mirror of
https://github.com/postgres/postgres.git
synced 2025-05-05 09:19:17 +03:00
timezone actually has a daylight-savings rule. This avoids breaking cases that used to work because they went through the DecodePosixTimezone code path. Per contrib regression failures (mea culpa for not running those yesterday...). Also document the already-applied change to allow GMT offsets up to 14 hours.
1104 lines
26 KiB
C
1104 lines
26 KiB
C
/*
|
|
* This file is in the public domain, so clarified as of
|
|
* 1996-06-05 by Arthur David Olson (arthur_david_olson@nih.gov).
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/timezone/localtime.c,v 1.16 2006/10/18 16:43:14 tgl Exp $
|
|
*/
|
|
|
|
/*
|
|
* Leap second handling from Bradley White (bww@k.gp.cs.cmu.edu).
|
|
* POSIX-style TZ environment variable handling from Guy Harris
|
|
* (guy@auspex.com).
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include <fcntl.h>
|
|
|
|
#include "private.h"
|
|
#include "pgtz.h"
|
|
#include "tzfile.h"
|
|
|
|
|
|
#ifndef WILDABBR
|
|
/*----------
|
|
* Someone might make incorrect use of a time zone abbreviation:
|
|
* 1. They might reference tzname[0] before calling tzset (explicitly
|
|
* or implicitly).
|
|
* 2. They might reference tzname[1] before calling tzset (explicitly
|
|
* or implicitly).
|
|
* 3. They might reference tzname[1] after setting to a time zone
|
|
* in which Daylight Saving Time is never observed.
|
|
* 4. They might reference tzname[0] after setting to a time zone
|
|
* in which Standard Time is never observed.
|
|
* 5. They might reference tm.TM_ZONE after calling offtime.
|
|
* What's best to do in the above cases is open to debate;
|
|
* for now, we just set things up so that in any of the five cases
|
|
* WILDABBR is used. Another possibility: initialize tzname[0] to the
|
|
* string "tzname[0] used before set", and similarly for the other cases.
|
|
* And another: initialize tzname[0] to "ERA", with an explanation in the
|
|
* manual page of what this "time zone abbreviation" means (doing this so
|
|
* that tzname[0] has the "normal" length of three characters).
|
|
*----------
|
|
*/
|
|
#define WILDABBR " "
|
|
#endif /* !defined WILDABBR */
|
|
|
|
static char wildabbr[] = "WILDABBR";
|
|
|
|
static const char gmt[] = "GMT";
|
|
|
|
/*
|
|
* The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
|
|
* We default to US rules as of 1999-08-17.
|
|
* POSIX 1003.1 section 8.1.1 says that the default DST rules are
|
|
* implementation dependent; for historical reasons, US rules are a
|
|
* common default.
|
|
*/
|
|
#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
|
|
|
|
struct rule
|
|
{
|
|
int r_type; /* type of rule--see below */
|
|
int r_day; /* day number of rule */
|
|
int r_week; /* week number of rule */
|
|
int r_mon; /* month number of rule */
|
|
long r_time; /* transition time of rule */
|
|
};
|
|
|
|
#define JULIAN_DAY 0 /* Jn - Julian day */
|
|
#define DAY_OF_YEAR 1 /* n - day of year */
|
|
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
|
|
|
|
/*
|
|
* Prototypes for static functions.
|
|
*/
|
|
|
|
static long detzcode(const char *codep);
|
|
static const char *getzname(const char *strp);
|
|
static const char *getnum(const char *strp, int *nump, int min, int max);
|
|
static const char *getsecs(const char *strp, long *secsp);
|
|
static const char *getoffset(const char *strp, long *offsetp);
|
|
static const char *getrule(const char *strp, struct rule * rulep);
|
|
static void gmtload(struct state * sp);
|
|
static void gmtsub(const pg_time_t *timep, long offset, struct pg_tm * tmp);
|
|
static void localsub(const pg_time_t *timep, long offset, struct pg_tm * tmp, const pg_tz *tz);
|
|
static void timesub(const pg_time_t *timep, long offset,
|
|
const struct state * sp, struct pg_tm * tmp);
|
|
static pg_time_t transtime(pg_time_t janfirst, int year,
|
|
const struct rule * rulep, long offset);
|
|
int tzparse(const char *name, struct state * sp, int lastditch);
|
|
|
|
/* GMT timezone */
|
|
static struct state gmtmem;
|
|
|
|
#define gmtptr (&gmtmem)
|
|
|
|
|
|
static int gmt_is_set = 0;
|
|
|
|
/*
|
|
* Section 4.12.3 of X3.159-1989 requires that
|
|
* Except for the strftime function, these functions [asctime,
|
|
* ctime, gmtime, localtime] return values in one of two static
|
|
* objects: a broken-down time structure and an array of char.
|
|
* Thanks to Paul Eggert (eggert@twinsun.com) for noting this.
|
|
*/
|
|
|
|
static struct pg_tm tm;
|
|
|
|
|
|
static long
|
|
detzcode(const char *codep)
|
|
{
|
|
long result;
|
|
int i;
|
|
|
|
result = (codep[0] & 0x80) ? ~0L : 0L;
|
|
for (i = 0; i < 4; ++i)
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
return result;
|
|
}
|
|
|
|
int
|
|
tzload(const char *name, char *canonname, struct state *sp)
|
|
{
|
|
const char *p;
|
|
int i;
|
|
int fid;
|
|
|
|
if (name == NULL && (name = TZDEFAULT) == NULL)
|
|
return -1;
|
|
if (name[0] == ':')
|
|
++name;
|
|
fid = pg_open_tzfile(name, canonname);
|
|
if (fid < 0)
|
|
return -1;
|
|
{
|
|
struct tzhead *tzhp;
|
|
union
|
|
{
|
|
struct tzhead tzhead;
|
|
char buf[sizeof *sp + sizeof *tzhp];
|
|
} u;
|
|
int ttisstdcnt;
|
|
int ttisgmtcnt;
|
|
|
|
i = read(fid, u.buf, sizeof u.buf);
|
|
if (close(fid) != 0)
|
|
return -1;
|
|
ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
|
|
ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
|
|
sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
|
|
sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
|
|
sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
|
|
sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
|
|
p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
|
|
if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
|
|
sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
|
|
sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
|
|
sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
|
|
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
|
|
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
|
|
return -1;
|
|
if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
|
|
sp->timecnt + /* types */
|
|
sp->typecnt * (4 + 2) + /* ttinfos */
|
|
sp->charcnt + /* chars */
|
|
sp->leapcnt * (4 + 4) + /* lsinfos */
|
|
ttisstdcnt + /* ttisstds */
|
|
ttisgmtcnt) /* ttisgmts */
|
|
return -1;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
sp->ats[i] = detzcode(p);
|
|
p += 4;
|
|
}
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
sp->types[i] = (unsigned char) *p++;
|
|
if (sp->types[i] >= sp->typecnt)
|
|
return -1;
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo *ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
ttisp->tt_gmtoff = detzcode(p);
|
|
p += 4;
|
|
ttisp->tt_isdst = (unsigned char) *p++;
|
|
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
|
|
return -1;
|
|
ttisp->tt_abbrind = (unsigned char) *p++;
|
|
if (ttisp->tt_abbrind < 0 ||
|
|
ttisp->tt_abbrind > sp->charcnt)
|
|
return -1;
|
|
}
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
sp->chars[i] = *p++;
|
|
sp->chars[i] = '\0'; /* ensure '\0' at end */
|
|
for (i = 0; i < sp->leapcnt; ++i)
|
|
{
|
|
struct lsinfo *lsisp;
|
|
|
|
lsisp = &sp->lsis[i];
|
|
lsisp->ls_trans = detzcode(p);
|
|
p += 4;
|
|
lsisp->ls_corr = detzcode(p);
|
|
p += 4;
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo *ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisstdcnt == 0)
|
|
ttisp->tt_ttisstd = FALSE;
|
|
else
|
|
{
|
|
ttisp->tt_ttisstd = *p++;
|
|
if (ttisp->tt_ttisstd != TRUE &&
|
|
ttisp->tt_ttisstd != FALSE)
|
|
return -1;
|
|
}
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo *ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisgmtcnt == 0)
|
|
ttisp->tt_ttisgmt = FALSE;
|
|
else
|
|
{
|
|
ttisp->tt_ttisgmt = *p++;
|
|
if (ttisp->tt_ttisgmt != TRUE &&
|
|
ttisp->tt_ttisgmt != FALSE)
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const int mon_lengths[2][MONSPERYEAR] = {
|
|
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
|
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
|
|
};
|
|
|
|
static const int year_lengths[2] = {
|
|
DAYSPERNYEAR, DAYSPERLYEAR
|
|
};
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, scan until a character that is not
|
|
* a valid character in a zone name is found. Return a pointer to that
|
|
* character.
|
|
*/
|
|
static const char *
|
|
getzname(const char *strp)
|
|
{
|
|
char c;
|
|
|
|
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
|
|
c != '+')
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract a number from that string.
|
|
* Check that the number is within a specified range; if it is not, return
|
|
* NULL.
|
|
* Otherwise, return a pointer to the first character not part of the number.
|
|
*/
|
|
static const char *
|
|
getnum(const char *strp, int *nump, int min, int max)
|
|
{
|
|
char c;
|
|
int num;
|
|
|
|
if (strp == NULL || !is_digit(c = *strp))
|
|
return NULL;
|
|
num = 0;
|
|
do
|
|
{
|
|
num = num * 10 + (c - '0');
|
|
if (num > max)
|
|
return NULL; /* illegal value */
|
|
c = *++strp;
|
|
} while (is_digit(c));
|
|
if (num < min)
|
|
return NULL; /* illegal value */
|
|
*nump = num;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract a number of seconds,
|
|
* in hh[:mm[:ss]] form, from the string.
|
|
* If any error occurs, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the number
|
|
* of seconds.
|
|
*/
|
|
static const char *
|
|
getsecs(const char *strp, long *secsp)
|
|
{
|
|
int num;
|
|
|
|
/*
|
|
* `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
|
|
* "M10.4.6/26", which does not conform to Posix, but which specifies the
|
|
* equivalent of ``02:00 on the first Sunday on or after 23 Oct''.
|
|
*/
|
|
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp = num * (long) SECSPERHOUR;
|
|
if (*strp == ':')
|
|
{
|
|
++strp;
|
|
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num * SECSPERMIN;
|
|
if (*strp == ':')
|
|
{
|
|
++strp;
|
|
/* `SECSPERMIN' allows for leap seconds. */
|
|
strp = getnum(strp, &num, 0, SECSPERMIN);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num;
|
|
}
|
|
}
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract an offset, in
|
|
* [+-]hh[:mm[:ss]] form, from the string.
|
|
* If any error occurs, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the time.
|
|
*/
|
|
static const char *
|
|
getoffset(const char *strp, long *offsetp)
|
|
{
|
|
int neg = 0;
|
|
|
|
if (*strp == '-')
|
|
{
|
|
neg = 1;
|
|
++strp;
|
|
}
|
|
else if (*strp == '+')
|
|
++strp;
|
|
strp = getsecs(strp, offsetp);
|
|
if (strp == NULL)
|
|
return NULL; /* illegal time */
|
|
if (neg)
|
|
*offsetp = -*offsetp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract a rule in the form
|
|
* date[/time]. See POSIX section 8 for the format of "date" and "time".
|
|
* If a valid rule is not found, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the rule.
|
|
*/
|
|
static const char *
|
|
getrule(const char *strp, struct rule * rulep)
|
|
{
|
|
if (*strp == 'J')
|
|
{
|
|
/*
|
|
* Julian day.
|
|
*/
|
|
rulep->r_type = JULIAN_DAY;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
|
|
}
|
|
else if (*strp == 'M')
|
|
{
|
|
/*
|
|
* Month, week, day.
|
|
*/
|
|
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_week, 1, 5);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
|
|
}
|
|
else if (is_digit(*strp))
|
|
{
|
|
/*
|
|
* Day of year.
|
|
*/
|
|
rulep->r_type = DAY_OF_YEAR;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
|
|
}
|
|
else
|
|
return NULL; /* invalid format */
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp == '/')
|
|
{
|
|
/*
|
|
* Time specified.
|
|
*/
|
|
++strp;
|
|
strp = getsecs(strp, &rulep->r_time);
|
|
}
|
|
else
|
|
rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
|
|
* year, a rule, and the offset from UTC at the time that rule takes effect,
|
|
* calculate the Epoch-relative time that rule takes effect.
|
|
*/
|
|
static pg_time_t
|
|
transtime(pg_time_t janfirst, int year,
|
|
const struct rule * rulep, long offset)
|
|
{
|
|
int leapyear;
|
|
pg_time_t value = 0;
|
|
int i,
|
|
d,
|
|
m1,
|
|
yy0,
|
|
yy1,
|
|
yy2,
|
|
dow;
|
|
|
|
leapyear = isleap(year);
|
|
switch (rulep->r_type)
|
|
{
|
|
|
|
case JULIAN_DAY:
|
|
|
|
/*
|
|
* Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
|
|
* years. In non-leap years, or if the day number is 59 or less,
|
|
* just add SECSPERDAY times the day number-1 to the time of
|
|
* January 1, midnight, to get the day.
|
|
*/
|
|
value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
|
|
if (leapyear && rulep->r_day >= 60)
|
|
value += SECSPERDAY;
|
|
break;
|
|
|
|
case DAY_OF_YEAR:
|
|
|
|
/*
|
|
* n - day of year. Just add SECSPERDAY times the day number to
|
|
* the time of January 1, midnight, to get the day.
|
|
*/
|
|
value = janfirst + rulep->r_day * SECSPERDAY;
|
|
break;
|
|
|
|
case MONTH_NTH_DAY_OF_WEEK:
|
|
|
|
/*
|
|
* Mm.n.d - nth "dth day" of month m.
|
|
*/
|
|
value = janfirst;
|
|
for (i = 0; i < rulep->r_mon - 1; ++i)
|
|
value += mon_lengths[leapyear][i] * SECSPERDAY;
|
|
|
|
/*
|
|
* Use Zeller's Congruence to get day-of-week of first day of
|
|
* month.
|
|
*/
|
|
m1 = (rulep->r_mon + 9) % 12 + 1;
|
|
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
|
|
yy1 = yy0 / 100;
|
|
yy2 = yy0 % 100;
|
|
dow = ((26 * m1 - 2) / 10 +
|
|
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
|
|
if (dow < 0)
|
|
dow += DAYSPERWEEK;
|
|
|
|
/*
|
|
* "dow" is the day-of-week of the first day of the month. Get the
|
|
* day-of-month (zero-origin) of the first "dow" day of the month.
|
|
*/
|
|
d = rulep->r_day - dow;
|
|
if (d < 0)
|
|
d += DAYSPERWEEK;
|
|
for (i = 1; i < rulep->r_week; ++i)
|
|
{
|
|
if (d + DAYSPERWEEK >=
|
|
mon_lengths[leapyear][rulep->r_mon - 1])
|
|
break;
|
|
d += DAYSPERWEEK;
|
|
}
|
|
|
|
/*
|
|
* "d" is the day-of-month (zero-origin) of the day we want.
|
|
*/
|
|
value += d * SECSPERDAY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* "value" is the Epoch-relative time of 00:00:00 UTC on the day in
|
|
* question. To get the Epoch-relative time of the specified local time
|
|
* on that day, add the transition time and the current offset from UTC.
|
|
*/
|
|
return value + rulep->r_time + offset;
|
|
}
|
|
|
|
/*
|
|
* Given a POSIX section 8-style TZ string, fill in the rule tables as
|
|
* appropriate.
|
|
*/
|
|
|
|
int
|
|
tzparse(const char *name, struct state * sp, int lastditch)
|
|
{
|
|
const char *stdname;
|
|
const char *dstname = NULL;
|
|
size_t stdlen;
|
|
size_t dstlen;
|
|
long stdoffset;
|
|
long dstoffset;
|
|
pg_time_t *atp;
|
|
unsigned char *typep;
|
|
char *cp;
|
|
int load_result;
|
|
|
|
stdname = name;
|
|
if (lastditch)
|
|
{
|
|
stdlen = strlen(name); /* length of standard zone name */
|
|
name += stdlen;
|
|
if (stdlen >= sizeof sp->chars)
|
|
stdlen = (sizeof sp->chars) - 1;
|
|
stdoffset = 0;
|
|
}
|
|
else
|
|
{
|
|
name = getzname(name);
|
|
stdlen = name - stdname;
|
|
if (stdlen < 3)
|
|
return -1;
|
|
if (*name == '\0')
|
|
return -1;
|
|
name = getoffset(name, &stdoffset);
|
|
if (name == NULL)
|
|
return -1;
|
|
}
|
|
load_result = tzload(TZDEFRULES, NULL, sp);
|
|
if (load_result != 0)
|
|
sp->leapcnt = 0; /* so, we're off a little */
|
|
if (*name != '\0')
|
|
{
|
|
dstname = name;
|
|
name = getzname(name);
|
|
dstlen = name - dstname; /* length of DST zone name */
|
|
if (dstlen < 3)
|
|
return -1;
|
|
if (*name != '\0' && *name != ',' && *name != ';')
|
|
{
|
|
name = getoffset(name, &dstoffset);
|
|
if (name == NULL)
|
|
return -1;
|
|
}
|
|
else
|
|
dstoffset = stdoffset - SECSPERHOUR;
|
|
if (*name == '\0' && load_result != 0)
|
|
name = TZDEFRULESTRING;
|
|
if (*name == ',' || *name == ';')
|
|
{
|
|
struct rule start;
|
|
struct rule end;
|
|
int year;
|
|
pg_time_t janfirst;
|
|
pg_time_t starttime;
|
|
pg_time_t endtime;
|
|
|
|
++name;
|
|
if ((name = getrule(name, &start)) == NULL)
|
|
return -1;
|
|
if (*name++ != ',')
|
|
return -1;
|
|
if ((name = getrule(name, &end)) == NULL)
|
|
return -1;
|
|
if (*name != '\0')
|
|
return -1;
|
|
sp->typecnt = 2; /* standard time and DST */
|
|
|
|
/*
|
|
* Two transitions per year, from EPOCH_YEAR to 2037.
|
|
*/
|
|
sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
|
|
if (sp->timecnt > TZ_MAX_TIMES)
|
|
return -1;
|
|
sp->ttis[0].tt_gmtoff = -dstoffset;
|
|
sp->ttis[0].tt_isdst = 1;
|
|
sp->ttis[0].tt_abbrind = stdlen + 1;
|
|
sp->ttis[1].tt_gmtoff = -stdoffset;
|
|
sp->ttis[1].tt_isdst = 0;
|
|
sp->ttis[1].tt_abbrind = 0;
|
|
atp = sp->ats;
|
|
typep = sp->types;
|
|
janfirst = 0;
|
|
for (year = EPOCH_YEAR; year <= 2037; ++year)
|
|
{
|
|
starttime = transtime(janfirst, year, &start,
|
|
stdoffset);
|
|
endtime = transtime(janfirst, year, &end,
|
|
dstoffset);
|
|
if (starttime > endtime)
|
|
{
|
|
*atp++ = endtime;
|
|
*typep++ = 1; /* DST ends */
|
|
*atp++ = starttime;
|
|
*typep++ = 0; /* DST begins */
|
|
}
|
|
else
|
|
{
|
|
*atp++ = starttime;
|
|
*typep++ = 0; /* DST begins */
|
|
*atp++ = endtime;
|
|
*typep++ = 1; /* DST ends */
|
|
}
|
|
janfirst += year_lengths[isleap(year)] *
|
|
SECSPERDAY;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
long theirstdoffset;
|
|
long theirdstoffset;
|
|
long theiroffset;
|
|
int isdst;
|
|
int i;
|
|
int j;
|
|
|
|
if (*name != '\0')
|
|
return -1;
|
|
|
|
/*
|
|
* Initial values of theirstdoffset and theirdstoffset.
|
|
*/
|
|
theirstdoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
if (!sp->ttis[j].tt_isdst)
|
|
{
|
|
theirstdoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
theirdstoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
if (sp->ttis[j].tt_isdst)
|
|
{
|
|
theirdstoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initially we're assumed to be in standard time.
|
|
*/
|
|
isdst = FALSE;
|
|
theiroffset = theirstdoffset;
|
|
|
|
/*
|
|
* Now juggle transition times and types tracking offsets as you
|
|
* do.
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
sp->types[i] = sp->ttis[j].tt_isdst;
|
|
if (sp->ttis[j].tt_ttisgmt)
|
|
{
|
|
/* No adjustment to transition time */
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* If summer time is in effect, and the transition time
|
|
* was not specified as standard time, add the summer time
|
|
* offset to the transition time; otherwise, add the
|
|
* standard time offset to the transition time.
|
|
*/
|
|
|
|
/*
|
|
* Transitions from DST to DDST will effectively disappear
|
|
* since POSIX provides for only one DST offset.
|
|
*/
|
|
if (isdst && !sp->ttis[j].tt_ttisstd)
|
|
{
|
|
sp->ats[i] += dstoffset -
|
|
theirdstoffset;
|
|
}
|
|
else
|
|
{
|
|
sp->ats[i] += stdoffset -
|
|
theirstdoffset;
|
|
}
|
|
}
|
|
theiroffset = -sp->ttis[j].tt_gmtoff;
|
|
if (sp->ttis[j].tt_isdst)
|
|
theirdstoffset = theiroffset;
|
|
else
|
|
theirstdoffset = theiroffset;
|
|
}
|
|
|
|
/*
|
|
* Finally, fill in ttis. ttisstd and ttisgmt need not be handled.
|
|
*/
|
|
sp->ttis[0].tt_gmtoff = -stdoffset;
|
|
sp->ttis[0].tt_isdst = FALSE;
|
|
sp->ttis[0].tt_abbrind = 0;
|
|
sp->ttis[1].tt_gmtoff = -dstoffset;
|
|
sp->ttis[1].tt_isdst = TRUE;
|
|
sp->ttis[1].tt_abbrind = stdlen + 1;
|
|
sp->typecnt = 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dstlen = 0;
|
|
sp->typecnt = 1; /* only standard time */
|
|
sp->timecnt = 0;
|
|
sp->ttis[0].tt_gmtoff = -stdoffset;
|
|
sp->ttis[0].tt_isdst = 0;
|
|
sp->ttis[0].tt_abbrind = 0;
|
|
}
|
|
sp->charcnt = stdlen + 1;
|
|
if (dstlen != 0)
|
|
sp->charcnt += dstlen + 1;
|
|
if ((size_t) sp->charcnt > sizeof sp->chars)
|
|
return -1;
|
|
cp = sp->chars;
|
|
(void) strncpy(cp, stdname, stdlen);
|
|
cp += stdlen;
|
|
*cp++ = '\0';
|
|
if (dstlen != 0)
|
|
{
|
|
(void) strncpy(cp, dstname, dstlen);
|
|
*(cp + dstlen) = '\0';
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gmtload(struct state * sp)
|
|
{
|
|
if (tzload(gmt, NULL, sp) != 0)
|
|
(void) tzparse(gmt, sp, TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
* The easy way to behave "as if no library function calls" localtime
|
|
* is to not call it--so we drop its guts into "localsub", which can be
|
|
* freely called. (And no, the PANS doesn't require the above behavior--
|
|
* but it *is* desirable.)
|
|
*
|
|
* The unused offset argument is for the benefit of mktime variants.
|
|
*/
|
|
static void
|
|
localsub(const pg_time_t *timep, long offset, struct pg_tm * tmp, const pg_tz *tz)
|
|
{
|
|
const struct state *sp;
|
|
const struct ttinfo *ttisp;
|
|
int i;
|
|
const pg_time_t t = *timep;
|
|
|
|
sp = &tz->state;
|
|
if (sp->timecnt == 0 || t < sp->ats[0])
|
|
{
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt)
|
|
{
|
|
i = 0;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = 1; i < sp->timecnt; ++i)
|
|
if (t < sp->ats[i])
|
|
break;
|
|
i = sp->types[i - 1];
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
|
|
timesub(&t, ttisp->tt_gmtoff, sp, tmp);
|
|
tmp->tm_isdst = ttisp->tt_isdst;
|
|
tmp->tm_zone = &sp->chars[ttisp->tt_abbrind];
|
|
}
|
|
|
|
|
|
struct pg_tm *
|
|
pg_localtime(const pg_time_t *timep, const pg_tz *tz)
|
|
{
|
|
localsub(timep, 0L, &tm, tz);
|
|
return &tm;
|
|
}
|
|
|
|
|
|
/*
|
|
* gmtsub is to gmtime as localsub is to localtime.
|
|
*/
|
|
static void
|
|
gmtsub(const pg_time_t *timep, long offset, struct pg_tm * tmp)
|
|
{
|
|
if (!gmt_is_set)
|
|
{
|
|
gmt_is_set = TRUE;
|
|
gmtload(gmtptr);
|
|
}
|
|
timesub(timep, offset, gmtptr, tmp);
|
|
|
|
/*
|
|
* Could get fancy here and deliver something such as "UTC+xxxx" or
|
|
* "UTC-xxxx" if offset is non-zero, but this is no time for a treasure
|
|
* hunt.
|
|
*/
|
|
if (offset != 0)
|
|
tmp->tm_zone = wildabbr;
|
|
else
|
|
tmp->tm_zone = gmtptr->chars;
|
|
}
|
|
|
|
struct pg_tm *
|
|
pg_gmtime(const pg_time_t *timep)
|
|
{
|
|
gmtsub(timep, 0L, &tm);
|
|
return &tm;
|
|
}
|
|
|
|
|
|
static void
|
|
timesub(const pg_time_t *timep, long offset,
|
|
const struct state * sp, struct pg_tm * tmp)
|
|
{
|
|
const struct lsinfo *lp;
|
|
|
|
/* expand days to 64 bits to support full Julian-day range */
|
|
int64 days;
|
|
int idays;
|
|
long rem;
|
|
int y;
|
|
int yleap;
|
|
const int *ip;
|
|
long corr;
|
|
int hit;
|
|
int i;
|
|
|
|
corr = 0;
|
|
hit = 0;
|
|
i = sp->leapcnt;
|
|
while (--i >= 0)
|
|
{
|
|
lp = &sp->lsis[i];
|
|
if (*timep >= lp->ls_trans)
|
|
{
|
|
if (*timep == lp->ls_trans)
|
|
{
|
|
hit = ((i == 0 && lp->ls_corr > 0) ||
|
|
lp->ls_corr > sp->lsis[i - 1].ls_corr);
|
|
if (hit)
|
|
while (i > 0 &&
|
|
sp->lsis[i].ls_trans ==
|
|
sp->lsis[i - 1].ls_trans + 1 &&
|
|
sp->lsis[i].ls_corr ==
|
|
sp->lsis[i - 1].ls_corr + 1)
|
|
{
|
|
++hit;
|
|
--i;
|
|
}
|
|
}
|
|
corr = lp->ls_corr;
|
|
break;
|
|
}
|
|
}
|
|
days = *timep / SECSPERDAY;
|
|
rem = *timep % SECSPERDAY;
|
|
#ifdef mc68k
|
|
if (*timep == 0x80000000)
|
|
{
|
|
/*
|
|
* A 3B1 muffs the division on the most negative number.
|
|
*/
|
|
days = -24855;
|
|
rem = -11648;
|
|
}
|
|
#endif /* defined mc68k */
|
|
rem += (offset - corr);
|
|
while (rem < 0)
|
|
{
|
|
rem += SECSPERDAY;
|
|
--days;
|
|
}
|
|
while (rem >= SECSPERDAY)
|
|
{
|
|
rem -= SECSPERDAY;
|
|
++days;
|
|
}
|
|
tmp->tm_hour = (int) (rem / SECSPERHOUR);
|
|
rem = rem % SECSPERHOUR;
|
|
tmp->tm_min = (int) (rem / SECSPERMIN);
|
|
|
|
/*
|
|
* A positive leap second requires a special representation. This uses
|
|
* "... ??:59:60" et seq.
|
|
*/
|
|
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
|
|
tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
|
|
if (tmp->tm_wday < 0)
|
|
tmp->tm_wday += DAYSPERWEEK;
|
|
y = EPOCH_YEAR;
|
|
|
|
/*
|
|
* Note: the point of adding 4800 is to ensure we make the same
|
|
* assumptions as Postgres' Julian-date routines about the placement of
|
|
* leap years in centuries BC, at least back to 4713BC which is as far as
|
|
* we'll go. This is effectively extending Gregorian timekeeping into
|
|
* pre-Gregorian centuries, which is a tad bogus but it conforms to the
|
|
* SQL spec...
|
|
*/
|
|
#define LEAPS_THRU_END_OF(y) (((y) + 4800) / 4 - ((y) + 4800) / 100 + ((y) + 4800) / 400)
|
|
while (days < 0 || days >= (int64) year_lengths[yleap = isleap(y)])
|
|
{
|
|
int newy;
|
|
|
|
newy = y + days / DAYSPERNYEAR;
|
|
if (days < 0)
|
|
--newy;
|
|
days -= ((int64) (newy - y)) * DAYSPERNYEAR +
|
|
LEAPS_THRU_END_OF(newy - 1) -
|
|
LEAPS_THRU_END_OF(y - 1);
|
|
y = newy;
|
|
}
|
|
tmp->tm_year = y - TM_YEAR_BASE;
|
|
idays = (int) days; /* no longer have a range problem */
|
|
tmp->tm_yday = idays;
|
|
ip = mon_lengths[yleap];
|
|
for (i = 0; idays >= ip[i]; ++i)
|
|
idays -= ip[i];
|
|
tmp->tm_mon = i;
|
|
tmp->tm_mday = idays + 1;
|
|
tmp->tm_isdst = 0;
|
|
tmp->tm_gmtoff = offset;
|
|
}
|
|
|
|
/*
|
|
* Find the next DST transition time at or after the given time
|
|
*
|
|
* *timep is the input value, the other parameters are output values.
|
|
*
|
|
* When the function result is 1, *boundary is set to the time_t
|
|
* representation of the next DST transition time at or after *timep,
|
|
* *before_gmtoff and *before_isdst are set to the GMT offset and isdst
|
|
* state prevailing just before that boundary, and *after_gmtoff and
|
|
* *after_isdst are set to the state prevailing just after that boundary.
|
|
*
|
|
* When the function result is 0, there is no known DST transition at or
|
|
* after *timep, but *before_gmtoff and *before_isdst indicate the GMT
|
|
* offset and isdst state prevailing at *timep. (This would occur in
|
|
* DST-less time zones, for example.)
|
|
*
|
|
* A function result of -1 indicates failure (this case does not actually
|
|
* occur in our current implementation).
|
|
*/
|
|
int
|
|
pg_next_dst_boundary(const pg_time_t *timep,
|
|
long int *before_gmtoff,
|
|
int *before_isdst,
|
|
pg_time_t *boundary,
|
|
long int *after_gmtoff,
|
|
int *after_isdst,
|
|
const pg_tz *tz)
|
|
{
|
|
const struct state *sp;
|
|
const struct ttinfo *ttisp;
|
|
int i;
|
|
int j;
|
|
const pg_time_t t = *timep;
|
|
|
|
sp = &tz->state;
|
|
if (sp->timecnt == 0)
|
|
{
|
|
/* non-DST zone, use lowest-numbered standard type */
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt)
|
|
{
|
|
i = 0;
|
|
break;
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
return 0;
|
|
}
|
|
if (t > sp->ats[sp->timecnt - 1])
|
|
{
|
|
/* No known transition >= t, so use last known segment's type */
|
|
i = sp->types[sp->timecnt - 1];
|
|
ttisp = &sp->ttis[i];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
return 0;
|
|
}
|
|
if (t <= sp->ats[0])
|
|
{
|
|
/* For "before", use lowest-numbered standard type */
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt)
|
|
{
|
|
i = 0;
|
|
break;
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
*boundary = sp->ats[0];
|
|
/* And for "after", use the first segment's type */
|
|
i = sp->types[0];
|
|
ttisp = &sp->ttis[i];
|
|
*after_gmtoff = ttisp->tt_gmtoff;
|
|
*after_isdst = ttisp->tt_isdst;
|
|
return 1;
|
|
}
|
|
/* Else search to find the containing segment */
|
|
for (i = 1; i < sp->timecnt; ++i)
|
|
if (t <= sp->ats[i])
|
|
break;
|
|
j = sp->types[i - 1];
|
|
ttisp = &sp->ttis[j];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
*boundary = sp->ats[i];
|
|
j = sp->types[i];
|
|
ttisp = &sp->ttis[j];
|
|
*after_gmtoff = ttisp->tt_gmtoff;
|
|
*after_isdst = ttisp->tt_isdst;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If the given timezone uses only one GMT offset, store that offset
|
|
* into *gmtoff and return TRUE, else return FALSE.
|
|
*/
|
|
bool
|
|
pg_get_timezone_offset(const pg_tz *tz, long int *gmtoff)
|
|
{
|
|
/*
|
|
* The zone could have more than one ttinfo, if it's historically used
|
|
* more than one abbreviation. We return TRUE as long as they all have
|
|
* the same gmtoff.
|
|
*/
|
|
const struct state *sp;
|
|
int i;
|
|
|
|
sp = &tz->state;
|
|
for (i = 1; i < sp->typecnt; i++)
|
|
{
|
|
if (sp->ttis[i].tt_gmtoff != sp->ttis[0].tt_gmtoff)
|
|
return false;
|
|
}
|
|
*gmtoff = sp->ttis[0].tt_gmtoff;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Return the name of the current timezone
|
|
*/
|
|
const char *
|
|
pg_get_timezone_name(pg_tz *tz)
|
|
{
|
|
if (tz)
|
|
return tz->TZname;
|
|
return NULL;
|
|
}
|