving this API.
|
|
*/
|
|
ArrayType *
|
|
array_set(ArrayType *array, int nSubscripts, int *indx,
|
|
Datum dataValue, bool isNull,
|
|
int arraytyplen, int elmlen, bool elmbyval, char elmalign)
|
|
{
|
|
return DatumGetArrayTypeP(array_set_element(PointerGetDatum(array),
|
|
nSubscripts, indx,
|
|
dataValue, isNull,
|
|
arraytyplen,
|
|
elmlen, elmbyval, elmalign));
|
|
}
|
|
|
|
/*
|
|
* array_map()
|
|
*
|
|
* Map an array through an arbitrary function. Return a new array with
|
|
* same dimensions and each source element transformed by fn(). Each
|
|
* source element is passed as the first argument to fn(); additional
|
|
* arguments to be passed to fn() can be specified by the caller.
|
|
* The output array can have a different element type than the input.
|
|
*
|
|
* Parameters are:
|
|
* * fcinfo: a function-call data structure pre-constructed by the caller
|
|
* to be ready to call the desired function, with everything except the
|
|
* first argument position filled in. In particular, flinfo identifies
|
|
* the function fn(), and if nargs > 1 then argument positions after the
|
|
* first must be preset to the additional values to be passed. The
|
|
* first argument position initially holds the input array value.
|
|
* * retType: OID of element type of output array. This must be the same as,
|
|
* or binary-compatible with, the result type of fn().
|
|
* * amstate: workspace for array_map. Must be zeroed by caller before
|
|
* first call, and not touched after that.
|
|
*
|
|
* It is legitimate to pass a freshly-zeroed ArrayMapState on each call,
|
|
* but better performance can be had if the state can be preserved across
|
|
* a series of calls.
|
|
*
|
|
* NB: caller must assure that input array is not NULL. NULL elements in
|
|
* the array are OK however.
|
|
*/
|
|
Datum
|
|
array_map(FunctionCallInfo fcinfo, Oid retType, ArrayMapState *amstate)
|
|
{
|
|
AnyArrayType *v;
|
|
ArrayType *result;
|
|
Datum *values;
|
|
bool *nulls;
|
|
int *dim;
|
|
int ndim;
|
|
int nitems;
|
|
int i;
|
|
int32 nbytes = 0;
|
|
int32 dataoffset;
|
|
bool hasnulls;
|
|
Oid inpType;
|
|
int inp_typlen;
|
|
bool inp_typbyval;
|
|
char inp_typalign;
|
|
int typlen;
|
|
bool typbyval;
|
|
char typalign;
|
|
array_iter iter;
|
|
ArrayMetaState *inp_extra;
|
|
ArrayMetaState *ret_extra;
|
|
|
|
/* Get input array */
|
|
if (fcinfo->nargs < 1)
|
|
elog(ERROR, "invalid nargs: %d", fcinfo->nargs);
|
|
if (PG_ARGISNULL(0))
|
|
elog(ERROR, "null input array");
|
|
v = PG_GETARG_ANY_ARRAY(0);
|
|
|
|
inpType = AARR_ELEMTYPE(v);
|
|
ndim = AARR_NDIM(v);
|
|
dim = AARR_DIMS(v);
|
|
nitems = ArrayGetNItems(ndim, dim);
|
|
|
|
/* Check for empty array */
|
|
if (nitems <= 0)
|
|
{
|
|
/* Return empty array */
|
|
PG_RETURN_ARRAYTYPE_P(construct_empty_array(retType));
|
|
}
|
|
|
|
/*
|
|
* We arrange to look up info about input and return element types only
|
|
* once per series of calls, assuming the element type doesn't change
|
|
* underneath us.
|
|
*/
|
|
inp_extra = &amstate->inp_extra;
|
|
ret_extra = &amstate->ret_extra;
|
|
|
|
if (inp_extra->element_type != inpType)
|
|
{
|
|
get_typlenbyvalalign(inpType,
|
|
&inp_extra->typlen,
|
|
&inp_extra->typbyval,
|
|
&inp_extra->typalign);
|
|
inp_extra->element_type = inpType;
|
|
}
|
|
inp_typlen = inp_extra->typlen;
|
|
inp_typbyval = inp_extra->typbyval;
|
|
inp_typalign = inp_extra->typalign;
|
|
|
|
if (ret_extra->element_type != retType)
|
|
{
|
|
get_typlenbyvalalign(retType,
|
|
&ret_extra->typlen,
|
|
&ret_extra->typbyval,
|
|
&ret_extra->typalign);
|
|
ret_extra->element_type = retType;
|
|
}
|
|
typlen = ret_extra->typlen;
|
|
typbyval = ret_extra->typbyval;
|
|
typalign = ret_extra->typalign;
|
|
|
|
/* Allocate temporary arrays for new values */
|
|
values = (Datum *) palloc(nitems * sizeof(Datum));
|
|
nulls = (bool *) palloc(nitems * sizeof(bool));
|
|
|
|
/* Loop over source data */
|
|
array_iter_setup(&iter, v);
|
|
hasnulls = false;
|
|
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
bool callit = true;
|
|
|
|
/* Get source element, checking for NULL */
|
|
fcinfo->arg[0] = array_iter_next(&iter, &fcinfo->argnull[0], i,
|
|
inp_typlen, inp_typbyval, inp_typalign);
|
|
|
|
/*
|
|
* Apply the given function to source elt and extra args.
|
|
*/
|
|
if (fcinfo->flinfo->fn_strict)
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < fcinfo->nargs; j++)
|
|
{
|
|
if (fcinfo->argnull[j])
|
|
{
|
|
callit = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (callit)
|
|
{
|
|
fcinfo->isnull = false;
|
|
values[i] = FunctionCallInvoke(fcinfo);
|
|
}
|
|
else
|
|
fcinfo->isnull = true;
|
|
|
|
nulls[i] = fcinfo->isnull;
|
|
if (fcinfo->isnull)
|
|
hasnulls = true;
|
|
else
|
|
{
|
|
/* Ensure data is not toasted */
|
|
if (typlen == -1)
|
|
values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i]));
|
|
/* Update total result size */
|
|
nbytes = att_addlength_datum(nbytes, typlen, values[i]);
|
|
nbytes = att_align_nominal(nbytes, typalign);
|
|
/* check for overflow of total request */
|
|
if (!AllocSizeIsValid(nbytes))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("array size exceeds the maximum allowed (%d)",
|
|
(int) MaxAllocSize)));
|
|
}
|
|
}
|
|
|
|
/* Allocate and initialize the result array */
|
|
if (hasnulls)
|
|
{
|
|
dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems);
|
|
nbytes += dataoffset;
|
|
}
|
|
else
|
|
{
|
|
dataoffset = 0; /* marker for no null bitmap */
|
|
nbytes += ARR_OVERHEAD_NONULLS(ndim);
|
|
}
|
|
result = (ArrayType *) palloc0(nbytes);
|
|
SET_VARSIZE(result, nbytes);
|
|
result->ndim = ndim;
|
|
result->dataoffset = dataoffset;
|
|
result->elemtype = retType;
|
|
memcpy(ARR_DIMS(result), AARR_DIMS(v), ndim * sizeof(int));
|
|
memcpy(ARR_LBOUND(result), AARR_LBOUND(v), ndim * sizeof(int));
|
|
|
|
/*
|
|
* Note: do not risk trying to pfree the results of the called function
|
|
*/
|
|
CopyArrayEls(result,
|
|
values, nulls, nitems,
|
|
typlen, typbyval, typalign,
|
|
false);
|
|
|
|
pfree(values);
|
|
pfree(nulls);
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
|
|
/*
|
|
* construct_array --- simple method for constructing an array object
|
|
*
|
|
* elems: array of Datum items to become the array contents
|
|
* (NULL element values are not supported).
|
|
* nelems: number of items
|
|
* elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items
|
|
*
|
|
* A palloc'd 1-D array object is constructed and returned. Note that
|
|
* elem values will be copied into the object even if pass-by-ref type.
|
|
*
|
|
* NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info
|
|
* from the system catalogs, given the elmtype. However, the caller is
|
|
* in a better position to cache this info across multiple uses, or even
|
|
* to hard-wire values if the element type is hard-wired.
|
|
*/
|
|
ArrayType *
|
|
construct_array(Datum *elems, int nelems,
|
|
Oid elmtype,
|
|
int elmlen, bool elmbyval, char elmalign)
|
|
{
|
|
int dims[1];
|
|
int lbs[1];
|
|
|
|
dims[0] = nelems;
|
|
lbs[0] = 1;
|
|
|
|
return construct_md_array(elems, NULL, 1, dims, lbs,
|
|
elmtype, elmlen, elmbyval, elmalign);
|
|
}
|
|
|
|
/*
|
|
* construct_md_array --- simple method for constructing an array object
|
|
* with arbitrary dimensions and possible NULLs
|
|
*
|
|
* elems: array of Datum items to become the array contents
|
|
* nulls: array of is-null flags (can be NULL if no nulls)
|
|
* ndims: number of dimensions
|
|
* dims: integer array with size of each dimension
|
|
* lbs: integer array with lower bound of each dimension
|
|
* elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items
|
|
*
|
|
* A palloc'd ndims-D array object is constructed and returned. Note that
|
|
* elem values will be copied into the object even if pass-by-ref type.
|
|
*
|
|
* NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info
|
|
* from the system catalogs, given the elmtype. However, the caller is
|
|
* in a better position to cache this info across multiple uses, or even
|
|
* to hard-wire values if the element type is hard-wired.
|
|
*/
|
|
ArrayType *
|
|
construct_md_array(Datum *elems,
|
|
bool *nulls,
|
|
int ndims,
|
|
int *dims,
|
|
int *lbs,
|
|
Oid elmtype, int elmlen, bool elmbyval, char elmalign)
|
|
{
|
|
ArrayType *result;
|
|
bool hasnulls;
|
|
int32 nbytes;
|
|
int32 dataoffset;
|
|
int i;
|
|
int nelems;
|
|
|
|
if (ndims < 0) /* we do allow zero-dimension arrays */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("invalid number of dimensions: %d", ndims)));
|
|
if (ndims > MAXDIM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)",
|
|
ndims, MAXDIM)));
|
|
|
|
/* fast track for empty array */
|
|
if (ndims == 0)
|
|
return construct_empty_array(elmtype);
|
|
|
|
nelems = ArrayGetNItems(ndims, dims);
|
|
|
|
/* compute required space */
|
|
nbytes = 0;
|
|
hasnulls = false;
|
|
for (i = 0; i < nelems; i++)
|
|
{
|
|
if (nulls && nulls[i])
|
|
{
|
|
hasnulls = true;
|
|
continue;
|
|
}
|
|
/* make sure data is not toasted */
|
|
if (elmlen == -1)
|
|
elems[i] = PointerGetDatum(PG_DETOAST_DATUM(elems[i]));
|
|
nbytes = att_addlength_datum(nbytes, elmlen, elems[i]);
|
|
nbytes = att_align_nominal(nbytes, elmalign);
|
|
/* check for overflow of total request */
|
|
if (!AllocSizeIsValid(nbytes))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("array size exceeds the maximum allowed (%d)",
|
|
(int) MaxAllocSize)));
|
|
}
|
|
|
|
/* Allocate and initialize result array */
|
|
if (hasnulls)
|
|
{
|
|
dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nelems);
|
|
nbytes += dataoffset;
|
|
}
|
|
else
|
|
{
|
|
dataoffset = 0; /* marker for no null bitmap */
|
|
nbytes += ARR_OVERHEAD_NONULLS(ndims);
|
|
}
|
|
result = (ArrayType *) palloc0(nbytes);
|
|
SET_VARSIZE(result, nbytes);
|
|
result->ndim = ndims;
|
|
result->dataoffset = dataoffset;
|
|
result->elemtype = elmtype;
|
|
memcpy(ARR_DIMS(result), dims, ndims * sizeof(int));
|
|
memcpy(ARR_LBOUND(result), lbs, ndims * sizeof(int));
|
|
|
|
CopyArrayEls(result,
|
|
elems, nulls, nelems,
|
|
elmlen, elmbyval, elmalign,
|
|
false);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* construct_empty_array --- make a zero-dimensional array of given type
|
|
*/
|
|
ArrayType *
|
|
construct_empty_array(Oid elmtype)
|
|
{
|
|
ArrayType *result;
|
|
|
|
result = (ArrayType *) palloc0(sizeof(ArrayType));
|
|
SET_VARSIZE(result, sizeof(ArrayType));
|
|
result->ndim = 0;
|
|
result->dataoffset = 0;
|
|
result->elemtype = elmtype;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* construct_empty_expanded_array: make an empty expanded array
|
|
* given only type information. (metacache can be NULL if not needed.)
|
|
*/
|
|
ExpandedArrayHeader *
|
|
construct_empty_expanded_array(Oid element_type,
|
|
MemoryContext parentcontext,
|
|
ArrayMetaState *metacache)
|
|
{
|
|
ArrayType *array = construct_empty_array(element_type);
|
|
Datum d;
|
|
|
|
d = expand_array(PointerGetDatum(array), parentcontext, metacache);
|
|
pfree(array);
|
|
return (ExpandedArrayHeader *) DatumGetEOHP(d);
|
|
}
|
|
|
|
/*
|
|
* deconstruct_array --- simple method for extracting data from an array
|
|
*
|
|
* array: array object to examine (must not be NULL)
|
|
* elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items
|
|
* elemsp: return value, set to point to palloc'd array of Datum values
|
|
* nullsp: return value, set to point to palloc'd array of isnull markers
|
|
* nelemsp: return value, set to number of extracted values
|
|
*
|
|
* The caller may pass nullsp == NULL if it does not support NULLs in the
|
|
* array. Note that this produces a very uninformative error message,
|
|
* so do it only in cases where a NULL is really not expected.
|
|
*
|
|
* If array elements are pass-by-ref data type, the returned Datums will
|
|
* be pointers into the array object.
|
|
*
|
|
* NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info
|
|
* from the system catalogs, given the elmtype. However, in most current
|
|
* uses the type is hard-wired into the caller and so we can save a lookup
|
|
* cycle by hard-wiring the type info as well.
|
|
*/
|
|
void
|
|
deconstruct_array(ArrayType *array,
|
|
Oid elmtype,
|
|
int elmlen, bool elmbyval, char elmalign,
|
|
Datum **elemsp, bool **nullsp, int *nelemsp)
|
|
{
|
|
Datum *elems;
|
|
bool *nulls;
|
|
int nelems;
|
|
char *p;
|
|
bits8 *bitmap;
|
|
int bitmask;
|
|
int i;
|
|
|
|
Assert(ARR_ELEMTYPE(array) == elmtype);
|
|
|
|
nelems = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array));
|
|
*elemsp = elems = (Datum *) palloc(nelems * sizeof(Datum));
|
|
if (nullsp)
|
|
*nullsp = nulls = (bool *) palloc0(nelems * sizeof(bool));
|
|
else
|
|
nulls = NULL;
|
|
*nelemsp = nelems;
|
|
|
|
p = ARR_DATA_PTR(array);
|
|
bitmap = ARR_NULLBITMAP(array);
|
|
bitmask = 1;
|
|
|
|
for (i = 0; i < nelems; i++)
|
|
{
|
|
/* Get source element, checking for NULL */
|
|
if (bitmap && (*bitmap & bitmask) == 0)
|
|
{
|
|
elems[i] = (Datum) 0;
|
|
if (nulls)
|
|
nulls[i] = true;
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
|
|
errmsg("null array element not allowed in this context")));
|
|
}
|
|
else
|
|
{
|
|
elems[i] = fetch_att(p, elmbyval, elmlen);
|
|
p = att_addlength_pointer(p, elmlen, p);
|
|
p = (char *) att_align_nominal(p, elmalign);
|
|
}
|
|
|
|
/* advance bitmap pointer if any */
|
|
if (bitmap)
|
|
{
|
|
bitmask <<= 1;
|
|
if (bitmask == 0x100)
|
|
{
|
|
bitmap++;
|
|
bitmask = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* array_contains_nulls --- detect whether an array has any null elements
|
|
*
|
|
* This gives an accurate answer, whereas testing ARR_HASNULL only tells
|
|
* if the array *might* contain a null.
|
|
*/
|
|
bool
|
|
array_contains_nulls(ArrayType *array)
|
|
{
|
|
int nelems;
|
|
bits8 *bitmap;
|
|
int bitmask;
|
|
|
|
/* Easy answer if there's no null bitmap */
|
|
if (!ARR_HASNULL(array))
|
|
return false;
|
|
|
|
nelems = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array));
|
|
|
|
bitmap = ARR_NULLBITMAP(array);
|
|
|
|
/* check whole bytes of the bitmap byte-at-a-time */
|
|
while (nelems >= 8)
|
|
{
|
|
if (*bitmap != 0xFF)
|
|
return true;
|
|
bitmap++;
|
|
nelems -= 8;
|
|
}
|
|
|
|
/* check last partial byte */
|
|
bitmask = 1;
|
|
while (nelems > 0)
|
|
{
|
|
if ((*bitmap & bitmask) == 0)
|
|
return true;
|
|
bitmask <<= 1;
|
|
nelems--;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
* array_eq :
|
|
* compares two arrays for equality
|
|
* result :
|
|
* returns true if the arrays are equal, false otherwise.
|
|
*
|
|
* Note: we do not use array_cmp here, since equality may be meaningful in
|
|
* datatypes that don't have a total ordering (and hence no btree support).
|
|
*/
|
|
Datum
|
|
array_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *array1 = PG_GETARG_ANY_ARRAY(0);
|
|
AnyArrayType *array2 = PG_GETARG_ANY_ARRAY(1);
|
|
Oid collation = PG_GET_COLLATION();
|
|
int ndims1 = AARR_NDIM(array1);
|
|
int ndims2 = AARR_NDIM(array2);
|
|
int *dims1 = AARR_DIMS(array1);
|
|
int *dims2 = AARR_DIMS(array2);
|
|
int *lbs1 = AARR_LBOUND(array1);
|
|
int *lbs2 = AARR_LBOUND(array2);
|
|
Oid element_type = AARR_ELEMTYPE(array1);
|
|
bool result = true;
|
|
int nitems;
|
|
TypeCacheEntry *typentry;
|
|
int typlen;
|
|
bool typbyval;
|
|
char typalign;
|
|
array_iter it1;
|
|
array_iter it2;
|
|
int i;
|
|
FunctionCallInfoData locfcinfo;
|
|
|
|
if (element_type != AARR_ELEMTYPE(array2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("cannot compare arrays of different element types")));
|
|
|
|
/* fast path if the arrays do not have the same dimensionality */
|
|
if (ndims1 != ndims2 ||
|
|
memcmp(dims1, dims2, ndims1 * sizeof(int)) != 0 ||
|
|
memcmp(lbs1, lbs2, ndims1 * sizeof(int)) != 0)
|
|
result = false;
|
|
else
|
|
{
|
|
/*
|
|
* We arrange to look up the equality function only once per series of
|
|
* calls, assuming the element type doesn't change underneath us. The
|
|
* typcache is used so that we have no memory leakage when being used
|
|
* as an index support function.
|
|
*/
|
|
typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra;
|
|
if (typentry == NULL ||
|
|
typentry->type_id != element_type)
|
|
{
|
|
typentry = lookup_type_cache(element_type,
|
|
TYPECACHE_EQ_OPR_FINFO);
|
|
if (!OidIsValid(typentry->eq_opr_finfo.fn_oid))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmsg("could not identify an equality operator for type %s",
|
|
format_type_be(element_type))));
|
|
fcinfo->flinfo->fn_extra = (void *) typentry;
|
|
}
|
|
typlen = typentry->typlen;
|
|
typbyval = typentry->typbyval;
|
|
typalign = typentry->typalign;
|
|
|
|
/*
|
|
* apply the operator to each pair of array elements.
|
|
*/
|
|
InitFunctionCallInfoData(locfcinfo, &typentry->eq_opr_finfo, 2,
|
|
collation, NULL, NULL);
|
|
|
|
/* Loop over source data */
|
|
nitems = ArrayGetNItems(ndims1, dims1);
|
|
array_iter_setup(&it1, array1);
|
|
array_iter_setup(&it2, array2);
|
|
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
Datum elt1;
|
|
Datum elt2;
|
|
bool isnull1;
|
|
bool isnull2;
|
|
bool oprresult;
|
|
|
|
/* Get elements, checking for NULL */
|
|
elt1 = array_iter_next(&it1, &isnull1, i,
|
|
typlen, typbyval, typalign);
|
|
elt2 = array_iter_next(&it2, &isnull2, i,
|
|
typlen, typbyval, typalign);
|
|
|
|
/*
|
|
* We consider two NULLs equal; NULL and not-NULL are unequal.
|
|
*/
|
|
if (isnull1 && isnull2)
|
|
continue;
|
|
if (isnull1 || isnull2)
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Apply the operator to the element pair
|
|
*/
|
|
locfcinfo.arg[0] = elt1;
|
|
locfcinfo.arg[1] = elt2;
|
|
locfcinfo.argnull[0] = false;
|
|
locfcinfo.argnull[1] = false;
|
|
locfcinfo.isnull = false;
|
|
oprresult = DatumGetBool(FunctionCallInvoke(&locfcinfo));
|
|
if (!oprresult)
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Avoid leaking memory when handed toasted input. */
|
|
AARR_FREE_IF_COPY(array1, 0);
|
|
AARR_FREE_IF_COPY(array2, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* array-array bool operators:
|
|
* Given two arrays, iterate comparison operators
|
|
* over the array. Uses logic similar to text comparison
|
|
* functions, except element-by-element instead of
|
|
* character-by-character.
|
|
*----------------------------------------------------------------------------
|
|
*/
|
|
|
|
Datum
|
|
array_ne(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_BOOL(!DatumGetBool(array_eq(fcinfo)));
|
|
}
|
|
|
|
Datum
|
|
array_lt(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_BOOL(array_cmp(fcinfo) < 0);
|
|
}
|
|
|
|
Datum
|
|
array_gt(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_BOOL(array_cmp(fcinfo) > 0);
|
|
}
|
|
|
|
Datum
|
|
array_le(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_BOOL(array_cmp(fcinfo) <= 0);
|
|
}
|
|
|
|
Datum
|
|
array_ge(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_BOOL(array_cmp(fcinfo) >= 0);
|
|
}
|
|
|
|
Datum
|
|
btarraycmp(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_INT32(array_cmp(fcinfo));
|
|
}
|
|
|
|
/*
|
|
* array_cmp()
|
|
* Internal comparison function for arrays.
|
|
*
|
|
* Returns -1, 0 or 1
|
|
*/
|
|
static int
|
|
array_cmp(FunctionCallInfo fcinfo)
|
|
{
|
|
AnyArrayType *array1 = PG_GETARG_ANY_ARRAY(0);
|
|
AnyArrayType *array2 = PG_GETARG_ANY_ARRAY(1);
|
|
Oid collation = PG_GET_COLLATION();
|
|
int ndims1 = AARR_NDIM(array1);
|
|
int ndims2 = AARR_NDIM(array2);
|
|
int *dims1 = AARR_DIMS(array1);
|
|
int *dims2 = AARR_DIMS(array2);
|
|
int nitems1 = ArrayGetNItems(ndims1, dims1);
|
|
int nitems2 = ArrayGetNItems(ndims2, dims2);
|
|
Oid element_type = AARR_ELEMTYPE(array1);
|
|
int result = 0;
|
|
TypeCacheEntry *typentry;
|
|
int typlen;
|
|
bool typbyval;
|
|
char typalign;
|
|
int min_nitems;
|
|
array_iter it1;
|
|
array_iter it2;
|
|
int i;
|
|
FunctionCallInfoData locfcinfo;
|
|
|
|
if (element_type != AARR_ELEMTYPE(array2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("cannot compare arrays of different element types")));
|
|
|
|
/*
|
|
* We arrange to look up the comparison function only once per series of
|
|
* calls, assuming the element type doesn't change underneath us. The
|
|
* typcache is used so that we have no memory leakage when being used as
|
|
* an index support function.
|
|
*/
|
|
typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra;
|
|
if (typentry == NULL ||
|
|
typentry->type_id != element_type)
|
|
{
|
|
typentry = lookup_type_cache(element_type,
|
|
TYPECACHE_CMP_PROC_FINFO);
|
|
if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmsg("could not identify a comparison function for type %s",
|
|
format_type_be(element_type))));
|
|
fcinfo->flinfo->fn_extra = (void *) typentry;
|
|
}
|
|
typlen = typentry->typlen;
|
|
typbyval = typentry->typbyval;
|
|
typalign = typentry->typalign;
|
|
|
|
/*
|
|
* apply the operator to each pair of array elements.
|
|
*/
|
|
InitFunctionCallInfoData(locfcinfo, &typentry->cmp_proc_finfo, 2,
|
|
collation, NULL, NULL);
|
|
|
|
/* Loop over source data */
|
|
min_nitems = Min(nitems1, nitems2);
|
|
array_iter_setup(&it1, array1);
|
|
array_iter_setup(&it2, array2);
|
|
|
|
for (i = 0; i < min_nitems; i++)
|
|
{
|
|
Datum elt1;
|
|
Datum elt2;
|
|
bool isnull1;
|
|
bool isnull2;
|
|
int32 cmpresult;
|
|
|
|
/* Get elements, checking for NULL */
|
|
elt1 = array_iter_next(&it1, &isnull1, i, typlen, typbyval, typalign);
|
|
elt2 = array_iter_next(&it2, &isnull2, i, typlen, typbyval, typalign);
|
|
|
|
/*
|
|
* We consider two NULLs equal; NULL > not-NULL.
|
|
*/
|
|
if (isnull1 && isnull2)
|
|
continue;
|
|
if (isnull1)
|
|
{
|
|
/* arg1 is greater than arg2 */
|
|
result = 1;
|
|
break;
|
|
}
|
|
if (isnull2)
|
|
{
|
|
/* arg1 is less than arg2 */
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
/* Compare the pair of elements */
|
|
locfcinfo.arg[0] = elt1;
|
|
locfcinfo.arg[1] = elt2;
|
|
locfcinfo.argnull[0] = false;
|
|
locfcinfo.argnull[1] = false;
|
|
locfcinfo.isnull = false;
|
|
cmpresult = DatumGetInt32(FunctionCallInvoke(&locfcinfo));
|
|
|
|
if (cmpresult == 0)
|
|
continue; /* equal */
|
|
|
|
if (cmpresult < 0)
|
|
{
|
|
/* arg1 is less than arg2 */
|
|
result = -1;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* arg1 is greater than arg2 */
|
|
result = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If arrays contain same data (up to end of shorter one), apply
|
|
* additional rules to sort by dimensionality. The relative significance
|
|
* of the different bits of information is historical; mainly we just care
|
|
* that we don't say "equal" for arrays of different dimensionality.
|
|
*/
|
|
if (result == 0)
|
|
{
|
|
if (nitems1 != nitems2)
|
|
result = (nitems1 < nitems2) ? -1 : 1;
|
|
else if (ndims1 != ndims2)
|
|
result = (ndims1 < ndims2) ? -1 : 1;
|
|
else
|
|
{
|
|
for (i = 0; i < ndims1; i++)
|
|
{
|
|
if (dims1[i] != dims2[i])
|
|
{
|
|
result = (dims1[i] < dims2[i]) ? -1 : 1;
|
|
break;
|
|
}
|
|
}
|
|
if (result == 0)
|
|
{
|
|
int *lbound1 = AARR_LBOUND(array1);
|
|
int *lbound2 = AARR_LBOUND(array2);
|
|
|
|
for (i = 0; i < ndims1; i++)
|
|
{
|
|
if (lbound1[i] != lbound2[i])
|
|
{
|
|
result = (lbound1[i] < lbound2[i]) ? -1 : 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Avoid leaking memory when handed toasted input. */
|
|
AARR_FREE_IF_COPY(array1, 0);
|
|
AARR_FREE_IF_COPY(array2, 1);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* array hashing
|
|
* Hash the elements and combine the results.
|
|
*----------------------------------------------------------------------------
|
|
*/
|
|
|
|
Datum
|
|
hash_array(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *array = PG_GETARG_ANY_ARRAY(0);
|
|
int ndims = AARR_NDIM(array);
|
|
int *dims = AARR_DIMS(array);
|
|
Oid element_type = AARR_ELEMTYPE(array);
|
|
uint32 result = 1;
|
|
int nitems;
|
|
TypeCacheEntry *typentry;
|
|
int typlen;
|
|
bool typbyval;
|
|
char typalign;
|
|
int i;
|
|
array_iter iter;
|
|
FunctionCallInfoData locfcinfo;
|
|
|
|
/*
|
|
* We arrange to look up the hash function only once per series of calls,
|
|
* assuming the element type doesn't change underneath us. The typcache
|
|
* is used so that we have no memory leakage when being used as an index
|
|
* support function.
|
|
*/
|
|
typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra;
|
|
if (typentry == NULL ||
|
|
typentry->type_id != element_type)
|
|
{
|
|
typentry = lookup_type_cache(element_type,
|
|
TYPECACHE_HASH_PROC_FINFO);
|
|
if (!OidIsValid(typentry->hash_proc_finfo.fn_oid))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmsg("could not identify a hash function for type %s",
|
|
format_type_be(element_type))));
|
|
fcinfo->flinfo->fn_extra = (void *) typentry;
|
|
}
|
|
typlen = typentry->typlen;
|
|
typbyval = typentry->typbyval;
|
|
typalign = typentry->typalign;
|
|
|
|
/*
|
|
* apply the hash function to each array element.
|
|
*/
|
|
InitFunctionCallInfoData(locfcinfo, &typentry->hash_proc_finfo, 1,
|
|
InvalidOid, NULL, NULL);
|
|
|
|
/* Loop over source data */
|
|
nitems = ArrayGetNItems(ndims, dims);
|
|
array_iter_setup(&iter, array);
|
|
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
Datum elt;
|
|
bool isnull;
|
|
uint32 elthash;
|
|
|
|
/* Get element, checking for NULL */
|
|
elt = array_iter_next(&iter, &isnull, i, typlen, typbyval, typalign);
|
|
|
|
if (isnull)
|
|
{
|
|
/* Treat nulls as having hashvalue 0 */
|
|
elthash = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Apply the hash function */
|
|
locfcinfo.arg[0] = elt;
|
|
locfcinfo.argnull[0] = false;
|
|
locfcinfo.isnull = false;
|
|
elthash = DatumGetUInt32(FunctionCallInvoke(&locfcinfo));
|
|
}
|
|
|
|
/*
|
|
* Combine hash values of successive elements by multiplying the
|
|
* current value by 31 and adding on the new element's hash value.
|
|
*
|
|
* The result is a sum in which each element's hash value is
|
|
* multiplied by a different power of 31. This is modulo 2^32
|
|
* arithmetic, and the powers of 31 modulo 2^32 form a cyclic group of
|
|
* order 2^27. So for arrays of up to 2^27 elements, each element's
|
|
* hash value is multiplied by a different (odd) number, resulting in
|
|
* a good mixing of all the elements' hash values.
|
|
*/
|
|
result = (result << 5) - result + elthash;
|
|
}
|
|
|
|
/* Avoid leaking memory when handed toasted input. */
|
|
AARR_FREE_IF_COPY(array, 0);
|
|
|
|
PG_RETURN_UINT32(result);
|
|
}
|
|
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* array overlap/containment comparisons
|
|
* These use the same methods of comparing array elements as array_eq.
|
|
* We consider only the elements of the arrays, ignoring dimensionality.
|
|
*----------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* array_contain_compare :
|
|
* compares two arrays for overlap/containment
|
|
*
|
|
* When matchall is true, return true if all members of array1 are in array2.
|
|
* When matchall is false, return true if any members of array1 are in array2.
|
|
*/
|
|
static bool
|
|
array_contain_compare(AnyArrayType *array1, AnyArrayType *array2, Oid collation,
|
|
bool matchall, void **fn_extra)
|
|
{
|
|
bool result = matchall;
|
|
Oid element_type = AARR_ELEMTYPE(array1);
|
|
TypeCacheEntry *typentry;
|
|
int nelems1;
|
|
Datum *values2;
|
|
bool *nulls2;
|
|
int nelems2;
|
|
int typlen;
|
|
bool typbyval;
|
|
char typalign;
|
|
int i;
|
|
int j;
|
|
array_iter it1;
|
|
FunctionCallInfoData locfcinfo;
|
|
|
|
if (element_type != AARR_ELEMTYPE(array2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("cannot compare arrays of different element types")));
|
|
|
|
/*
|
|
* We arrange to look up the equality function only once per series of
|
|
* calls, assuming the element type doesn't change underneath us. The
|
|
* typcache is used so that we have no memory leakage when being used as
|
|
* an index support function.
|
|
*/
|
|
typentry = (TypeCacheEntry *) *fn_extra;
|
|
if (typentry == NULL ||
|
|
typentry->type_id != element_type)
|
|
{
|
|
typentry = lookup_type_cache(element_type,
|
|
TYPECACHE_EQ_OPR_FINFO);
|
|
if (!OidIsValid(typentry->eq_opr_finfo.fn_oid))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmsg("could not identify an equality operator for type %s",
|
|
format_type_be(element_type))));
|
|
*fn_extra = (void *) typentry;
|
|
}
|
|
typlen = typentry->typlen;
|
|
typbyval = typentry->typbyval;
|
|
typalign = typentry->typalign;
|
|
|
|
/*
|
|
* Since we probably will need to scan array2 multiple times, it's
|
|
* worthwhile to use deconstruct_array on it. We scan array1 the hard way
|
|
* however, since we very likely won't need to look at all of it.
|
|
*/
|
|
if (VARATT_IS_EXPANDED_HEADER(array2))
|
|
{
|
|
/* This should be safe even if input is read-only */
|
|
deconstruct_expanded_array(&(array2->xpn));
|
|
values2 = array2->xpn.dvalues;
|
|
nulls2 = array2->xpn.dnulls;
|
|
nelems2 = array2->xpn.nelems;
|
|
}
|
|
else
|
|
deconstruct_array(&(array2->flt),
|
|
element_type, typlen, typbyval, typalign,
|
|
&values2, &nulls2, &nelems2);
|
|
|
|
/*
|
|
* Apply the comparison operator to each pair of array elements.
|
|
*/
|
|
InitFunctionCallInfoData(locfcinfo, &typentry->eq_opr_finfo, 2,
|
|
collation, NULL, NULL);
|
|
|
|
/* Loop over source data */
|
|
nelems1 = ArrayGetNItems(AARR_NDIM(array1), AARR_DIMS(array1));
|
|
array_iter_setup(&it1, array1);
|
|
|
|
for (i = 0; i < nelems1; i++)
|
|
{
|
|
Datum elt1;
|
|
bool isnull1;
|
|
|
|
/* Get element, checking for NULL */
|
|
elt1 = array_iter_next(&it1, &isnull1, i, typlen, typbyval, typalign);
|
|
|
|
/*
|
|
* We assume that the comparison operator is strict, so a NULL can't
|
|
* match anything. XXX this diverges from the "NULL=NULL" behavior of
|
|
* array_eq, should we act like that?
|
|
*/
|
|
if (isnull1)
|
|
{
|
|
if (matchall)
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
for (j = 0; j < nelems2; j++)
|
|
{
|
|
Datum elt2 = values2[j];
|
|
bool isnull2 = nulls2 ? nulls2[j] : false;
|
|
bool oprresult;
|
|
|
|
if (isnull2)
|
|
continue; /* can't match */
|
|
|
|
/*
|
|
* Apply the operator to the element pair
|
|
*/
|
|
locfcinfo.arg[0] = elt1;
|
|
locfcinfo.arg[1] = elt2;
|
|
locfcinfo.argnull[0] = false;
|
|
locfcinfo.argnull[1] = false;
|
|
locfcinfo.isnull = false;
|
|
oprresult = DatumGetBool(FunctionCallInvoke(&locfcinfo));
|
|
if (oprresult)
|
|
break;
|
|
}
|
|
|
|
if (j < nelems2)
|
|
{
|
|
/* found a match for elt1 */
|
|
if (!matchall)
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* no match for elt1 */
|
|
if (matchall)
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
Datum
|
|
arrayoverlap(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *array1 = PG_GETARG_ANY_ARRAY(0);
|
|
AnyArrayType *array2 = PG_GETARG_ANY_ARRAY(1);
|
|
Oid collation = PG_GET_COLLATION();
|
|
bool result;
|
|
|
|
result = array_contain_compare(array1, array2, collation, false,
|
|
&fcinfo->flinfo->fn_extra);
|
|
|
|
/* Avoid leaking memory when handed toasted input. */
|
|
AARR_FREE_IF_COPY(array1, 0);
|
|
AARR_FREE_IF_COPY(array2, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
Datum
|
|
arraycontains(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *array1 = PG_GETARG_ANY_ARRAY(0);
|
|
AnyArrayType *array2 = PG_GETARG_ANY_ARRAY(1);
|
|
Oid collation = PG_GET_COLLATION();
|
|
bool result;
|
|
|
|
result = array_contain_compare(array2, array1, collation, true,
|
|
&fcinfo->flinfo->fn_extra);
|
|
|
|
/* Avoid leaking memory when handed toasted input. */
|
|
AARR_FREE_IF_COPY(array1, 0);
|
|
AARR_FREE_IF_COPY(array2, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
Datum
|
|
arraycontained(PG_FUNCTION_ARGS)
|
|
{
|
|
AnyArrayType *array1 = PG_GETARG_ANY_ARRAY(0);
|
|
AnyArrayType *array2 = PG_GETARG_ANY_ARRAY(1);
|
|
Oid collation = PG_GET_COLLATION();
|
|
bool result;
|
|
|
|
result = array_contain_compare(array1, array2, collation, true,
|
|
&fcinfo->flinfo->fn_extra);
|
|
|
|
/* Avoid leaking memory when handed toasted input. */
|
|
AARR_FREE_IF_COPY(array1, 0);
|
|
AARR_FREE_IF_COPY(array2, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Array iteration functions
|
|
* These functions are used to iterate efficiently through arrays
|
|
*-----------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* array_create_iterator --- set up to iterate through an array
|
|
*
|
|
* If slice_ndim is zero, we will iterate element-by-element; the returned
|
|
* datums are of the array's element type.
|
|
*
|
|
* If slice_ndim is 1..ARR_NDIM(arr), we will iterate by slices: the
|
|
* returned datums are of the same array type as 'arr', but of size
|
|
* equal to the rightmost N dimensions of 'arr'.
|
|
*
|
|
* The passed-in array must remain valid for the lifetime of the iterator.
|
|
*/
|
|
ArrayIterator
|
|
array_create_iterator(ArrayType *arr, int slice_ndim, ArrayMetaState *mstate)
|
|
{
|
|
ArrayIterator iterator = palloc0(sizeof(ArrayIteratorData));
|
|
|
|
/*
|
|
* Sanity-check inputs --- caller should have got this right already
|
|
*/
|
|
Assert(PointerIsValid(arr));
|
|
if (slice_ndim < 0 || slice_ndim > ARR_NDIM(arr))
|
|
elog(ERROR, "invalid arguments to array_create_iterator");
|
|
|
|
/*
|
|
* Remember basic info about the array and its element type
|
|
*/
|
|
iterator->arr = arr;
|
|
iterator->nullbitmap = ARR_NULLBITMAP(arr);
|
|
iterator->nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
|
|
|
|
if (mstate != NULL)
|
|
{
|
|
Assert(mstate->element_type == ARR_ELEMTYPE(arr));
|
|
|
|
iterator->typlen = mstate->typlen;
|
|
iterator->typbyval = mstate->typbyval;
|
|
iterator->typalign = mstate->typalign;
|
|
}
|
|
else
|
|
get_typlenbyvalalign(ARR_ELEMTYPE(arr),
|
|
&iterator->typlen,
|
|
&iterator->typbyval,
|
|
&iterator->typalign);
|
|
|
|
/*
|
|
* Remember the slicing parameters.
|
|
*/
|
|
iterator->slice_ndim = slice_ndim;
|
|
|
|
if (slice_ndim > 0)
|
|
{
|
|
/*
|
|
* Get pointers into the array's dims and lbound arrays to represent
|
|
* the dims/lbound arrays of a slice. These are the same as the
|
|
* rightmost N dimensions of the array.
|
|
*/
|
|
iterator->slice_dims = ARR_DIMS(arr) + ARR_NDIM(arr) - slice_ndim;
|
|
iterator->slice_lbound = ARR_LBOUND(arr) + ARR_NDIM(arr) - slice_ndim;
|
|
|
|
/*
|
|
* Compute number of elements in a slice.
|
|
*/
|
|
iterator->slice_len = ArrayGetNItems(slice_ndim,
|
|
iterator->slice_dims);
|
|
|
|
/*
|
|
* Create workspace for building sub-arrays.
|
|
*/
|
|
iterator->slice_values = (Datum *)
|
|
palloc(iterator->slice_len * sizeof(Datum));
|
|
iterator->slice_nulls = (bool *)
|
|
palloc(iterator->slice_len * sizeof(bool));
|
|
}
|
|
|
|
/*
|
|
* Initialize our data pointer and linear element number. These will
|
|
* advance through the array during array_iterate().
|
|
*/
|
|
iterator->data_ptr = ARR_DATA_PTR(arr);
|
|
iterator->current_item = 0;
|
|
|
|
return iterator;
|
|
}
|
|
|
|
/*
|
|
* Iterate through the array referenced by 'iterator'.
|
|
*
|
|
* As long as there is another element (or slice), return it into
|
|
* *value / *isnull, and return true. Return false when no more data.
|
|
*/
|
|
bool
|
|
array_iterate(ArrayIterator iterator, Datum *value, bool *isnull)
|
|
{
|
|
/* Done if we have reached the end of the array */
|
|
if (iterator->current_item >= iterator->nitems)
|
|
return false;
|
|
|
|
if (iterator->slice_ndim == 0)
|
|
{
|
|
/*
|
|
* Scalar case: return one element.
|
|
*/
|
|
if (array_get_isnull(iterator->nullbitmap, iterator->current_item++))
|
|
{
|
|
*isnull = true;
|
|
*value = (Datum) 0;
|
|
}
|
|
else
|
|
{
|
|
/* non-NULL, so fetch the individual Datum to return */
|
|
char *p = iterator->data_ptr;
|
|
|
|
*isnull = false;
|
|
*value = fetch_att(p, iterator->typbyval, iterator->typlen);
|
|
|
|
/* Move our data pointer forward to the next element */
|
|
p = att_addlength_pointer(p, iterator->typlen, p);
|
|
p = (char *) att_align_nominal(p, iterator->typalign);
|
|
iterator->data_ptr = p;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Slice case: build and return an array of the requested size.
|
|
*/
|
|
ArrayType *result;
|
|
Datum *values = iterator->slice_values;
|
|
bool *nulls = iterator->slice_nulls;
|
|
char *p = iterator->data_ptr;
|
|
int i;
|
|
|
|
for (i = 0; i < iterator->slice_len; i++)
|
|
{
|
|
if (array_get_isnull(iterator->nullbitmap,
|
|
iterator->current_item++))
|
|
{
|
|
nulls[i] = true;
|
|
values[i] = (Datum) 0;
|
|
}
|
|
else
|
|
{
|
|
nulls[i] = false;
|
|
values[i] = fetch_att(p, iterator->typbyval, iterator->typlen);
|
|
|
|
/* Move our data pointer forward to the next element */
|
|
p = att_addlength_pointer(p, iterator->typlen, p);
|
|
p = (char *) att_align_nominal(p, iterator->typalign);
|
|
}
|
|
}
|
|
|
|
iterator->data_ptr = p;
|
|
|
|
result = construct_md_array(values,
|
|
nulls,
|
|
iterator->slice_ndim,
|
|
iterator->slice_dims,
|
|
iterator->slice_lbound,
|
|
ARR_ELEMTYPE(iterator->arr),
|
|
iterator->typlen,
|
|
iterator->typbyval,
|
|
iterator->typalign);
|
|
|
|
*isnull = false;
|
|
*value = PointerGetDatum(result);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Release an ArrayIterator data structure
|
|
*/
|
|
void
|
|
array_free_iterator(ArrayIterator iterator)
|
|
{
|
|
if (iterator->slice_ndim > 0)
|
|
{
|
|
pfree(iterator->slice_values);
|
|
pfree(iterator->slice_nulls);
|
|
}
|
|
pfree(iterator);
|
|
}
|
|
|
|
|
|
/***************************************************************************/
|
|
/******************| Support Routines |*****************/
|
|
/***************************************************************************/
|
|
|
|
/*
|
|
* Check whether a specific array element is NULL
|
|
*
|
|
* nullbitmap: pointer to array's null bitmap (NULL if none)
|
|
* offset: 0-based linear element number of array element
|
|
*/
|
|
static bool
|
|
array_get_isnull(const bits8 *nullbitmap, int offset)
|
|
{
|
|
if (nullbitmap == NULL)
|
|
return false; /* assume not null */
|
|
if (nullbitmap[offset / 8] & (1 << (offset % 8)))
|
|
return false; /* not null */
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Set a specific array element's null-bitmap entry
|
|
*
|
|
* nullbitmap: pointer to array's null bitmap (mustn't be NULL)
|
|
* offset: 0-based linear element number of array element
|
|
* isNull: null status to set
|
|
*/
|
|
static void
|
|
array_set_isnull(bits8 *nullbitmap, int offset, bool isNull)
|
|
{
|
|
int bitmask;
|
|
|
|
nullbitmap += offset / 8;
|
|
bitmask = 1 << (offset % 8);
|
|
if (isNull)
|
|
*nullbitmap &= ~bitmask;
|
|
else
|
|
*nullbitmap |= bitmask;
|
|
}
|
|
|
|
/*
|
|
* Fetch array element at pointer, converted correctly to a Datum
|
|
*
|
|
* Caller must have handled case of NULL element
|
|
*/
|
|
static Datum
|
|
ArrayCast(char *value, bool byval, int len)
|
|
{
|
|
return fetch_att(value, byval, len);
|
|
}
|
|
|
|
/*
|
|
* Copy datum to *dest and return total space used (including align padding)
|
|
*
|
|
* Caller must have handled case of NULL element
|
|
*/
|
|
static int
|
|
ArrayCastAndSet(Datum src,
|
|
int typlen,
|
|
bool typbyval,
|
|
char typalign,
|
|
char *dest)
|
|
{
|
|
int inc;
|
|
|
|
if (typlen > 0)
|
|
{
|
|
if (typbyval)
|
|
store_att_byval(dest, src, typlen);
|
|
else
|
|
memmove(dest, DatumGetPointer(src), typlen);
|
|
inc = att_align_nominal(typlen, typalign);
|
|
}
|
|
else
|
|
{
|
|
Assert(!typbyval);
|
|
inc = att_addlength_datum(0, typlen, src);
|
|
memmove(dest, DatumGetPointer(src), inc);
|
|
inc = att_align_nominal(inc, typalign);
|
|
}
|
|
|
|
return inc;
|
|
}
|
|
|
|
/*
|
|
* Advance ptr over nitems array elements
|
|
*
|
|
* ptr: starting location in array
|
|
* offset: 0-based linear element number of first element (the one at *ptr)
|
|
* nullbitmap: start of array's null bitmap, or NULL if none
|
|
* nitems: number of array elements to advance over (>= 0)
|
|
* typlen, typbyval, typalign: storage parameters of array element datatype
|
|
*
|
|
* It is caller's responsibility to ensure that nitems is within range
|
|
*/
|
|
static char *
|
|
array_seek(char *ptr, int offset, bits8 *nullbitmap, int nitems,
|
|
int typlen, bool typbyval, char typalign)
|
|
{
|
|
int bitmask;
|
|
int i;
|
|
|
|
/* easy if fixed-size elements and no NULLs */
|
|
if (typlen > 0 && !nullbitmap)
|
|
return ptr + nitems * ((Size) att_align_nominal(typlen, typalign));
|
|
|
|
/* seems worth having separate loops for NULL and no-NULLs cases */
|
|
if (nullbitmap)
|
|
{
|
|
nullbitmap += offset / 8;
|
|
bitmask = 1 << (offset % 8);
|
|
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
if (*nullbitmap & bitmask)
|
|
{
|
|
ptr = att_addlength_pointer(ptr, typlen, ptr);
|
|
ptr = (char *) att_align_nominal(ptr, typalign);
|
|
}
|
|
bitmask <<= 1;
|
|
if (bitmask == 0x100)
|
|
{
|
|
nullbitmap++;
|
|
bitmask = 1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
ptr = att_addlength_pointer(ptr, typlen, ptr);
|
|
ptr = (char *) att_align_nominal(ptr, typalign);
|
|
}
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* Compute total size of the nitems array elements starting at *ptr
|
|
*
|
|
* Parameters same as for array_seek
|
|
*/
|
|
static int
|
|
array_nelems_size(char *ptr, int offset, bits8 *nullbitmap, int nitems,
|
|
int typlen, bool typbyval, char typalign)
|
|
{
|
|
return array_seek(ptr, offset, nullbitmap, nitems,
|
|
typlen, typbyval, typalign) - ptr;
|
|
}
|
|
|
|
/*
|
|
* Copy nitems array elements from srcptr to destptr
|
|
*
|
|
* destptr: starting destination location (must be enough room!)
|
|
* nitems: number of array elements to copy (>= 0)
|
|
* srcptr: starting location in source array
|
|
* offset: 0-based linear element number of first element (the one at *srcptr)
|
|
* nullbitmap: start of source array's null bitmap, or NULL if none
|
|
* typlen, typbyval, typalign: storage parameters of array element datatype
|
|
*
|
|
* Returns number of bytes copied
|
|
*
|
|
* NB: this does not take care of setting up the destination's null bitmap!
|
|
*/
|
|
static int
|
|
array_copy(char *destptr, int nitems,
|
|
char *srcptr, int offset, bits8 *nullbitmap,
|
|
int typlen, bool typbyval, char typalign)
|
|
{
|
|
int numbytes;
|
|
|
|
numbytes = array_nelems_size(srcptr, offset, nullbitmap, nitems,
|
|
typlen, typbyval, typalign);
|
|
memcpy(destptr, srcptr, numbytes);
|
|
return numbytes;
|
|
}
|
|
|
|
/*
|
|
* Copy nitems null-bitmap bits from source to destination
|
|
*
|
|
* destbitmap: start of destination array's null bitmap (mustn't be NULL)
|
|
* destoffset: 0-based linear element number of first dest element
|
|
* srcbitmap: start of source array's null bitmap, or NULL if none
|
|
* srcoffset: 0-based linear element number of first source element
|
|
* nitems: number of bits to copy (>= 0)
|
|
*
|
|
* If srcbitmap is NULL then we assume the source is all-non-NULL and
|
|
* fill 1's into the destination bitmap. Note that only the specified
|
|
* bits in the destination map are changed, not any before or after.
|
|
*
|
|
* Note: this could certainly be optimized using standard bitblt methods.
|
|
* However, it's not clear that the typical Postgres array has enough elements
|
|
* to make it worth worrying too much. For the moment, KISS.
|
|
*/
|
|
void
|
|
array_bitmap_copy(bits8 *destbitmap, int destoffset,
|
|
const bits8 *srcbitmap, int srcoffset,
|
|
int nitems)
|
|
{
|
|
int destbitmask,
|
|
destbitval,
|
|
srcbitmask,
|
|
srcbitval;
|
|
|
|
Assert(destbitmap);
|
|
if (nitems <= 0)
|
|
return; /* don't risk fetch off end of memory */
|
|
destbitmap += destoffset / 8;
|
|
destbitmask = 1 << (destoffset % 8);
|
|
destbitval = *destbitmap;
|
|
if (srcbitmap)
|
|
{
|
|
srcbitmap += srcoffset / 8;
|
|
srcbitmask = 1 << (srcoffset % 8);
|
|
srcbitval = *srcbitmap;
|
|
while (nitems-- > 0)
|
|
{
|
|
if (srcbitval & srcbitmask)
|
|
destbitval |= destbitmask;
|
|
else
|
|
destbitval &= ~destbitmask;
|
|
destbitmask <<= 1;
|
|
if (destbitmask == 0x100)
|
|
{
|
|
*destbitmap++ = destbitval;
|
|
destbitmask = 1;
|
|
if (nitems > 0)
|
|
destbitval = *destbitmap;
|
|
}
|
|
srcbitmask <<= 1;
|
|
if (srcbitmask == 0x100)
|
|
{
|
|
srcbitmap++;
|
|
srcbitmask = 1;
|
|
if (nitems > 0)
|
|
srcbitval = *srcbitmap;
|
|
}
|
|
}
|
|
if (destbitmask != 1)
|
|
*destbitmap = destbitval;
|
|
}
|
|
else
|
|
{
|
|
while (nitems-- > 0)
|
|
{
|
|
destbitval |= destbitmask;
|
|
destbitmask <<= 1;
|
|
if (destbitmask == 0x100)
|
|
{
|
|
*destbitmap++ = destbitval;
|
|
destbitmask = 1;
|
|
if (nitems > 0)
|
|
destbitval = *destbitmap;
|
|
}
|
|
}
|
|
if (destbitmask != 1)
|
|
*destbitmap = destbitval;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute space needed for a slice of an array
|
|
*
|
|
* We assume the caller has verified that the slice coordinates are valid.
|
|
*/
|
|
static int
|
|
array_slice_size(char *arraydataptr, bits8 *arraynullsptr,
|
|
int ndim, int *dim, int *lb,
|
|
int *st, int *endp,
|
|
int typlen, bool typbyval, char typalign)
|
|
{
|
|
int src_offset,
|
|
span[MAXDIM],
|
|
prod[MAXDIM],
|
|
dist[MAXDIM],
|
|
indx[MAXDIM];
|
|
char *ptr;
|
|
int i,
|
|
j,
|
|
inc;
|
|
int count = 0;
|
|
|
|
mda_get_range(ndim, span, st, endp);
|
|
|
|
/* Pretty easy for fixed element length without nulls ... */
|
|
if (typlen > 0 && !arraynullsptr)
|
|
return ArrayGetNItems(ndim, span) * att_align_nominal(typlen, typalign);
|
|
|
|
/* Else gotta do it the hard way */
|
|
src_offset = ArrayGetOffset(ndim, dim, lb, st);
|
|
ptr = array_seek(arraydataptr, 0, arraynullsptr, src_offset,
|
|
typlen, typbyval, typalign);
|
|
mda_get_prod(ndim, dim, prod);
|
|
mda_get_offset_values(ndim, dist, prod, span);
|
|
for (i = 0; i < ndim; i++)
|
|
indx[i] = 0;
|
|
j = ndim - 1;
|
|
do
|
|
{
|
|
if (dist[j])
|
|
{
|
|
ptr = array_seek(ptr, src_offset, arraynullsptr, dist[j],
|
|
typlen, typbyval, typalign);
|
|
src_offset += dist[j];
|
|
}
|
|
if (!array_get_isnull(arraynullsptr, src_offset))
|
|
{
|
|
inc = att_addlength_pointer(0, typlen, ptr);
|
|
inc = att_align_nominal(inc, typalign);
|
|
ptr += inc;
|
|
count += inc;
|
|
}
|
|
src_offset++;
|
|
} while ((j = mda_next_tuple(ndim, indx, span)) != -1);
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Extract a slice of an array into consecutive elements in the destination
|
|
* array.
|
|
*
|
|
* We assume the caller has verified that the slice coordinates are valid,
|
|
* allocated enough storage for the result, and initialized the header
|
|
* of the new array.
|
|
*/
|
|
static void
|
|
array_extract_slice(ArrayType *newarray,
|
|
int ndim,
|
|
int *dim,
|
|
int *lb,
|
|
char *arraydataptr,
|
|
bits8 *arraynullsptr,
|
|
int *st,
|
|
int *endp,
|
|
int typlen,
|
|
bool typbyval,
|
|
char typalign)
|
|
{
|
|
char *destdataptr = ARR_DATA_PTR(newarray);
|
|
bits8 *destnullsptr = ARR_NULLBITMAP(newarray);
|
|
char *srcdataptr;
|
|
int src_offset,
|
|
dest_offset,
|
|
prod[MAXDIM],
|
|
span[MAXDIM],
|
|
dist[MAXDIM],
|
|
indx[MAXDIM];
|
|
int i,
|
|
j,
|
|
inc;
|
|
|
|
src_offset = ArrayGetOffset(ndim, dim, lb, st);
|
|
srcdataptr = array_seek(arraydataptr, 0, arraynullsptr, src_offset,
|
|
typlen, typbyval, typalign);
|
|
mda_get_prod(ndim, dim, prod);
|
|
mda_get_range(ndim, span, st, endp);
|
|
mda_get_offset_values(ndim, dist, prod, span);
|
|
for (i = 0; i < ndim; i++)
|
|
indx[i] = 0;
|
|
dest_offset = 0;
|
|
j = ndim - 1;
|
|
do
|
|
{
|
|
if (dist[j])
|
|
{
|
|
/* skip unwanted elements */
|
|
srcdataptr = array_seek(srcdataptr, src_offset, arraynullsptr,
|
|
dist[j],
|
|
typlen, typbyval, typalign);
|
|
src_offset += dist[j];
|
|
}
|
|
inc = array_copy(destdataptr, 1,
|
|
srcdataptr, src_offset, arraynullsptr,
|
|
typlen, typbyval, typalign);
|
|
if (destnullsptr)
|
|
array_bitmap_copy(destnullsptr, dest_offset,
|
|
arraynullsptr, src_offset,
|
|
1);
|
|
destdataptr += inc;
|
|
srcdataptr += inc;
|
|
src_offset++;
|
|
dest_offset++;
|
|
} while ((j = mda_next_tuple(ndim, indx, span)) != -1);
|
|
}
|
|
|
|
/*
|
|
* Insert a slice into an array.
|
|
*
|
|
* ndim/dim[]/lb[] are dimensions of the original array. A new array with
|
|
* those same dimensions is to be constructed. destArray must already
|
|
* have been allocated and its header initialized.
|
|
*
|
|
* st[]/endp[] identify the slice to be replaced. Elements within the slice
|
|
* volume are taken from consecutive elements of the srcArray; elements
|
|
* outside it are copied from origArray.
|
|
*
|
|
* We assume the caller has verified that the slice coordinates are valid.
|
|
*/
|
|
static void
|
|
array_insert_slice(ArrayType *destArray,
|
|
ArrayType *origArray,
|
|
ArrayType *srcArray,
|
|
int ndim,
|
|
int *dim,
|
|
int *lb,
|
|
int *st,
|
|
int *endp,
|
|
int typlen,
|
|
bool typbyval,
|
|
char typalign)
|
|
{
|
|
char *destPtr = ARR_DATA_PTR(destArray);
|
|
char *origPtr = ARR_DATA_PTR(origArray);
|
|
char *srcPtr = ARR_DATA_PTR(srcArray);
|
|
bits8 *destBitmap = ARR_NULLBITMAP(destArray);
|
|
bits8 *origBitmap = ARR_NULLBITMAP(origArray);
|
|
bits8 *srcBitmap = ARR_NULLBITMAP(srcArray);
|
|
int orignitems = ArrayGetNItems(ARR_NDIM(origArray),
|
|
ARR_DIMS(origArray));
|
|
int dest_offset,
|
|
orig_offset,
|
|
src_offset,
|
|
prod[MAXDIM],
|
|
span[MAXDIM],
|
|
dist[MAXDIM],
|
|
indx[MAXDIM];
|
|
int i,
|
|
j,
|
|
inc;
|
|
|
|
dest_offset = ArrayGetOffset(ndim, dim, lb, st);
|
|
/* copy items before the slice start */
|
|
inc = array_copy(destPtr, dest_offset,
|
|
origPtr, 0, origBitmap,
|
|
typlen, typbyval, typalign);
|
|
destPtr += inc;
|
|
origPtr += inc;
|
|
if (destBitmap)
|
|
array_bitmap_copy(destBitmap, 0, origBitmap, 0, dest_offset);
|
|
orig_offset = dest_offset;
|
|
mda_get_prod(ndim, dim, prod);
|
|
mda_get_range(ndim, span, st, endp);
|
|
mda_get_offset_values(ndim, dist, prod, span);
|
|
for (i = 0; i < ndim; i++)
|
|
indx[i] = 0;
|
|
src_offset = 0;
|
|
j = ndim - 1;
|
|
do
|
|
{
|
|
/* Copy/advance over elements between here and next part of slice */
|
|
if (dist[j])
|
|
{
|
|
inc = array_copy(destPtr, dist[j],
|
|
origPtr, orig_offset, origBitmap,
|
|
typlen, typbyval, typalign);
|
|
destPtr += inc;
|
|
origPtr += inc;
|
|
if (destBitmap)
|
|
array_bitmap_copy(destBitmap, dest_offset,
|
|
origBitmap, orig_offset,
|
|
dist[j]);
|
|
dest_offset += dist[j];
|
|
orig_offset += dist[j];
|
|
}
|
|
/* Copy new element at this slice position */
|
|
inc = array_copy(destPtr, 1,
|
|
srcPtr, src_offset, srcBitmap,
|
|
typlen, typbyval, typalign);
|
|
if (destBitmap)
|
|
array_bitmap_copy(destBitmap, dest_offset,
|
|
srcBitmap, src_offset,
|
|
1);
|
|
destPtr += inc;
|
|
srcPtr += inc;
|
|
dest_offset++;
|
|
src_offset++;
|
|
/* Advance over old element at this slice position */
|
|
origPtr = array_seek(origPtr, orig_offset, origBitmap, 1,
|
|
typlen, typbyval, typalign);
|
|
orig_offset++;
|
|
} while ((j = mda_next_tuple(ndim, indx, span)) != -1);
|
|
|
|
/* don't miss any data at the end */
|
|
array_copy(destPtr, orignitems - orig_offset,
|
|
origPtr, orig_offset, origBitmap,
|
|
typlen, typbyval, typalign);
|
|
if (destBitmap)
|
|
array_bitmap_copy(destBitmap, dest_offset,
|
|
origBitmap, orig_offset,
|
|
orignitems - orig_offset);
|
|
}
|
|
|
|
/*
|
|
* initArrayResult - initialize an empty ArrayBuildState
|
|
*
|
|
* element_type is the array element type (must be a valid array element type)
|
|
* rcontext is where to keep working state
|
|
* subcontext is a flag determining whether to use a separate memory context
|
|
*
|
|
* Note: there are two common schemes for using accumArrayResult().
|
|
* In the older scheme, you start with a NULL ArrayBuildState pointer, and
|
|
* call accumArrayResult once per element. In this scheme you end up with
|
|
* a NULL pointer if there were no elements, which you need to special-case.
|
|
* In the newer scheme, call initArrayResult and then call accumArrayResult
|
|
* once per element. In this scheme you always end with a non-NULL pointer
|
|
* that you can pass to makeArrayResult; you get an empty array if there
|
|
* were no elements. This is preferred if an empty array is what you want.
|
|
*
|
|
* It's possible to choose whether to create a separate memory context for the
|
|
* array build state, or whether to allocate it directly within rcontext.
|
|
*
|
|
* When there are many concurrent small states (e.g. array_agg() using hash
|
|
* aggregation of many small groups), using a separate memory context for each
|
|
* one may result in severe memory bloat. In such cases, use the same memory
|
|
* context to initialize all such array build states, and pass
|
|
* subcontext=false.
|
|
*
|
|
* In cases when the array build states have different lifetimes, using a
|
|
* single memory context is impractical. Instead, pass subcontext=true so that
|
|
* the array build states can be freed individually.
|
|
*/
|
|
ArrayBuildState *
|
|
initArrayResult(Oid element_type, MemoryContext rcontext, bool subcontext)
|
|
{
|
|
ArrayBuildState *astate;
|
|
MemoryContext arr_context = rcontext;
|
|
|
|
/* Make a temporary context to hold all the junk */
|
|
if (subcontext)
|
|
arr_context = AllocSetContextCreate(rcontext,
|
|
"accumArrayResult",
|
|
ALLOCSET_DEFAULT_MINSIZE,
|
|
ALLOCSET_DEFAULT_INITSIZE,
|
|
ALLOCSET_DEFAULT_MAXSIZE);
|
|
|
|
astate = (ArrayBuildState *)
|
|
MemoryContextAlloc(arr_context, sizeof(ArrayBuildState));
|
|
astate->mcontext = arr_context;
|
|
astate->private_cxt = subcontext;
|
|
astate->alen = (subcontext ? 64 : 8); /* arbitrary starting array
|
|
* size */
|
|
astate->dvalues = (Datum *)
|
|
MemoryContextAlloc(arr_context, astate->alen * sizeof(Datum));
|
|
astate->dnulls = (bool *)
|
|
MemoryContextAlloc(arr_context, astate->alen * sizeof(bool));
|
|
astate->nelems = 0;
|
|
astate->element_type = element_type;
|
|
get_typlenbyvalalign(element_type,
|
|
&astate->typlen,
|
|
&astate->typbyval,
|
|
&astate->typalign);
|
|
|
|
return astate;
|
|
}
|
|
|
|
/*
|
|
* accumArrayResult - accumulate one (more) Datum for an array result
|
|
*
|
|
* astate is working state (can be NULL on first call)
|
|
* dvalue/disnull represent the new Datum to append to the array
|
|
* element_type is the Datum's type (must be a valid array element type)
|
|
* rcontext is where to keep working state
|
|
*/
|
|
ArrayBuildState *
|
|
accumArrayResult(ArrayBuildState *astate,
|
|
Datum dvalue, bool disnull,
|
|
Oid element_type,
|
|
MemoryContext rcontext)
|
|
{
|
|
MemoryContext oldcontext;
|
|
|
|
if (astate == NULL)
|
|
{
|
|
/* First time through --- initialize */
|
|
astate = initArrayResult(element_type, rcontext, true);
|
|
}
|
|
else
|
|
{
|
|
Assert(astate->element_type == element_type);
|
|
}
|
|
|
|
oldcontext = MemoryContextSwitchTo(astate->mcontext);
|
|
|
|
/* enlarge dvalues[]/dnulls[] if needed */
|
|
if (astate->nelems >= astate->alen)
|
|
{
|
|
astate->alen *= 2;
|
|
astate->dvalues = (Datum *)
|
|
repalloc(astate->dvalues, astate->alen * sizeof(Datum));
|
|
astate->dnulls = (bool *)
|
|
repalloc(astate->dnulls, astate->alen * sizeof(bool));
|
|
}
|
|
|
|
/*
|
|
* Ensure pass-by-ref stuff is copied into mcontext; and detoast it too if
|
|
* it's varlena. (You might think that detoasting is not needed here
|
|
* because construct_md_array can detoast the array elements later.
|
|
* However, we must not let construct_md_array modify the ArrayBuildState
|
|
* because that would mean array_agg_finalfn damages its input, which is
|
|
* verboten. Also, this way frequently saves one copying step.)
|
|
*/
|
|
if (!disnull && !astate->typbyval)
|
|
{
|
|
if (astate->typlen == -1)
|
|
dvalue = PointerGetDatum(PG_DETOAST_DATUM_COPY(dvalue));
|
|
else
|
|
dvalue = datumCopy(dvalue, astate->typbyval, astate->typlen);
|
|
}
|
|
|
|
astate->dvalues[astate->nelems] = dvalue;
|
|
astate->dnulls[astate->nelems] = disnull;
|
|
astate->nelems++;
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
return astate;
|
|
}
|
|
|
|
/*
|
|
* makeArrayResult - produce 1-D final result of accumArrayResult
|
|
*
|
|
* Note: only releases astate if it was initialized within a separate memory
|
|
* context (i.e. using subcontext=true when calling initArrayResult).
|
|
*
|
|
* astate is working state (must not be NULL)
|
|
* rcontext is where to construct result
|
|
*/
|
|
Datum
|
|
makeArrayResult(ArrayBuildState *astate,
|
|
MemoryContext rcontext)
|
|
{
|
|
int ndims;
|
|
int dims[1];
|
|
int lbs[1];
|
|
|
|
/* If no elements were presented, we want to create an empty array */
|
|
ndims = (astate->nelems > 0) ? 1 : 0;
|
|
dims[0] = astate->nelems;
|
|
lbs[0] = 1;
|
|
|
|
return makeMdArrayResult(astate, ndims, dims, lbs, rcontext,
|
|
astate->private_cxt);
|
|
}
|
|
|
|
/*
|
|
* makeMdArrayResult - produce multi-D final result of accumArrayResult
|
|
*
|
|
* beware: no check that specified dimensions match the number of values
|
|
* accumulated.
|
|
*
|
|
* Note: if the astate was not initialized within a separate memory context
|
|
* (that is, initArrayResult was called with subcontext=false), then using
|
|
* release=true is illegal. Instead, release astate along with the rest of its
|
|
* context when appropriate.
|
|
*
|
|
* astate is working state (must not be NULL)
|
|
* rcontext is where to construct result
|
|
* release is true if okay to release working state
|
|
*/
|
|
Datum
|
|
makeMdArrayResult(ArrayBuildState *astate,
|
|
int ndims,
|
|
int *dims,
|
|
int *lbs,
|
|
MemoryContext rcontext,
|
|
bool release)
|
|
{
|
|
ArrayType *result;
|
|
MemoryContext oldcontext;
|
|
|
|
/* Build the final array result in rcontext */
|
|
oldcontext = MemoryContextSwitchTo(rcontext);
|
|
|
|
result = construct_md_array(astate->dvalues,
|
|
astate->dnulls,
|
|
ndims,
|
|
dims,
|
|
lbs,
|
|
astate->element_type,
|
|
astate->typlen,
|
|
astate->typbyval,
|
|
astate->typalign);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/* Clean up all the junk */
|
|
if (release)
|
|
{
|
|
Assert(astate->private_cxt);
|
|
MemoryContextDelete(astate->mcontext);
|
|
}
|
|
|
|
return PointerGetDatum(result);
|
|
}
|
|
|
|
/*
|
|
* The following three functions provide essentially the same API as
|
|
* initArrayResult/accumArrayResult/makeArrayResult, but instead of accepting
|
|
* inputs that are array elements, they accept inputs that are arrays and
|
|
* produce an output array having N+1 dimensions. The inputs must all have
|
|
* identical dimensionality as well as element type.
|
|
*/
|
|
|
|
/*
|
|
* initArrayResultArr - initialize an empty ArrayBuildStateArr
|
|
*
|
|
* array_type is the array type (must be a valid varlena array type)
|
|
* element_type is the type of the array's elements (lookup if InvalidOid)
|
|
* rcontext is where to keep working state
|
|
* subcontext is a flag determining whether to use a separate memory context
|
|
*/
|
|
ArrayBuildStateArr *
|
|
initArrayResultArr(Oid array_type, Oid element_type, MemoryContext rcontext,
|
|
bool subcontext)
|
|
{
|
|
ArrayBuildStateArr *astate;
|
|
MemoryContext arr_context = rcontext; /* by default use the parent
|
|
* ctx */
|
|
|
|
/* Lookup element type, unless element_type already provided */
|
|
if (!OidIsValid(element_type))
|
|
{
|
|
element_type = get_element_type(array_type);
|
|
|
|
if (!OidIsValid(element_type))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("data type %s is not an array type",
|
|
format_type_be(array_type))));
|
|
}
|
|
|
|
/* Make a temporary context to hold all the junk */
|
|
if (subcontext)
|
|
arr_context = AllocSetContextCreate(rcontext,
|
|
"accumArrayResultArr",
|
|
ALLOCSET_DEFAULT_MINSIZE,
|
|
ALLOCSET_DEFAULT_INITSIZE,
|
|
ALLOCSET_DEFAULT_MAXSIZE);
|
|
|
|
/* Note we initialize all fields to zero */
|
|
astate = (ArrayBuildStateArr *)
|
|
MemoryContextAllocZero(arr_context, sizeof(ArrayBuildStateArr));
|
|
astate->mcontext = arr_context;
|
|
astate->private_cxt = subcontext;
|
|
|
|
/* Save relevant datatype information */
|
|
astate->array_type = array_type;
|
|
astate->element_type = element_type;
|
|
|
|
return astate;
|
|
}
|
|
|
|
/*
|
|
* accumArrayResultArr - accumulate one (more) sub-array for an array result
|
|
*
|
|
* astate is working state (can be NULL on first call)
|
|
* dvalue/disnull represent the new sub-array to append to the array
|
|
* array_type is the array type (must be a valid varlena array type)
|
|
* rcontext is where to keep working state
|
|
*/
|
|
ArrayBuildStateArr *
|
|
accumArrayResultArr(ArrayBuildStateArr *astate,
|
|
Datum dvalue, bool disnull,
|
|
Oid array_type,
|
|
MemoryContext rcontext)
|
|
{
|
|
ArrayType *arg;
|
|
MemoryContext oldcontext;
|
|
int *dims,
|
|
*lbs,
|
|
ndims,
|
|
nitems,
|
|
ndatabytes;
|
|
char *data;
|
|
int i;
|
|
|
|
/*
|
|
* We disallow accumulating null subarrays. Another plausible definition
|
|
* is to ignore them, but callers that want that can just skip calling
|
|
* this function.
|
|
*/
|
|
if (disnull)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
|
|
errmsg("cannot accumulate null arrays")));
|
|
|
|
/* Detoast input array in caller's context */
|
|
arg = DatumGetArrayTypeP(dvalue);
|
|
|
|
if (astate == NULL)
|
|
astate = initArrayResultArr(array_type, InvalidOid, rcontext, true);
|
|
else
|
|
Assert(astate->array_type == array_type);
|
|
|
|
oldcontext = MemoryContextSwitchTo(astate->mcontext);
|
|
|
|
/* Collect this input's dimensions */
|
|
ndims = ARR_NDIM(arg);
|
|
dims = ARR_DIMS(arg);
|
|
lbs = ARR_LBOUND(arg);
|
|
data = ARR_DATA_PTR(arg);
|
|
nitems = ArrayGetNItems(ndims, dims);
|
|
ndatabytes = ARR_SIZE(arg) - ARR_DATA_OFFSET(arg);
|
|
|
|
if (astate->ndims == 0)
|
|
{
|
|
/* First input; check/save the dimensionality info */
|
|
|
|
/* Should we allow empty inputs and just produce an empty output? */
|
|
if (ndims == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("cannot accumulate empty arrays")));
|
|
if (ndims + 1 > MAXDIM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)",
|
|
ndims + 1, MAXDIM)));
|
|
|
|
/*
|
|
* The output array will have n+1 dimensions, with the ones after the
|
|
* first matching the input's dimensions.
|
|
*/
|
|
astate->ndims = ndims + 1;
|
|
astate->dims[0] = 0;
|
|
memcpy(&astate->dims[1], dims, ndims * sizeof(int));
|
|
astate->lbs[0] = 1;
|
|
memcpy(&astate->lbs[1], lbs, ndims * sizeof(int));
|
|
|
|
/* Allocate at least enough data space for this item */
|
|
astate->abytes = 1024;
|
|
while (astate->abytes <= ndatabytes)
|
|
astate->abytes *= 2;
|
|
astate->data = (char *) palloc(astate->abytes);
|
|
}
|
|
else
|
|
{
|
|
/* Second or later input: must match first input's dimensionality */
|
|
if (astate->ndims != ndims + 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("cannot accumulate arrays of different dimensionality")));
|
|
for (i = 0; i < ndims; i++)
|
|
{
|
|
if (astate->dims[i + 1] != dims[i] || astate->lbs[i + 1] != lbs[i])
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("cannot accumulate arrays of different dimensionality")));
|
|
}
|
|
|
|
/* Enlarge data space if needed */
|
|
if (astate->nbytes + ndatabytes > astate->abytes)
|
|
{
|
|
astate->abytes = Max(astate->abytes * 2,
|
|
astate->nbytes + ndatabytes);
|
|
astate->data = (char *) repalloc(astate->data, astate->abytes);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy the data portion of the sub-array. Note we assume that the
|
|
* advertised data length of the sub-array is properly aligned. We do not
|
|
* have to worry about detoasting elements since whatever's in the
|
|
* sub-array should be OK already.
|
|
*/
|
|
memcpy(astate->data + astate->nbytes, data, ndatabytes);
|
|
astate->nbytes += ndatabytes;
|
|
|
|
/* Deal with null bitmap if needed */
|
|
if (astate->nullbitmap || ARR_HASNULL(arg))
|
|
{
|
|
int newnitems = astate->nitems + nitems;
|
|
|
|
if (astate->nullbitmap == NULL)
|
|
{
|
|
/*
|
|
* First input with nulls; we must retrospectively handle any
|
|
* previous inputs by marking all their items non-null.
|
|
*/
|
|
astate->aitems = 256;
|
|
while (astate->aitems <= newnitems)
|
|
astate->aitems *= 2;
|
|
astate->nullbitmap = (bits8 *) palloc((astate->aitems + 7) / 8);
|
|
array_bitmap_copy(astate->nullbitmap, 0,
|
|
NULL, 0,
|
|
astate->nitems);
|
|
}
|
|
else if (newnitems > astate->aitems)
|
|
{
|
|
astate->aitems = Max(astate->aitems * 2, newnitems);
|
|
astate->nullbitmap = (bits8 *)
|
|
repalloc(astate->nullbitmap, (astate->aitems + 7) / 8);
|
|
}
|
|
array_bitmap_copy(astate->nullbitmap, astate->nitems,
|
|
ARR_NULLBITMAP(arg), 0,
|
|
nitems);
|
|
}
|
|
|
|
astate->nitems += nitems;
|
|
astate->dims[0] += 1;
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/* Release detoasted copy if any */
|
|
if ((Pointer) arg != DatumGetPointer(dvalue))
|
|
pfree(arg);
|
|
|
|
return astate;
|
|
}
|
|
|
|
/*
|
|
* makeArrayResultArr - produce N+1-D final result of accumArrayResultArr
|
|
*
|
|
* astate is working state (must not be NULL)
|
|
* rcontext is where to construct result
|
|
* release is true if okay to release working state
|
|
*/
|
|
Datum
|
|
makeArrayResultArr(ArrayBuildStateArr *astate,
|
|
MemoryContext rcontext,
|
|
bool release)
|
|
{
|
|
ArrayType *result;
|
|
MemoryContext oldcontext;
|
|
|
|
/* Build the final array result in rcontext */
|
|
oldcontext = MemoryContextSwitchTo(rcontext);
|
|
|
|
if (astate->ndims == 0)
|
|
{
|
|
/* No inputs, return empty array */
|
|
result = construct_empty_array(astate->element_type);
|
|
}
|
|
else
|
|
{
|
|
int dataoffset,
|
|
nbytes;
|
|
|
|
/* Compute required space */
|
|
nbytes = astate->nbytes;
|
|
if (astate->nullbitmap != NULL)
|
|
{
|
|
dataoffset = ARR_OVERHEAD_WITHNULLS(astate->ndims, astate->nitems);
|
|
nbytes += dataoffset;
|
|
}
|
|
else
|
|
{
|
|
dataoffset = 0;
|
|
nbytes += ARR_OVERHEAD_NONULLS(astate->ndims);
|
|
}
|
|
|
|
result = (ArrayType *) palloc0(nbytes);
|
|
SET_VARSIZE(result, nbytes);
|
|
result->ndim = astate->ndims;
|
|
result->dataoffset = dataoffset;
|
|
result->elemtype = astate->element_type;
|
|
|
|
memcpy(ARR_DIMS(result), astate->dims, astate->ndims * sizeof(int));
|
|
memcpy(ARR_LBOUND(result), astate->lbs, astate->ndims * sizeof(int));
|
|
memcpy(ARR_DATA_PTR(result), astate->data, astate->nbytes);
|
|
|
|
if (astate->nullbitmap != NULL)
|
|
array_bitmap_copy(ARR_NULLBITMAP(result), 0,
|
|
astate->nullbitmap, 0,
|
|
astate->nitems);
|
|
}
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/* Clean up all the junk */
|
|
if (release)
|
|
{
|
|
Assert(astate->private_cxt);
|
|
MemoryContextDelete(astate->mcontext);
|
|
}
|
|
|
|
return PointerGetDatum(result);
|
|
}
|
|
|
|
/*
|
|
* The following three functions provide essentially the same API as
|
|
* initArrayResult/accumArrayResult/makeArrayResult, but can accept either
|
|
* scalar or array inputs, invoking the appropriate set of functions above.
|
|
*/
|
|
|
|
/*
|
|
* initArrayResultAny - initialize an empty ArrayBuildStateAny
|
|
*
|
|
* input_type is the input datatype (either element or array type)
|
|
* rcontext is where to keep working state
|
|
* subcontext is a flag determining whether to use a separate memory context
|
|
*/
|
|
ArrayBuildStateAny *
|
|
initArrayResultAny(Oid input_type, MemoryContext rcontext, bool subcontext)
|
|
{
|
|
ArrayBuildStateAny *astate;
|
|
Oid element_type = get_element_type(input_type);
|
|
|
|
if (OidIsValid(element_type))
|
|
{
|
|
/* Array case */
|
|
ArrayBuildStateArr *arraystate;
|
|
|
|
arraystate = initArrayResultArr(input_type, InvalidOid, rcontext, subcontext);
|
|
astate = (ArrayBuildStateAny *)
|
|
MemoryContextAlloc(arraystate->mcontext,
|
|
sizeof(ArrayBuildStateAny));
|
|
astate->scalarstate = NULL;
|
|
astate->arraystate = arraystate;
|
|
}
|
|
else
|
|
{
|
|
/* Scalar case */
|
|
ArrayBuildState *scalarstate;
|
|
|
|
/* Let's just check that we have a type that can be put into arrays */
|
|
Assert(OidIsValid(get_array_type(input_type)));
|
|
|
|
scalarstate = initArrayResult(input_type, rcontext, subcontext);
|
|
astate = (ArrayBuildStateAny *)
|
|
MemoryContextAlloc(scalarstate->mcontext,
|
|
sizeof(ArrayBuildStateAny));
|
|
astate->scalarstate = scalarstate;
|
|
astate->arraystate = NULL;
|
|
}
|
|
|
|
return astate;
|
|
}
|
|
|
|
/*
|
|
* accumArrayResultAny - accumulate one (more) input for an array result
|
|
*
|
|
* astate is working state (can be NULL on first call)
|
|
* dvalue/disnull represent the new input to append to the array
|
|
* input_type is the input datatype (either element or array type)
|
|
* rcontext is where to keep working state
|
|
*/
|
|
ArrayBuildStateAny *
|
|
accumArrayResultAny(ArrayBuildStateAny *astate,
|
|
Datum dvalue, bool disnull,
|
|
Oid input_type,
|
|
MemoryContext rcontext)
|
|
{
|
|
if (astate == NULL)
|
|
astate = initArrayResultAny(input_type, rcontext, true);
|
|
|
|
if (astate->scalarstate)
|
|
(void) accumArrayResult(astate->scalarstate,
|
|
dvalue, disnull,
|
|
input_type, rcontext);
|
|
else
|
|
(void) accumArrayResultArr(astate->arraystate,
|
|
dvalue, disnull,
|
|
input_type, rcontext);
|
|
|
|
return astate;
|
|
}
|
|
|
|
/*
|
|
* makeArrayResultAny - produce final result of accumArrayResultAny
|
|
*
|
|
* astate is working state (must not be NULL)
|
|
* rcontext is where to construct result
|
|
* release is true if okay to release working state
|
|
*/
|
|
Datum
|
|
makeArrayResultAny(ArrayBuildStateAny *astate,
|
|
MemoryContext rcontext, bool release)
|
|
{
|
|
Datum result;
|
|
|
|
if (astate->scalarstate)
|
|
{
|
|
/* Must use makeMdArrayResult to support "release" parameter */
|
|
int ndims;
|
|
int dims[1];
|
|
int lbs[1];
|
|
|
|
/* If no elements were presented, we want to create an empty array */
|
|
ndims = (astate->scalarstate->nelems > 0) ? 1 : 0;
|
|
dims[0] = astate->scalarstate->nelems;
|
|
lbs[0] = 1;
|
|
|
|
result = makeMdArrayResult(astate->scalarstate, ndims, dims, lbs,
|
|
rcontext, release);
|
|
}
|
|
else
|
|
{
|
|
result = makeArrayResultArr(astate->arraystate,
|
|
rcontext, release);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
Datum
|
|
array_larger(PG_FUNCTION_ARGS)
|
|
{
|
|
if (array_cmp(fcinfo) > 0)
|
|
PG_RETURN_DATUM(PG_GETARG_DATUM(0));
|
|
else
|
|
PG_RETURN_DATUM(PG_GETARG_DATUM(1));
|
|
}
|
|
|
|
Datum
|
|
array_smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
if (array_cmp(fcinfo) < 0)
|
|
PG_RETURN_DATUM(PG_GETARG_DATUM(0));
|
|
else
|
|
PG_RETURN_DATUM(PG_GETARG_DATUM(1));
|
|
}
|
|
|
|
|
|
typedef struct generate_subscripts_fctx
|
|
{
|
|
int32 lower;
|
|
int32 upper;
|
|
bool reverse;
|
|
} generate_subscripts_fctx;
|
|
|
|
/*
|
|
* generate_subscripts(array anyarray, dim int [, reverse bool])
|
|
* Returns all subscripts of the array for any dimension
|
|
*/
|
|
Datum
|
|
generate_subscripts(PG_FUNCTION_ARGS)
|
|
{
|
|
FuncCallContext *funcctx;
|
|
MemoryContext oldcontext;
|
|
generate_subscripts_fctx *fctx;
|
|
|
|
/* stuff done only on the first call of the function */
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
AnyArrayType *v = PG_GETARG_ANY_ARRAY(0);
|
|
int reqdim = PG_GETARG_INT32(1);
|
|
int *lb,
|
|
*dimv;
|
|
|
|
/* create a function context for cross-call persistence */
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
|
|
/* Sanity check: does it look like an array at all? */
|
|
if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM)
|
|
SRF_RETURN_DONE(funcctx);
|
|
|
|
/* Sanity check: was the requested dim valid */
|
|
if (reqdim <= 0 || reqdim > AARR_NDIM(v))
|
|
SRF_RETURN_DONE(funcctx);
|
|
|
|
/*
|
|
* switch to memory context appropriate for multiple function calls
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
fctx = (generate_subscripts_fctx *) palloc(sizeof(generate_subscripts_fctx));
|
|
|
|
lb = AARR_LBOUND(v);
|
|
dimv = AARR_DIMS(v);
|
|
|
|
fctx->lower = lb[reqdim - 1];
|
|
fctx->upper = dimv[reqdim - 1] + lb[reqdim - 1] - 1;
|
|
fctx->reverse = (PG_NARGS() < 3) ? false : PG_GETARG_BOOL(2);
|
|
|
|
funcctx->user_fctx = fctx;
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
|
|
fctx = funcctx->user_fctx;
|
|
|
|
if (fctx->lower <= fctx->upper)
|
|
{
|
|
if (!fctx->reverse)
|
|
SRF_RETURN_NEXT(funcctx, Int32GetDatum(fctx->lower++));
|
|
else
|
|
SRF_RETURN_NEXT(funcctx, Int32GetDatum(fctx->upper--));
|
|
}
|
|
else
|
|
/* done when there are no more elements left */
|
|
SRF_RETURN_DONE(funcctx);
|
|
}
|
|
|
|
/*
|
|
* generate_subscripts_nodir
|
|
* Implements the 2-argument version of generate_subscripts
|
|
*/
|
|
Datum
|
|
generate_subscripts_nodir(PG_FUNCTION_ARGS)
|
|
{
|
|
/* just call the other one -- it can handle both cases */
|
|
return generate_subscripts(fcinfo);
|
|
}
|
|
|
|
/*
|
|
* array_fill_with_lower_bounds
|
|
* Create and fill array with defined lower bounds.
|
|
*/
|
|
Datum
|
|
array_fill_with_lower_bounds(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *dims;
|
|
ArrayType *lbs;
|
|
ArrayType *result;
|
|
Oid elmtype;
|
|
Datum value;
|
|
bool isnull;
|
|
|
|
if (PG_ARGISNULL(1) || PG_ARGISNULL(2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
|
|
errmsg("dimension array or low bound array cannot be null")));
|
|
|
|
dims = PG_GETARG_ARRAYTYPE_P(1);
|
|
lbs = PG_GETARG_ARRAYTYPE_P(2);
|
|
|
|
if (!PG_ARGISNULL(0))
|
|
{
|
|
value = PG_GETARG_DATUM(0);
|
|
isnull = false;
|
|
}
|
|
else
|
|
{
|
|
value = 0;
|
|
isnull = true;
|
|
}
|
|
|
|
elmtype = get_fn_expr_argtype(fcinfo->flinfo, 0);
|
|
if (!OidIsValid(elmtype))
|
|
elog(ERROR, "could not determine data type of input");
|
|
|
|
result = array_fill_internal(dims, lbs, value, isnull, elmtype, fcinfo);
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
|
|
/*
|
|
* array_fill
|
|
* Create and fill array with default lower bounds.
|
|
*/
|
|
Datum
|
|
array_fill(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *dims;
|
|
ArrayType *result;
|
|
Oid elmtype;
|
|
Datum value;
|
|
bool isnull;
|
|
|
|
if (PG_ARGISNULL(1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
|
|
errmsg("dimension array or low bound array cannot be null")));
|
|
|
|
dims = PG_GETARG_ARRAYTYPE_P(1);
|
|
|
|
if (!PG_ARGISNULL(0))
|
|
{
|
|
value = PG_GETARG_DATUM(0);
|
|
isnull = false;
|
|
}
|
|
else
|
|
{
|
|
value = 0;
|
|
isnull = true;
|
|
}
|
|
|
|
elmtype = get_fn_expr_argtype(fcinfo->flinfo, 0);
|
|
if (!OidIsValid(elmtype))
|
|
elog(ERROR, "could not determine data type of input");
|
|
|
|
result = array_fill_internal(dims, NULL, value, isnull, elmtype, fcinfo);
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
|
|
static ArrayType *
|
|
create_array_envelope(int ndims, int *dimv, int *lbsv, int nbytes,
|
|
Oid elmtype, int dataoffset)
|
|
{
|
|
ArrayType *result;
|
|
|
|
result = (ArrayType *) palloc0(nbytes);
|
|
SET_VARSIZE(result, nbytes);
|
|
result->ndim = ndims;
|
|
result->dataoffset = dataoffset;
|
|
result->elemtype = elmtype;
|
|
memcpy(ARR_DIMS(result), dimv, ndims * sizeof(int));
|
|
memcpy(ARR_LBOUND(result), lbsv, ndims * sizeof(int));
|
|
|
|
return result;
|
|
}
|
|
|
|
static ArrayType *
|
|
array_fill_internal(ArrayType *dims, ArrayType *lbs,
|
|
Datum value, bool isnull, Oid elmtype,
|
|
FunctionCallInfo fcinfo)
|
|
{
|
|
ArrayType *result;
|
|
int *dimv;
|
|
int *lbsv;
|
|
int ndims;
|
|
int nitems;
|
|
int deflbs[MAXDIM];
|
|
int16 elmlen;
|
|
bool elmbyval;
|
|
char elmalign;
|
|
ArrayMetaState *my_extra;
|
|
|
|
/*
|
|
* Params checks
|
|
*/
|
|
if (ARR_NDIM(dims) != 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("wrong number of array subscripts"),
|
|
errdetail("Dimension array must be one dimensional.")));
|
|
|
|
if (ARR_LBOUND(dims)[0] != 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("wrong range of array subscripts"),
|
|
errdetail("Lower bound of dimension array must be one.")));
|
|
|
|
if (array_contains_nulls(dims))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
|
|
errmsg("dimension values cannot be null")));
|
|
|
|
dimv = (int *) ARR_DATA_PTR(dims);
|
|
ndims = ARR_DIMS(dims)[0];
|
|
|
|
if (ndims < 0) /* we do allow zero-dimension arrays */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("invalid number of dimensions: %d", ndims)));
|
|
if (ndims > MAXDIM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)",
|
|
ndims, MAXDIM)));
|
|
|
|
if (lbs != NULL)
|
|
{
|
|
if (ARR_NDIM(lbs) != 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("wrong number of array subscripts"),
|
|
errdetail("Dimension array must be one dimensional.")));
|
|
|
|
if (ARR_LBOUND(lbs)[0] != 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("wrong range of array subscripts"),
|
|
errdetail("Lower bound of dimension array must be one.")));
|
|
|
|
if (array_contains_nulls(lbs))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
|
|
errmsg("dimension values cannot be null")));
|
|
|
|
if (ARR_DIMS(lbs)[0] != ndims)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("wrong number of array subscripts"),
|
|
errdetail("Low bound array has different size than dimensions array.")));
|
|
|
|
lbsv = (int *) ARR_DATA_PTR(lbs);
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAXDIM; i++)
|
|
deflbs[i] = 1;
|
|
|
|
lbsv = deflbs;
|
|
}
|
|
|
|
/* fast track for empty array */
|
|
if (ndims == 0)
|
|
return construct_empty_array(elmtype);
|
|
|
|
nitems = ArrayGetNItems(ndims, dimv);
|
|
|
|
/*
|
|
* We arrange to look up info about element type only once per series of
|
|
* calls, assuming the element type doesn't change underneath us.
|
|
*/
|
|
my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
|
|
if (my_extra == NULL)
|
|
{
|
|
fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
|
|
sizeof(ArrayMetaState));
|
|
my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
|
|
my_extra->element_type = InvalidOid;
|
|
}
|
|
|
|
if (my_extra->element_type != elmtype)
|
|
{
|
|
/* Get info about element type */
|
|
get_typlenbyvalalign(elmtype,
|
|
&my_extra->typlen,
|
|
&my_extra->typbyval,
|
|
&my_extra->typalign);
|
|
my_extra->element_type = elmtype;
|
|
}
|
|
|
|
elmlen = my_extra->typlen;
|
|
elmbyval = my_extra->typbyval;
|
|
elmalign = my_extra->typalign;
|
|
|
|
/* compute required space */
|
|
if (!isnull)
|
|
{
|
|
int i;
|
|
char *p;
|
|
int nbytes;
|
|
int totbytes;
|
|
|
|
/* make sure data is not toasted */
|
|
if (elmlen == -1)
|
|
value = PointerGetDatum(PG_DETOAST_DATUM(value));
|
|
|
|
nbytes = att_addlength_datum(0, elmlen, value);
|
|
nbytes = att_align_nominal(nbytes, elmalign);
|
|
Assert(nbytes > 0);
|
|
|
|
totbytes = nbytes * nitems;
|
|
|
|
/* check for overflow of multiplication or total request */
|
|
if (totbytes / nbytes != nitems ||
|
|
!AllocSizeIsValid(totbytes))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("array size exceeds the maximum allowed (%d)",
|
|
(int) MaxAllocSize)));
|
|
|
|
/*
|
|
* This addition can't overflow, but it might cause us to go past
|
|
* MaxAllocSize. We leave it to palloc to complain in that case.
|
|
*/
|
|
totbytes += ARR_OVERHEAD_NONULLS(ndims);
|
|
|
|
result = create_array_envelope(ndims, dimv, lbsv, totbytes,
|
|
elmtype, 0);
|
|
|
|
p = ARR_DATA_PTR(result);
|
|
for (i = 0; i < nitems; i++)
|
|
p += ArrayCastAndSet(value, elmlen, elmbyval, elmalign, p);
|
|
}
|
|
else
|
|
{
|
|
int nbytes;
|
|
int dataoffset;
|
|
|
|
dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nitems);
|
|
nbytes = dataoffset;
|
|
|
|
result = create_array_envelope(ndims, dimv, lbsv, nbytes,
|
|
elmtype, dataoffset);
|
|
|
|
/* create_array_envelope already zeroed the bitmap, so we're done */
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* UNNEST
|
|
*/
|
|
Datum
|
|
array_unnest(PG_FUNCTION_ARGS)
|
|
{
|
|
typedef struct
|
|
{
|
|
array_iter iter;
|
|
int nextelem;
|
|
int numelems;
|
|
int16 elmlen;
|
|
bool elmbyval;
|
|
char elmalign;
|
|
} array_unnest_fctx;
|
|
|
|
FuncCallContext *funcctx;
|
|
array_unnest_fctx *fctx;
|
|
MemoryContext oldcontext;
|
|
|
|
/* stuff done only on the first call of the function */
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
AnyArrayType *arr;
|
|
|
|
/* create a function context for cross-call persistence */
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
|
|
/*
|
|
* switch to memory context appropriate for multiple function calls
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
|
|
/*
|
|
* Get the array value and detoast if needed. We can't do this
|
|
* earlier because if we have to detoast, we want the detoasted copy
|
|
* to be in multi_call_memory_ctx, so it will go away when we're done
|
|
* and not before. (If no detoast happens, we assume the originally
|
|
* passed array will stick around till then.)
|
|
*/
|
|
arr = PG_GETARG_ANY_ARRAY(0);
|
|
|
|
/* allocate memory for user context */
|
|
fctx = (array_unnest_fctx *) palloc(sizeof(array_unnest_fctx));
|
|
|
|
/* initialize state */
|
|
array_iter_setup(&fctx->iter, arr);
|
|
fctx->nextelem = 0;
|
|
fctx->numelems = ArrayGetNItems(AARR_NDIM(arr), AARR_DIMS(arr));
|
|
|
|
if (VARATT_IS_EXPANDED_HEADER(arr))
|
|
{
|
|
/* we can just grab the type data from expanded array */
|
|
fctx->elmlen = arr->xpn.typlen;
|
|
fctx->elmbyval = arr->xpn.typbyval;
|
|
fctx->elmalign = arr->xpn.typalign;
|
|
}
|
|
else
|
|
get_typlenbyvalalign(AARR_ELEMTYPE(arr),
|
|
&fctx->elmlen,
|
|
&fctx->elmbyval,
|
|
&fctx->elmalign);
|
|
|
|
funcctx->user_fctx = fctx;
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* stuff done on every call of the function */
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
fctx = funcctx->user_fctx;
|
|
|
|
if (fctx->nextelem < fctx->numelems)
|
|
{
|
|
int offset = fctx->nextelem++;
|
|
Datum elem;
|
|
|
|
elem = array_iter_next(&fctx->iter, &fcinfo->isnull, offset,
|
|
fctx->elmlen, fctx->elmbyval, fctx->elmalign);
|
|
|
|
SRF_RETURN_NEXT(funcctx, elem);
|
|
}
|
|
else
|
|
{
|
|
/* do when there is no more left */
|
|
SRF_RETURN_DONE(funcctx);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* array_replace/array_remove support
|
|
*
|
|
* Find all array entries matching (not distinct from) search/search_isnull,
|
|
* and delete them if remove is true, else replace them with
|
|
* replace/replace_isnull. Comparisons are done using the specified
|
|
* collation. fcinfo is passed only for caching purposes.
|
|
*/
|
|
static ArrayType *
|
|
array_replace_internal(ArrayType *array,
|
|
Datum search, bool search_isnull,
|
|
Datum replace, bool replace_isnull,
|
|
bool remove, Oid collation,
|
|
FunctionCallInfo fcinfo)
|
|
{
|
|
ArrayType *result;
|
|
Oid element_type;
|
|
Datum *values;
|
|
bool *nulls;
|
|
int *dim;
|
|
int ndim;
|
|
int nitems,
|
|
nresult;
|
|
int i;
|
|
int32 nbytes = 0;
|
|
int32 dataoffset;
|
|
bool hasnulls;
|
|
int typlen;
|
|
bool typbyval;
|
|
char typalign;
|
|
char *arraydataptr;
|
|
bits8 *bitmap;
|
|
int bitmask;
|
|
bool changed = false;
|
|
TypeCacheEntry *typentry;
|
|
FunctionCallInfoData locfcinfo;
|
|
|
|
element_type = ARR_ELEMTYPE(array);
|
|
ndim = ARR_NDIM(array);
|
|
dim = ARR_DIMS(array);
|
|
nitems = ArrayGetNItems(ndim, dim);
|
|
|
|
/* Return input array unmodified if it is empty */
|
|
if (nitems <= 0)
|
|
return array;
|
|
|
|
/*
|
|
* We can't remove elements from multi-dimensional arrays, since the
|
|
* result might not be rectangular.
|
|
*/
|
|
if (remove && ndim > 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("removing elements from multidimensional arrays is not supported")));
|
|
|
|
/*
|
|
* We arrange to look up the equality function only once per series of
|
|
* calls, assuming the element type doesn't change underneath us.
|
|
*/
|
|
typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra;
|
|
if (typentry == NULL ||
|
|
typentry->type_id != element_type)
|
|
{
|
|
typentry = lookup_type_cache(element_type,
|
|
TYPECACHE_EQ_OPR_FINFO);
|
|
if (!OidIsValid(typentry->eq_opr_finfo.fn_oid))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmsg("could not identify an equality operator for type %s",
|
|
format_type_be(element_type))));
|
|
fcinfo->flinfo->fn_extra = (void *) typentry;
|
|
}
|
|
typlen = typentry->typlen;
|
|
typbyval = typentry->typbyval;
|
|
typalign = typentry->typalign;
|
|
|
|
/*
|
|
* Detoast values if they are toasted. The replacement value must be
|
|
* detoasted for insertion into the result array, while detoasting the
|
|
* search value only once saves cycles.
|
|
*/
|
|
if (typlen == -1)
|
|
{
|
|
if (!search_isnull)
|
|
search = PointerGetDatum(PG_DETOAST_DATUM(search));
|
|
if (!replace_isnull)
|
|
replace = PointerGetDatum(PG_DETOAST_DATUM(replace));
|
|
}
|
|
|
|
/* Prepare to apply the comparison operator */
|
|
InitFunctionCallInfoData(locfcinfo, &typentry->eq_opr_finfo, 2,
|
|
collation, NULL, NULL);
|
|
|
|
/* Allocate temporary arrays for new values */
|
|
values = (Datum *) palloc(nitems * sizeof(Datum));
|
|
nulls = (bool *) palloc(nitems * sizeof(bool));
|
|
|
|
/* Loop over source data */
|
|
arraydataptr = ARR_DATA_PTR(array);
|
|
bitmap = ARR_NULLBITMAP(array);
|
|
bitmask = 1;
|
|
hasnulls = false;
|
|
nresult = 0;
|
|
|
|
for (i = 0; i < nitems; i++)
|
|
{
|
|
Datum elt;
|
|
bool isNull;
|
|
bool oprresult;
|
|
bool skip = false;
|
|
|
|
/* Get source element, checking for NULL */
|
|
if (bitmap && (*bitmap & bitmask) == 0)
|
|
{
|
|
isNull = true;
|
|
/* If searching for NULL, we have a match */
|
|
if (search_isnull)
|
|
{
|
|
if (remove)
|
|
{
|
|
skip = true;
|
|
changed = true;
|
|
}
|
|
else if (!replace_isnull)
|
|
{
|
|
values[nresult] = replace;
|
|
isNull = false;
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
isNull = false;
|
|
elt = fetch_att(arraydataptr, typbyval, typlen);
|
|
arraydataptr = att_addlength_datum(arraydataptr, typlen, elt);
|
|
arraydataptr = (char *) att_align_nominal(arraydataptr, typalign);
|
|
|
|
if (search_isnull)
|
|
{
|
|
/* no match possible, keep element */
|
|
values[nresult] = elt;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Apply the operator to the element pair
|
|
*/
|
|
locfcinfo.arg[0] = elt;
|
|
locfcinfo.arg[1] = search;
|
|
locfcinfo.argnull[0] = false;
|
|
locfcinfo.argnull[1] = false;
|
|
locfcinfo.isnull = false;
|
|
oprresult = DatumGetBool(FunctionCallInvoke(&locfcinfo));
|
|
if (!oprresult)
|
|
{
|
|
/* no match, keep element */
|
|
values[nresult] = elt;
|
|
}
|
|
else
|
|
{
|
|
/* match, so replace or delete */
|
|
changed = true;
|
|
if (remove)
|
|
skip = true;
|
|
else
|
|
{
|
|
values[nresult] = replace;
|
|
isNull = replace_isnull;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!skip)
|
|
{
|
|
nulls[nresult] = isNull;
|
|
if (isNull)
|
|
hasnulls = true;
|
|
else
|
|
{
|
|
/* Update total result size */
|
|
nbytes = att_addlength_datum(nbytes, typlen, values[nresult]);
|
|
nbytes = att_align_nominal(nbytes, typalign);
|
|
/* check for overflow of total request */
|
|
if (!AllocSizeIsValid(nbytes))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("array size exceeds the maximum allowed (%d)",
|
|
(int) MaxAllocSize)));
|
|
}
|
|
nresult++;
|
|
}
|
|
|
|
/* advance bitmap pointer if any */
|
|
if (bitmap)
|
|
{
|
|
bitmask <<= 1;
|
|
if (bitmask == 0x100)
|
|
{
|
|
bitmap++;
|
|
bitmask = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If not changed just return the original array
|
|
*/
|
|
if (!changed)
|
|
{
|
|
pfree(values);
|
|
pfree(nulls);
|
|
return array;
|
|
}
|
|
|
|
/* If all elements were removed return an empty array */
|
|
if (nresult == 0)
|
|
{
|
|
pfree(values);
|
|
pfree(nulls);
|
|
return construct_empty_array(element_type);
|
|
}
|
|
|
|
/* Allocate and initialize the result array */
|
|
if (hasnulls)
|
|
{
|
|
dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nresult);
|
|
nbytes += dataoffset;
|
|
}
|
|
else
|
|
{
|
|
dataoffset = 0; /* marker for no null bitmap */
|
|
nbytes += ARR_OVERHEAD_NONULLS(ndim);
|
|
}
|
|
result = (ArrayType *) palloc0(nbytes);
|
|
SET_VARSIZE(result, nbytes);
|
|
result->ndim = ndim;
|
|
result->dataoffset = dataoffset;
|
|
result->elemtype = element_type;
|
|
memcpy(ARR_DIMS(result), ARR_DIMS(array), ndim * sizeof(int));
|
|
memcpy(ARR_LBOUND(result), ARR_LBOUND(array), ndim * sizeof(int));
|
|
|
|
if (remove)
|
|
{
|
|
/* Adjust the result length */
|
|
ARR_DIMS(result)[0] = nresult;
|
|
}
|
|
|
|
/* Insert data into result array */
|
|
CopyArrayEls(result,
|
|
values, nulls, nresult,
|
|
typlen, typbyval, typalign,
|
|
false);
|
|
|
|
pfree(values);
|
|
pfree(nulls);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Remove any occurrences of an element from an array
|
|
*
|
|
* If used on a multi-dimensional array this will raise an error.
|
|
*/
|
|
Datum
|
|
array_remove(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *array;
|
|
Datum search = PG_GETARG_DATUM(1);
|
|
bool search_isnull = PG_ARGISNULL(1);
|
|
|
|
if (PG_ARGISNULL(0))
|
|
PG_RETURN_NULL();
|
|
array = PG_GETARG_ARRAYTYPE_P(0);
|
|
|
|
array = array_replace_internal(array,
|
|
search, search_isnull,
|
|
(Datum) 0, true,
|
|
true, PG_GET_COLLATION(),
|
|
fcinfo);
|
|
PG_RETURN_ARRAYTYPE_P(array);
|
|
}
|
|
|
|
/*
|
|
* Replace any occurrences of an element in an array
|
|
*/
|
|
Datum
|
|
array_replace(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *array;
|
|
Datum search = PG_GETARG_DATUM(1);
|
|
bool search_isnull = PG_ARGISNULL(1);
|
|
Datum replace = PG_GETARG_DATUM(2);
|
|
bool replace_isnull = PG_ARGISNULL(2);
|
|
|
|
if (PG_ARGISNULL(0))
|
|
PG_RETURN_NULL();
|
|
array = PG_GETARG_ARRAYTYPE_P(0);
|
|
|
|
array = array_replace_internal(array,
|
|
search, search_isnull,
|
|
replace, replace_isnull,
|
|
false, PG_GET_COLLATION(),
|
|
fcinfo);
|
|
PG_RETURN_ARRAYTYPE_P(array);
|
|
}
|
|
|
|
/*
|
|
* Implements width_bucket(anyelement, anyarray).
|
|
*
|
|
* 'thresholds' is an array containing lower bound values for each bucket;
|
|
* these must be sorted from smallest to largest, or bogus results will be
|
|
* produced. If N thresholds are supplied, the output is from 0 to N:
|
|
* 0 is for inputs < first threshold, N is for inputs >= last threshold.
|
|
*/
|
|
Datum
|
|
width_bucket_array(PG_FUNCTION_ARGS)
|
|
{
|
|
Datum operand = PG_GETARG_DATUM(0);
|
|
ArrayType *thresholds = PG_GETARG_ARRAYTYPE_P(1);
|
|
Oid collation = PG_GET_COLLATION();
|
|
Oid element_type = ARR_ELEMTYPE(thresholds);
|
|
int result;
|
|
|
|
/* Check input */
|
|
if (ARR_NDIM(thresholds) > 1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
|
|
errmsg("thresholds must be one-dimensional array")));
|
|
|
|
if (array_contains_nulls(thresholds))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
|
|
errmsg("thresholds array must not contain NULLs")));
|
|
|
|
/* We have a dedicated implementation for float8 data */
|
|
if (element_type == FLOAT8OID)
|
|
result = width_bucket_array_float8(operand, thresholds);
|
|
else
|
|
{
|
|
TypeCacheEntry *typentry;
|
|
|
|
/* Cache information about the input type */
|
|
typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra;
|
|
if (typentry == NULL ||
|
|
typentry->type_id != element_type)
|
|
{
|
|
typentry = lookup_type_cache(element_type,
|
|
TYPECACHE_CMP_PROC_FINFO);
|
|
if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmsg("could not identify a comparison function for type %s",
|
|
format_type_be(element_type))));
|
|
fcinfo->flinfo->fn_extra = (void *) typentry;
|
|
}
|
|
|
|
/*
|
|
* We have separate implementation paths for fixed- and variable-width
|
|
* types, since indexing the array is a lot cheaper in the first case.
|
|
*/
|
|
if (typentry->typlen > 0)
|
|
result = width_bucket_array_fixed(operand, thresholds,
|
|
collation, typentry);
|
|
else
|
|
result = width_bucket_array_variable(operand, thresholds,
|
|
collation, typentry);
|
|
}
|
|
|
|
/* Avoid leaking memory when handed toasted input. */
|
|
PG_FREE_IF_COPY(thresholds, 1);
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/*
|
|
* width_bucket_array for float8 data.
|
|
*/
|
|
static int
|
|
width_bucket_array_float8(Datum operand, ArrayType *thresholds)
|
|
{
|
|
float8 op = DatumGetFloat8(operand);
|
|
float8 *thresholds_data;
|
|
int left;
|
|
int right;
|
|
|
|
/*
|
|
* Since we know the array contains no NULLs, we can just index it
|
|
* directly.
|
|
*/
|
|
thresholds_data = (float8 *) ARR_DATA_PTR(thresholds);
|
|
|
|
left = 0;
|
|
right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds));
|
|
|
|
/*
|
|
* If the probe value is a NaN, it's greater than or equal to all possible
|
|
* threshold values (including other NaNs), so we need not search. Note
|
|
* that this would give the same result as searching even if the array
|
|
* contains multiple NaNs (as long as they're correctly sorted), since the
|
|
* loop logic will find the rightmost of multiple equal threshold values.
|
|
*/
|
|
if (isnan(op))
|
|
return right;
|
|
|
|
/* Find the bucket */
|
|
while (left < right)
|
|
{
|
|
int mid = (left + right) / 2;
|
|
|
|
if (isnan(thresholds_data[mid]) || op < thresholds_data[mid])
|
|
right = mid;
|
|
else
|
|
left = mid + 1;
|
|
}
|
|
|
|
return left;
|
|
}
|
|
|
|
/*
|
|
* width_bucket_array for generic fixed-width data types.
|
|
*/
|
|
static int
|
|
width_bucket_array_fixed(Datum operand,
|
|
ArrayType *thresholds,
|
|
Oid collation,
|
|
TypeCacheEntry *typentry)
|
|
{
|
|
char *thresholds_data;
|
|
int typlen = typentry->typlen;
|
|
bool typbyval = typentry->typbyval;
|
|
FunctionCallInfoData locfcinfo;
|
|
int left;
|
|
int right;
|
|
|
|
/*
|
|
* Since we know the array contains no NULLs, we can just index it
|
|
* directly.
|
|
*/
|
|
thresholds_data = (char *) ARR_DATA_PTR(thresholds);
|
|
|
|
InitFunctionCallInfoData(locfcinfo, &typentry->cmp_proc_finfo, 2,
|
|
collation, NULL, NULL);
|
|
|
|
/* Find the bucket */
|
|
left = 0;
|
|
right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds));
|
|
while (left < right)
|
|
{
|
|
int mid = (left + right) / 2;
|
|
char *ptr;
|
|
int32 cmpresult;
|
|
|
|
ptr = thresholds_data + mid * typlen;
|
|
|
|
locfcinfo.arg[0] = operand;
|
|
locfcinfo.arg[1] = fetch_att(ptr, typbyval, typlen);
|
|
locfcinfo.argnull[0] = false;
|
|
locfcinfo.argnull[1] = false;
|
|
locfcinfo.isnull = false;
|
|
|
|
cmpresult = DatumGetInt32(FunctionCallInvoke(&locfcinfo));
|
|
|
|
if (cmpresult < 0)
|
|
right = mid;
|
|
else
|
|
left = mid + 1;
|
|
}
|
|
|
|
return left;
|
|
}
|
|
|
|
/*
|
|
* width_bucket_array for generic variable-width data types.
|
|
*/
|
|
static int
|
|
width_bucket_array_variable(Datum operand,
|
|
ArrayType *thresholds,
|
|
Oid collation,
|
|
TypeCacheEntry *typentry)
|
|
{
|
|
char *thresholds_data;
|
|
int typlen = typentry->typlen;
|
|
bool typbyval = typentry->typbyval;
|
|
char typalign = typentry->typalign;
|
|
FunctionCallInfoData locfcinfo;
|
|
int left;
|
|
int right;
|
|
|
|
thresholds_data = (char *) ARR_DATA_PTR(thresholds);
|
|
|
|
InitFunctionCallInfoData(locfcinfo, &typentry->cmp_proc_finfo, 2,
|
|
collation, NULL, NULL);
|
|
|
|
/* Find the bucket */
|
|
left = 0;
|
|
right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds));
|
|
while (left < right)
|
|
{
|
|
int mid = (left + right) / 2;
|
|
char *ptr;
|
|
int i;
|
|
int32 cmpresult;
|
|
|
|
/* Locate mid'th array element by advancing from left element */
|
|
ptr = thresholds_data;
|
|
for (i = left; i < mid; i++)
|
|
{
|
|
ptr = att_addlength_pointer(ptr, typlen, ptr);
|
|
ptr = (char *) att_align_nominal(ptr, typalign);
|
|
}
|
|
|
|
locfcinfo.arg[0] = operand;
|
|
locfcinfo.arg[1] = fetch_att(ptr, typbyval, typlen);
|
|
locfcinfo.argnull[0] = false;
|
|
locfcinfo.argnull[1] = false;
|
|
locfcinfo.isnull = false;
|
|
|
|
cmpresult = DatumGetInt32(FunctionCallInvoke(&locfcinfo));
|
|
|
|
if (cmpresult < 0)
|
|
right = mid;
|
|
else
|
|
{
|
|
left = mid + 1;
|
|
|
|
/*
|
|
* Move the thresholds pointer to match new "left" index, so we
|
|
* don't have to seek over those elements again. This trick
|
|
* ensures we do only O(N) array indexing work, not O(N^2).
|
|
*/
|
|
ptr = att_addlength_pointer(ptr, typlen, ptr);
|
|
thresholds_data = (char *) att_align_nominal(ptr, typalign);
|
|
}
|
|
}
|
|
|
|
return left;
|
|
}
|