1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-11 05:41:32 +03:00
PostgreSQL Daemon 2ff501590b Tag appropriate files for rc3
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
2004-12-31 22:04:05 +00:00

1192 lines
34 KiB
C

/*-------------------------------------------------------------------------
*
* prepunion.c
* Routines to plan set-operation queries. The filename is a leftover
* from a time when only UNIONs were implemented.
*
* There is also some code here to support planning of queries that use
* inheritance (SELECT FROM foo*). This no longer has much connection
* to the processing of UNION queries, but it's still here.
*
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/optimizer/prep/prepunion.c,v 1.119 2004/12/31 22:00:20 pgsql Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/tlist.h"
#include "parser/parse_clause.h"
#include "parser/parse_coerce.h"
#include "parser/parsetree.h"
#include "utils/lsyscache.h"
typedef struct
{
Index old_rt_index;
Index new_rt_index;
Oid old_rel_type;
Oid new_rel_type;
TupleDesc old_tupdesc;
TupleDesc new_tupdesc;
char *old_rel_name;
char *new_rel_name;
} adjust_inherited_attrs_context;
static Plan *recurse_set_operations(Node *setOp, Query *parse,
List *colTypes, bool junkOK,
int flag, List *refnames_tlist,
List **sortClauses);
static Plan *generate_union_plan(SetOperationStmt *op, Query *parse,
List *refnames_tlist, List **sortClauses);
static Plan *generate_nonunion_plan(SetOperationStmt *op, Query *parse,
List *refnames_tlist, List **sortClauses);
static List *recurse_union_children(Node *setOp, Query *parse,
SetOperationStmt *top_union,
List *refnames_tlist);
static List *generate_setop_tlist(List *colTypes, int flag,
bool hack_constants,
List *input_tlist,
List *refnames_tlist);
static List *generate_append_tlist(List *colTypes, bool flag,
List *input_plans,
List *refnames_tlist);
static bool tlist_same_datatypes(List *tlist, List *colTypes, bool junkOK);
static Node *adjust_inherited_attrs_mutator(Node *node,
adjust_inherited_attrs_context *context);
static Relids adjust_relid_set(Relids relids, Index oldrelid, Index newrelid);
static List *adjust_inherited_tlist(List *tlist,
adjust_inherited_attrs_context *context);
/*
* plan_set_operations
*
* Plans the queries for a tree of set operations (UNION/INTERSECT/EXCEPT)
*
* This routine only deals with the setOperations tree of the given query.
* Any top-level ORDER BY requested in parse->sortClause will be added
* when we return to grouping_planner.
*
* *sortClauses is an output argument: it is set to a list of SortClauses
* representing the result ordering of the topmost set operation.
*/
Plan *
plan_set_operations(Query *parse, List **sortClauses)
{
SetOperationStmt *topop = (SetOperationStmt *) parse->setOperations;
Node *node;
Query *leftmostQuery;
Assert(topop && IsA(topop, SetOperationStmt));
/* check for unsupported stuff */
Assert(parse->utilityStmt == NULL);
Assert(parse->jointree->fromlist == NIL);
Assert(parse->jointree->quals == NULL);
Assert(parse->groupClause == NIL);
Assert(parse->havingQual == NULL);
Assert(parse->distinctClause == NIL);
/*
* Find the leftmost component Query. We need to use its column names
* for all generated tlists (else SELECT INTO won't work right).
*/
node = topop->larg;
while (node && IsA(node, SetOperationStmt))
node = ((SetOperationStmt *) node)->larg;
Assert(node && IsA(node, RangeTblRef));
leftmostQuery = rt_fetch(((RangeTblRef *) node)->rtindex,
parse->rtable)->subquery;
Assert(leftmostQuery != NULL);
/*
* Recurse on setOperations tree to generate plans for set ops. The
* final output plan should have just the column types shown as the
* output from the top-level node, plus possibly a resjunk working
* column (we can rely on upper-level nodes to deal with that).
*/
return recurse_set_operations((Node *) topop, parse,
topop->colTypes, true, -1,
leftmostQuery->targetList,
sortClauses);
}
/*
* recurse_set_operations
* Recursively handle one step in a tree of set operations
*
* colTypes: list of type OIDs of expected output columns
* junkOK: if true, child resjunk columns may be left in the result
* flag: if >= 0, add a resjunk output column indicating value of flag
* refnames_tlist: targetlist to take column names from
* *sortClauses: receives list of SortClauses for result plan, if any
*/
static Plan *
recurse_set_operations(Node *setOp, Query *parse,
List *colTypes, bool junkOK,
int flag, List *refnames_tlist,
List **sortClauses)
{
if (IsA(setOp, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) setOp;
RangeTblEntry *rte = rt_fetch(rtr->rtindex, parse->rtable);
Query *subquery = rte->subquery;
Plan *subplan,
*plan;
Assert(subquery != NULL);
/*
* Generate plan for primitive subquery
*/
subplan = subquery_planner(subquery, 0.0 /* default case */ );
/*
* Add a SubqueryScan with the caller-requested targetlist
*/
plan = (Plan *)
make_subqueryscan(generate_setop_tlist(colTypes, flag, true,
subplan->targetlist,
refnames_tlist),
NIL,
rtr->rtindex,
subplan);
/*
* We don't bother to determine the subquery's output ordering
* since it won't be reflected in the set-op result anyhow.
*/
*sortClauses = NIL;
return plan;
}
else if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
Plan *plan;
/* UNIONs are much different from INTERSECT/EXCEPT */
if (op->op == SETOP_UNION)
plan = generate_union_plan(op, parse, refnames_tlist,
sortClauses);
else
plan = generate_nonunion_plan(op, parse, refnames_tlist,
sortClauses);
/*
* If necessary, add a Result node to project the caller-requested
* output columns.
*
* XXX you don't really want to know about this: setrefs.c will apply
* replace_vars_with_subplan_refs() to the Result node's tlist.
* This would fail if the Vars generated by generate_setop_tlist()
* were not exactly equal() to the corresponding tlist entries of
* the subplan. However, since the subplan was generated by
* generate_union_plan() or generate_nonunion_plan(), and hence
* its tlist was generated by generate_append_tlist(), this will
* work.
*/
if (flag >= 0 ||
!tlist_same_datatypes(plan->targetlist, colTypes, junkOK))
{
plan = (Plan *)
make_result(generate_setop_tlist(colTypes, flag, false,
plan->targetlist,
refnames_tlist),
NULL,
plan);
}
return plan;
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(setOp));
return NULL; /* keep compiler quiet */
}
}
/*
* Generate plan for a UNION or UNION ALL node
*/
static Plan *
generate_union_plan(SetOperationStmt *op, Query *parse,
List *refnames_tlist,
List **sortClauses)
{
List *planlist;
List *tlist;
Plan *plan;
/*
* If any of my children are identical UNION nodes (same op, all-flag,
* and colTypes) then they can be merged into this node so that we
* generate only one Append and Sort for the lot. Recurse to find
* such nodes and compute their children's plans.
*/
planlist = list_concat(recurse_union_children(op->larg, parse,
op, refnames_tlist),
recurse_union_children(op->rarg, parse,
op, refnames_tlist));
/*
* Generate tlist for Append plan node.
*
* The tlist for an Append plan isn't important as far as the Append is
* concerned, but we must make it look real anyway for the benefit of
* the next plan level up.
*/
tlist = generate_append_tlist(op->colTypes, false,
planlist, refnames_tlist);
/*
* Append the child results together.
*/
plan = (Plan *) make_append(planlist, false, tlist);
/*
* For UNION ALL, we just need the Append plan. For UNION, need to
* add Sort and Unique nodes to produce unique output.
*/
if (!op->all)
{
List *sortList;
sortList = addAllTargetsToSortList(NULL, NIL, tlist, false);
if (sortList)
{
plan = (Plan *) make_sort_from_sortclauses(parse, sortList, plan);
plan = (Plan *) make_unique(plan, sortList);
}
*sortClauses = sortList;
}
else
*sortClauses = NIL;
return plan;
}
/*
* Generate plan for an INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL node
*/
static Plan *
generate_nonunion_plan(SetOperationStmt *op, Query *parse,
List *refnames_tlist,
List **sortClauses)
{
Plan *lplan,
*rplan,
*plan;
List *tlist,
*sortList,
*planlist,
*child_sortclauses;
SetOpCmd cmd;
/* Recurse on children, ensuring their outputs are marked */
lplan = recurse_set_operations(op->larg, parse,
op->colTypes, false, 0,
refnames_tlist,
&child_sortclauses);
rplan = recurse_set_operations(op->rarg, parse,
op->colTypes, false, 1,
refnames_tlist,
&child_sortclauses);
planlist = list_make2(lplan, rplan);
/*
* Generate tlist for Append plan node.
*
* The tlist for an Append plan isn't important as far as the Append is
* concerned, but we must make it look real anyway for the benefit of
* the next plan level up. In fact, it has to be real enough that the
* flag column is shown as a variable not a constant, else setrefs.c
* will get confused.
*/
tlist = generate_append_tlist(op->colTypes, true,
planlist, refnames_tlist);
/*
* Append the child results together.
*/
plan = (Plan *) make_append(planlist, false, tlist);
/*
* Sort the child results, then add a SetOp plan node to generate the
* correct output.
*/
sortList = addAllTargetsToSortList(NULL, NIL, tlist, false);
if (sortList == NIL) /* nothing to sort on? */
{
*sortClauses = NIL;
return plan;
}
plan = (Plan *) make_sort_from_sortclauses(parse, sortList, plan);
switch (op->op)
{
case SETOP_INTERSECT:
cmd = op->all ? SETOPCMD_INTERSECT_ALL : SETOPCMD_INTERSECT;
break;
case SETOP_EXCEPT:
cmd = op->all ? SETOPCMD_EXCEPT_ALL : SETOPCMD_EXCEPT;
break;
default:
elog(ERROR, "unrecognized set op: %d",
(int) op->op);
cmd = SETOPCMD_INTERSECT; /* keep compiler quiet */
break;
}
plan = (Plan *) make_setop(cmd, plan, sortList, list_length(op->colTypes) + 1);
*sortClauses = sortList;
return plan;
}
/*
* Pull up children of a UNION node that are identically-propertied UNIONs.
*
* NOTE: we can also pull a UNION ALL up into a UNION, since the distinct
* output rows will be lost anyway.
*/
static List *
recurse_union_children(Node *setOp, Query *parse,
SetOperationStmt *top_union,
List *refnames_tlist)
{
List *child_sortclauses;
if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
if (op->op == top_union->op &&
(op->all == top_union->all || op->all) &&
equal(op->colTypes, top_union->colTypes))
{
/* Same UNION, so fold children into parent's subplan list */
return list_concat(recurse_union_children(op->larg, parse,
top_union,
refnames_tlist),
recurse_union_children(op->rarg, parse,
top_union,
refnames_tlist));
}
}
/*
* Not same, so plan this child separately.
*
* Note we disallow any resjunk columns in child results. This is
* necessary since the Append node that implements the union won't do
* any projection, and upper levels will get confused if some of our
* output tuples have junk and some don't. This case only arises when
* we have an EXCEPT or INTERSECT as child, else there won't be
* resjunk anyway.
*/
return list_make1(recurse_set_operations(setOp, parse,
top_union->colTypes, false,
-1, refnames_tlist,
&child_sortclauses));
}
/*
* Generate targetlist for a set-operation plan node
*
* colTypes: column datatypes for non-junk columns
* flag: -1 if no flag column needed, 0 or 1 to create a const flag column
* hack_constants: true to copy up constants (see comments in code)
* input_tlist: targetlist of this node's input node
* refnames_tlist: targetlist to take column names from
*/
static List *
generate_setop_tlist(List *colTypes, int flag,
bool hack_constants,
List *input_tlist,
List *refnames_tlist)
{
List *tlist = NIL;
int resno = 1;
ListCell *i,
*j,
*k;
Resdom *resdom;
Node *expr;
j = list_head(input_tlist);
k = list_head(refnames_tlist);
foreach(i, colTypes)
{
Oid colType = lfirst_oid(i);
TargetEntry *inputtle = (TargetEntry *) lfirst(j);
TargetEntry *reftle = (TargetEntry *) lfirst(k);
int32 colTypmod;
Assert(inputtle->resdom->resno == resno);
Assert(reftle->resdom->resno == resno);
Assert(!inputtle->resdom->resjunk);
Assert(!reftle->resdom->resjunk);
/*
* Generate columns referencing input columns and having
* appropriate data types and column names. Insert datatype
* coercions where necessary.
*
* HACK: constants in the input's targetlist are copied up as-is
* rather than being referenced as subquery outputs. This is
* mainly to ensure that when we try to coerce them to the output
* column's datatype, the right things happen for UNKNOWN
* constants. But do this only at the first level of
* subquery-scan plans; we don't want phony constants appearing in
* the output tlists of upper-level nodes!
*/
if (hack_constants && inputtle->expr && IsA(inputtle->expr, Const))
expr = (Node *) inputtle->expr;
else
expr = (Node *) makeVar(0,
inputtle->resdom->resno,
inputtle->resdom->restype,
inputtle->resdom->restypmod,
0);
if (inputtle->resdom->restype == colType)
{
/* no coercion needed, and believe the input typmod */
colTypmod = inputtle->resdom->restypmod;
}
else
{
expr = coerce_to_common_type(NULL, /* no UNKNOWNs here */
expr,
colType,
"UNION/INTERSECT/EXCEPT");
colTypmod = -1;
}
resdom = makeResdom((AttrNumber) resno++,
colType,
colTypmod,
pstrdup(reftle->resdom->resname),
false);
tlist = lappend(tlist, makeTargetEntry(resdom, (Expr *) expr));
j = lnext(j);
k = lnext(k);
}
if (flag >= 0)
{
/* Add a resjunk flag column */
resdom = makeResdom((AttrNumber) resno++,
INT4OID,
-1,
pstrdup("flag"),
true);
/* flag value is the given constant */
expr = (Node *) makeConst(INT4OID,
sizeof(int4),
Int32GetDatum(flag),
false,
true);
tlist = lappend(tlist, makeTargetEntry(resdom, (Expr *) expr));
}
return tlist;
}
/*
* Generate targetlist for a set-operation Append node
*
* colTypes: column datatypes for non-junk columns
* flag: true to create a flag column copied up from subplans
* input_plans: list of sub-plans of the Append
* refnames_tlist: targetlist to take column names from
*
* The entries in the Append's targetlist should always be simple Vars;
* we just have to make sure they have the right datatypes and typmods.
*/
static List *
generate_append_tlist(List *colTypes, bool flag,
List *input_plans,
List *refnames_tlist)
{
List *tlist = NIL;
int resno = 1;
ListCell *curColType;
ListCell *ref_tl_item;
int colindex;
Resdom *resdom;
Node *expr;
ListCell *planl;
int32 *colTypmods;
/*
* First extract typmods to use.
*
* If the inputs all agree on type and typmod of a particular column, use
* that typmod; else use -1.
*/
colTypmods = (int32 *) palloc(list_length(colTypes) * sizeof(int32));
foreach(planl, input_plans)
{
Plan *subplan = (Plan *) lfirst(planl);
ListCell *subtlist;
curColType = list_head(colTypes);
colindex = 0;
foreach(subtlist, subplan->targetlist)
{
TargetEntry *subtle = (TargetEntry *) lfirst(subtlist);
if (subtle->resdom->resjunk)
continue;
Assert(curColType != NULL);
if (subtle->resdom->restype == lfirst_oid(curColType))
{
/* If first subplan, copy the typmod; else compare */
if (planl == list_head(input_plans))
colTypmods[colindex] = subtle->resdom->restypmod;
else if (subtle->resdom->restypmod != colTypmods[colindex])
colTypmods[colindex] = -1;
}
else
{
/* types disagree, so force typmod to -1 */
colTypmods[colindex] = -1;
}
curColType = lnext(curColType);
colindex++;
}
Assert(curColType == NULL);
}
/*
* Now we can build the tlist for the Append.
*/
colindex = 0;
forboth(curColType, colTypes, ref_tl_item, refnames_tlist)
{
Oid colType = lfirst_oid(curColType);
int32 colTypmod = colTypmods[colindex++];
TargetEntry *reftle = (TargetEntry *) lfirst(ref_tl_item);
Assert(reftle->resdom->resno == resno);
Assert(!reftle->resdom->resjunk);
expr = (Node *) makeVar(0,
resno,
colType,
colTypmod,
0);
resdom = makeResdom((AttrNumber) resno++,
colType,
colTypmod,
pstrdup(reftle->resdom->resname),
false);
tlist = lappend(tlist, makeTargetEntry(resdom, (Expr *) expr));
}
if (flag)
{
/* Add a resjunk flag column */
resdom = makeResdom((AttrNumber) resno++,
INT4OID,
-1,
pstrdup("flag"),
true);
/* flag value is shown as copied up from subplan */
expr = (Node *) makeVar(0,
resdom->resno,
INT4OID,
-1,
0);
tlist = lappend(tlist, makeTargetEntry(resdom, (Expr *) expr));
}
pfree(colTypmods);
return tlist;
}
/*
* Does tlist have same datatypes as requested colTypes?
*
* Resjunk columns are ignored if junkOK is true; otherwise presence of
* a resjunk column will always cause a 'false' result.
*/
static bool
tlist_same_datatypes(List *tlist, List *colTypes, bool junkOK)
{
ListCell *l;
ListCell *curColType = list_head(colTypes);
foreach(l, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(l);
if (tle->resdom->resjunk)
{
if (!junkOK)
return false;
}
else
{
if (curColType == NULL)
return false;
if (tle->resdom->restype != lfirst_oid(curColType))
return false;
curColType = lnext(curColType);
}
}
if (curColType != NULL)
return false;
return true;
}
/*
* find_all_inheritors -
* Returns a list of relation OIDs including the given rel plus
* all relations that inherit from it, directly or indirectly.
*/
List *
find_all_inheritors(Oid parentrel)
{
List *examined_relids = NIL;
List *unexamined_relids = list_make1_oid(parentrel);
/*
* While the queue of unexamined relids is nonempty, remove the first
* element, mark it examined, and find its direct descendants. NB:
* cannot use foreach(), since we modify the queue inside loop.
*/
while (unexamined_relids != NIL)
{
Oid currentrel = linitial_oid(unexamined_relids);
List *currentchildren;
unexamined_relids = list_delete_first(unexamined_relids);
examined_relids = lappend_oid(examined_relids, currentrel);
currentchildren = find_inheritance_children(currentrel);
/*
* Add to the queue only those children not already seen. This
* avoids making duplicate entries in case of multiple inheritance
* paths from the same parent. (It'll also keep us from getting
* into an infinite loop, though theoretically there can't be any
* cycles in the inheritance graph anyway.)
*/
currentchildren = list_difference_oid(currentchildren, examined_relids);
unexamined_relids = list_union_oid(unexamined_relids, currentchildren);
}
return examined_relids;
}
/*
* expand_inherited_rtentry
* Check whether a rangetable entry represents an inheritance set.
* If so, add entries for all the child tables to the query's
* rangetable, and return an integer list of RT indexes for the
* whole inheritance set (parent and children).
* If not, return NIL.
*
* Note that the original RTE is considered to represent the whole
* inheritance set. The first member of the returned list is an RTE
* for the same table, but with inh = false, to represent the parent table
* in its role as a simple member of the set. The original RT index is
* never a member of the returned list.
*
* A childless table is never considered to be an inheritance set; therefore
* the result will never be a one-element list. It'll be either empty
* or have two or more elements.
*
* Note: there are cases in which this routine will be invoked multiple
* times on the same RTE. We will generate a separate set of child RTEs
* for each invocation. This is somewhat wasteful but seems not worth
* trying to avoid.
*/
List *
expand_inherited_rtentry(Query *parse, Index rti)
{
RangeTblEntry *rte = rt_fetch(rti, parse->rtable);
Oid parentOID;
List *inhOIDs;
List *inhRTIs;
ListCell *l;
/* Does RT entry allow inheritance? */
if (!rte->inh)
return NIL;
Assert(rte->rtekind == RTE_RELATION);
/* Fast path for common case of childless table */
parentOID = rte->relid;
if (!has_subclass(parentOID))
{
/* Clear flag to save repeated tests if called again */
rte->inh = false;
return NIL;
}
/* Scan for all members of inheritance set */
inhOIDs = find_all_inheritors(parentOID);
/*
* Check that there's at least one descendant, else treat as no-child
* case. This could happen despite above has_subclass() check, if
* table once had a child but no longer does.
*/
if (list_length(inhOIDs) < 2)
{
/* Clear flag to save repeated tests if called again */
rte->inh = false;
return NIL;
}
/* OK, it's an inheritance set; expand it */
inhRTIs = NIL;
foreach(l, inhOIDs)
{
Oid childOID = lfirst_oid(l);
RangeTblEntry *childrte;
Index childRTindex;
/*
* Build an RTE for the child, and attach to query's rangetable
* list. We copy most fields of the parent's RTE, but replace
* relation OID, and set inh = false.
*/
childrte = copyObject(rte);
childrte->relid = childOID;
childrte->inh = false;
parse->rtable = lappend(parse->rtable, childrte);
childRTindex = list_length(parse->rtable);
inhRTIs = lappend_int(inhRTIs, childRTindex);
}
/*
* The executor will check the parent table's access permissions when
* it examines the parent's inheritlist entry. There's no need to
* check twice, so turn off access check bits in the original RTE.
* (If we are invoked more than once, extra copies of the child RTEs
* will also not cause duplicate permission checks.)
*/
rte->requiredPerms = 0;
return inhRTIs;
}
/*
* adjust_inherited_attrs
* Copy the specified query or expression and translate Vars referring
* to old_rt_index to refer to new_rt_index.
*
* We also adjust varattno to match the new table by column name, rather
* than column number. This hack makes it possible for child tables to have
* different column positions for the "same" attribute as a parent, which
* is necessary for ALTER TABLE ADD COLUMN.
*/
Node *
adjust_inherited_attrs(Node *node,
Index old_rt_index, Oid old_relid,
Index new_rt_index, Oid new_relid)
{
Node *result;
adjust_inherited_attrs_context context;
Relation oldrelation;
Relation newrelation;
/* Handle simple case simply... */
if (old_rt_index == new_rt_index)
{
Assert(old_relid == new_relid);
return copyObject(node);
}
/*
* We assume that by now the planner has acquired at least
* AccessShareLock on both rels, and so we need no additional lock
* now.
*/
oldrelation = heap_open(old_relid, NoLock);
newrelation = heap_open(new_relid, NoLock);
context.old_rt_index = old_rt_index;
context.new_rt_index = new_rt_index;
context.old_rel_type = oldrelation->rd_rel->reltype;
context.new_rel_type = newrelation->rd_rel->reltype;
context.old_tupdesc = RelationGetDescr(oldrelation);
context.new_tupdesc = RelationGetDescr(newrelation);
context.old_rel_name = RelationGetRelationName(oldrelation);
context.new_rel_name = RelationGetRelationName(newrelation);
/*
* Must be prepared to start with a Query or a bare expression tree.
*/
if (node && IsA(node, Query))
{
Query *newnode;
newnode = query_tree_mutator((Query *) node,
adjust_inherited_attrs_mutator,
(void *) &context,
QTW_IGNORE_RT_SUBQUERIES);
if (newnode->resultRelation == old_rt_index)
{
newnode->resultRelation = new_rt_index;
/* Fix tlist resnos too, if it's inherited UPDATE */
if (newnode->commandType == CMD_UPDATE)
newnode->targetList =
adjust_inherited_tlist(newnode->targetList,
&context);
}
result = (Node *) newnode;
}
else
result = adjust_inherited_attrs_mutator(node, &context);
heap_close(oldrelation, NoLock);
heap_close(newrelation, NoLock);
return result;
}
/*
* Translate parent's attribute number into child's.
*
* For paranoia's sake, we match type as well as attribute name.
*/
static AttrNumber
translate_inherited_attnum(AttrNumber old_attno,
adjust_inherited_attrs_context *context)
{
Form_pg_attribute att;
char *attname;
Oid atttypid;
int32 atttypmod;
int newnatts;
int i;
if (old_attno <= 0 || old_attno > context->old_tupdesc->natts)
elog(ERROR, "attribute %d of relation \"%s\" does not exist",
(int) old_attno, context->old_rel_name);
att = context->old_tupdesc->attrs[old_attno - 1];
if (att->attisdropped)
elog(ERROR, "attribute %d of relation \"%s\" does not exist",
(int) old_attno, context->old_rel_name);
attname = NameStr(att->attname);
atttypid = att->atttypid;
atttypmod = att->atttypmod;
newnatts = context->new_tupdesc->natts;
for (i = 0; i < newnatts; i++)
{
att = context->new_tupdesc->attrs[i];
if (att->attisdropped)
continue;
if (strcmp(attname, NameStr(att->attname)) == 0)
{
/* Found it, check type */
if (atttypid != att->atttypid || atttypmod != att->atttypmod)
elog(ERROR, "attribute \"%s\" of relation \"%s\" does not match parent's type",
attname, context->new_rel_name);
return (AttrNumber) (i + 1);
}
}
elog(ERROR, "attribute \"%s\" of relation \"%s\" does not exist",
attname, context->new_rel_name);
return 0; /* keep compiler quiet */
}
static Node *
adjust_inherited_attrs_mutator(Node *node,
adjust_inherited_attrs_context *context)
{
if (node == NULL)
return NULL;
if (IsA(node, Var))
{
Var *var = (Var *) copyObject(node);
if (var->varlevelsup == 0 &&
var->varno == context->old_rt_index)
{
var->varno = context->new_rt_index;
var->varnoold = context->new_rt_index;
if (var->varattno > 0)
{
var->varattno = translate_inherited_attnum(var->varattno,
context);
var->varoattno = var->varattno;
}
else if (var->varattno == 0)
{
/*
* Whole-row Var: we need to insert a coercion step to convert
* the tuple layout to the parent's rowtype.
*/
if (context->old_rel_type != context->new_rel_type)
{
ConvertRowtypeExpr *r = makeNode(ConvertRowtypeExpr);
r->arg = (Expr *) var;
r->resulttype = context->old_rel_type;
r->convertformat = COERCE_IMPLICIT_CAST;
/* Make sure the Var node has the right type ID, too */
Assert(var->vartype == context->old_rel_type);
var->vartype = context->new_rel_type;
return (Node *) r;
}
}
/* system attributes don't need any translation */
}
return (Node *) var;
}
if (IsA(node, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) copyObject(node);
if (rtr->rtindex == context->old_rt_index)
rtr->rtindex = context->new_rt_index;
return (Node *) rtr;
}
if (IsA(node, JoinExpr))
{
/* Copy the JoinExpr node with correct mutation of subnodes */
JoinExpr *j;
j = (JoinExpr *) expression_tree_mutator(node,
adjust_inherited_attrs_mutator,
(void *) context);
/* now fix JoinExpr's rtindex */
if (j->rtindex == context->old_rt_index)
j->rtindex = context->new_rt_index;
return (Node *) j;
}
if (IsA(node, InClauseInfo))
{
/* Copy the InClauseInfo node with correct mutation of subnodes */
InClauseInfo *ininfo;
ininfo = (InClauseInfo *) expression_tree_mutator(node,
adjust_inherited_attrs_mutator,
(void *) context);
/* now fix InClauseInfo's relid sets */
ininfo->lefthand = adjust_relid_set(ininfo->lefthand,
context->old_rt_index,
context->new_rt_index);
ininfo->righthand = adjust_relid_set(ininfo->righthand,
context->old_rt_index,
context->new_rt_index);
return (Node *) ininfo;
}
/*
* We have to process RestrictInfo nodes specially.
*/
if (IsA(node, RestrictInfo))
{
RestrictInfo *oldinfo = (RestrictInfo *) node;
RestrictInfo *newinfo = makeNode(RestrictInfo);
/* Copy all flat-copiable fields */
memcpy(newinfo, oldinfo, sizeof(RestrictInfo));
/* Recursively fix the clause itself */
newinfo->clause = (Expr *)
adjust_inherited_attrs_mutator((Node *) oldinfo->clause, context);
/* and the modified version, if an OR clause */
newinfo->orclause = (Expr *)
adjust_inherited_attrs_mutator((Node *) oldinfo->orclause, context);
/* adjust relid sets too */
newinfo->clause_relids = adjust_relid_set(oldinfo->clause_relids,
context->old_rt_index,
context->new_rt_index);
newinfo->left_relids = adjust_relid_set(oldinfo->left_relids,
context->old_rt_index,
context->new_rt_index);
newinfo->right_relids = adjust_relid_set(oldinfo->right_relids,
context->old_rt_index,
context->new_rt_index);
/*
* Reset cached derivative fields, since these might need to have
* different values when considering the child relation.
*/
newinfo->eval_cost.startup = -1;
newinfo->this_selec = -1;
newinfo->left_pathkey = NIL;
newinfo->right_pathkey = NIL;
newinfo->left_mergescansel = -1;
newinfo->right_mergescansel = -1;
newinfo->left_bucketsize = -1;
newinfo->right_bucketsize = -1;
return (Node *) newinfo;
}
/*
* NOTE: we do not need to recurse into sublinks, because they should
* already have been converted to subplans before we see them.
*/
Assert(!IsA(node, SubLink));
Assert(!IsA(node, Query));
/*
* BUT: although we don't need to recurse into subplans, we do need to
* make sure that they are copied, not just referenced as
* expression_tree_mutator will do by default. Otherwise we'll have
* the same subplan node referenced from each arm of the inheritance
* APPEND plan, which will cause trouble in the executor. This is a
* kluge that should go away when we redesign querytrees.
*/
if (is_subplan(node))
{
SubPlan *subplan;
/* Copy the node and process subplan args */
node = expression_tree_mutator(node, adjust_inherited_attrs_mutator,
(void *) context);
/* Make sure we have separate copies of subplan and its rtable */
subplan = (SubPlan *) node;
subplan->plan = copyObject(subplan->plan);
subplan->rtable = copyObject(subplan->rtable);
return node;
}
return expression_tree_mutator(node, adjust_inherited_attrs_mutator,
(void *) context);
}
/*
* Substitute newrelid for oldrelid in a Relid set
*/
static Relids
adjust_relid_set(Relids relids, Index oldrelid, Index newrelid)
{
if (bms_is_member(oldrelid, relids))
{
/* Ensure we have a modifiable copy */
relids = bms_copy(relids);
/* Remove old, add new */
relids = bms_del_member(relids, oldrelid);
relids = bms_add_member(relids, newrelid);
}
return relids;
}
/*
* Adjust the targetlist entries of an inherited UPDATE operation
*
* The expressions have already been fixed, but we have to make sure that
* the target resnos match the child table (they may not, in the case of
* a column that was added after-the-fact by ALTER TABLE). In some cases
* this can force us to re-order the tlist to preserve resno ordering.
* (We do all this work in special cases so that preptlist.c is fast for
* the typical case.)
*
* The given tlist has already been through expression_tree_mutator;
* therefore the TargetEntry nodes are fresh copies that it's okay to
* scribble on. But the Resdom nodes have not been copied; make new ones
* if we need to change them!
*
* Note that this is not needed for INSERT because INSERT isn't inheritable.
*/
static List *
adjust_inherited_tlist(List *tlist,
adjust_inherited_attrs_context *context)
{
bool changed_it = false;
ListCell *tl;
List *new_tlist;
bool more;
int attrno;
/* Scan tlist and update resnos to match attnums of new_relid */
foreach(tl, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(tl);
Resdom *resdom = tle->resdom;
if (resdom->resjunk)
continue; /* ignore junk items */
attrno = translate_inherited_attnum(resdom->resno, context);
if (resdom->resno != attrno)
{
resdom = (Resdom *) copyObject((Node *) resdom);
resdom->resno = attrno;
tle->resdom = resdom;
changed_it = true;
}
}
/*
* If we changed anything, re-sort the tlist by resno, and make sure
* resjunk entries have resnos above the last real resno. The sort
* algorithm is a bit stupid, but for such a seldom-taken path, small
* is probably better than fast.
*/
if (!changed_it)
return tlist;
new_tlist = NIL;
more = true;
for (attrno = 1; more; attrno++)
{
more = false;
foreach(tl, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(tl);
Resdom *resdom = tle->resdom;
if (resdom->resjunk)
continue; /* ignore junk items */
if (resdom->resno == attrno)
new_tlist = lappend(new_tlist, tle);
else if (resdom->resno > attrno)
more = true;
}
}
foreach(tl, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(tl);
Resdom *resdom = tle->resdom;
if (!resdom->resjunk)
continue; /* here, ignore non-junk items */
if (resdom->resno != attrno)
{
resdom = (Resdom *) copyObject((Node *) resdom);
resdom->resno = attrno;
tle->resdom = resdom;
}
new_tlist = lappend(new_tlist, tle);
attrno++;
}
return new_tlist;
}